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Abstract

This paper describes a map algebra language that can form the foundation
for overlay and neighborhood analyses in both raster geographic information
systems and image processing systems. The language combines maps and im-
ages in expressions with arithmetic and logical operators and mathematical
functions to produce new maps and images. This algebra has been implemented
in the GRASS r.mapcalc module. The language syntax is first described and
then examples relevant to GIS and image processing applications are presented.



1 Introduction

1.1 Background

Geographic information systems (GIS) have been evolving from basic spatial data
storage, retrieval, and display systems to more powerful spatial modeling systems.
This transition is mainly due to more robust query capabilities. The creation of spa-
tial query languages that empower the end-user to design and create spatial models
will advance this development even further. Tomlin (1990) describes a spatial mod-
eling language for raster data with three major classes of map operations: functions
of individual cells (e.g. map recoding and Boolean overlay); functions of cells within
neighborhoods (e.g. filters and slope-aspect generation); and functions of cells within
regions or zones (e.g. area calculations). This classification could be applied to image
processing operations as well because image processing systems, which are inherently
raster-based, employ analysis methods that are very simliar to some of these GIS
operations (Burrough 1986).

1.2 Purpose

This document describes a map algebra language, that is flexible enough to accom-
modate many operations in Tomlin’s first two classes and allows both developers and
end-users to construct a solid core of GIS analysis and image processing operations.

1.3 Approach

In the following material, the language syntax is first described and then illustrated
with examples relevant to GIS and image processing applications.

1.4 Mode of Technology Transfer

The map algebra has been implemented in the the Geographic Resources Analysis
Support System (GRASS)! module r.mapcalc. Many of the examples employ the
Spearfish data base, which is distributed with the GRASS software, and can be
reproduced by users of GRASS.

!GRASS is a raster based GIS and image processing system developed at the Army Corps of
Engineers Construction Engineering Research Laboratory.



2 Language Syntax

The algebra employs mathematical operators and functions in expressions involving
maps or images. The maps and images, which are stored in raster grid-cell format,
are two-dimensional matrices of integer values.

The syntax for the algebra is result=ezpression, where ezpression is built using maps
and images, mathematical operators, functions, and temporary variables. The result
map is produced by evaluating the expression for each cell in the matrix.

For example, the expression
sum = mapl + map?

would produce a map sum where each cell is the sum of the values of the corresponding
cells in map! and map2.

2.1 Maps and Images

Maps and images are data base files stored in raster format, i.e., two-dimensional
matrices of integer values. The values stored in a map may represent categorical
data (e.g., soil types), or continuous data (e.g., elevation). The values stored in
images usually represent continuous data (e.g., satellite sensor data). Although the
information represented by the values within a map or an image varies, the data
format is the same. For this reason, the distinction between maps and images will
be dropped and the term map will be used for either.

Map naming rules are quite flexible. A map name must not contain any special
characters (operators, parentheses, etc.), and must be distinguishable from numbers.
Common names include elevation, soils, vegetation, roads, band.1, etc., although
120ct89 is also acceptable.

Maps may be followed by a neighborhood modifier that specifies a relative offset from
the current cell being evaluated. The format is map/r,c/, where r is the row offset
and c is the column offset. For example, map/1,2] refers to the cell one row below
and two columns to the right of the current cell, map/-2,-1] refers to the cell two rows
above and one column to the left of the current cell, and map/0,1] refers to the cell
one column to the right of the current cell. This syntax permits the development of
neighborhood-type filters within a single map or across multiple maps.

At present, GRASS map files may contain only integer values. However, GRASS
does permit floating point values to be associated with each integer value in a map.?

2These values are stored in a separate attribute file known as the category label file.



Maps may be prefixed by the @ modifier that translates the integer values in a map
to their associated floating point values.

2.2 The Operators

The operators for the map algebra are:

operator meaning type precedence
* multiplication arithmetic 4
/ division arithmetic 4
% modulus arithmetic 4
+ addition arithmetic 3
— subtraction arithmetic 3
== equal comparison 2
= not equal comparison 2
< less than comparison 2
<= less than or equal comparison 2
> greater than comparison 2
>= greater than or equal comparison 2
&& and logical 1
Il or logical 1

The operators are applied from left to right, with those of higher precedence applied
before those of lower precedence. Parentheses may be used to control the order of
evaluation. The arithmetic operations have their usual meanings, except that division
by zero equals zero. If both operands are integer the result is integer, otherwise the
result is floating point. The comparisons evaluate to 1 if the comparison is true,
otherwise they evaluate to 0. The || operation evaluates to 1 if either operand is
non-zero (true) and to 0 otherwise. The && operation evaluates to 1 only if both
operands are non-zero (true) and to 0 otherwise.



2.3 The Functions

Functions perform some specific operation on a list of expressions and result in a
single operand. The r.mapcalc algebra includes the following functions:

abs(x) |z|

exp(x) e?

exp(x,y) z¥

log(x Inz

log(x,y) log, @

sqrt(x) Nz

atan(x) tan~tz [—-90°,90°]
atan(x,y) tan~ty/z [0°,360°]
cos(x) cos z°

sin(x) sin z°

tan(x) tan z°

min(x,y,...) minimum of {z,y,...}

max(X,y,...) maximum of {z,y,...}

float(x) convert z to floating point
round(x) round z to nearest integer
int(x) convert z to largest integer

less than or equal to z

if(x) 1, if z 1= 0; 0 otherwise
if(x,y) y, if z 1= 0; 0 otherwise
if(x,y,z) y, if z 1= 0; z otherwise
if(x,p,z,n) p, if > 0; z, if z == 0; n otherwise

eval(a,b,...,x) z (but all arguments are evaluated)

2.4 Temporary Variables

Sometimes expressions can become complicated and values that are computed in
one part of the expression must be used in a later part. A value can be assigned
to a temporary variable that is then used in a later part of the expression. For
example, result=(map+2)* (map+2) may be expressed, using a temporary variable z,
as result=(z=map+2)xz. Additional examples are given on pages 8 and 12.



3 GIS Examples

The algebra supports a variety of GIS operations. A number of these operations
will be described, but it should be noted that these examples do not exhaust the
flexibility and power of the language. The following maps are used:

elevation  30-meter digital elevation, range 1066-1840 meters

rushmore Camp Rushmore (a fictitious military installation)

0 | outside the installation
1 | inside the installation

slope slope in degrees

vegcover  vegetation cover

1 | irrigated agriculture
rangeland
coniferous forest
deciduous forest
mixed forest

disturbed

Sy O = LN

3.1 Map Recoding

A standard GIS operation is the recoding of values in a map. For example, a map
of forest versus non-forest can be created from the vegcover map by recoding forest
categories to 1 and non-forest categories to 2 as follows:

simple.cover = if(vegcover == 3 || vegcover == 4 || vegcover == 5, 1)+ \
1f(vegcover == 1 || vegcover == 2 || vegcover == 6, 2)
Note that it makes sense to add the results of both if functions because each if

selects a distinct subset of the input data. Also, note the use of \ to indicate that
the expression continues on multiple lines.

To make a map of elevations between 1200 and 1375 meters (with elevations outside
this range recoded to 0):

upland = 1 f(elevation >= 1200 && elevation <= 1375, elevation)



3.2 Selections

An operation related to map recoding is the selection or identification of cells that
meet specified criteria in one or more maps. Selection differs from recoding in two
respects: (1) it may involve more than one map and (2) the resulting map often has
only the values 0 and 1; the value 1 indicates cells that meet the criteria and the value
0 indicates cells that do not. The logical operators (&& and ||) together with the
comparison operators (==, =, <, <=, >, and >=) provide this selection capability.

For example, to create the map upland, where elevations between 1200 and 1375
meters are coded as 1 and elevations outside this range are coded as 0:

upland = elevation >= 1200 && elevation <= 1375

To create the map forest, indicating where forests are found:

forest = vegcover == 3 || vegcover == 4 || vegcover == 5

Then, to create the map upland.forest, indicating where upland forests are found:

upland. forest = forest && upland

Of course, the map upland.forest can be created directly without first creating the
maps upland and forest as follows:

upland.forest = (elevation >= 1200 && elevation <= 1375) && \

(vegcover == 3 || vegcover == 4 || vegcover == 5)

3.3 Region Growing

Region growing is a local neighborhood-type operation that adds a one-cell border
around regions in a map. This operation can be implemented with a simple algorithm.
Each zero value in the map is replaced by a non-zero value from the cell to the left,
to the right, above, or below.

For example, to add a one-cell border to the Camp Rushmore map:

rushmore.grow = if(rushmore,rushmore,
1f(rushmore|0, —1], rushmore[0, —1],
1f(rushmore|0, 1], rushmore[0, 1],
1f(rushmore[—1, 0], rushmore[—1, 0]
¢ f(rushmore[1,0],rushmore[l,0]))

e

)



The border itself can now be extracted simply by subtracting the original map from
the new map:

rushmore.border = rushmore.grow — rushmore

Note that a count of just the border cells can be used to approximate the perimeter
of the installation.?

3.4 Slope and Aspect

The neighborhood syntax of the algebra allows the determination of slope gradient
(maximum rate of change in altitude) and slope aspect (compass direction of the
slope) from elevation. The basic formulas (Dozier and Strahler 1983) are:

tan(slope) = \/(52/5m)2%—(5z/5y)2
6z/bx
8z /by

tan(aspect) =

where 6z/6z and 6z/8y are the partial derivatives in the east-west and north-south
directions. Numerical methods can be used to estimate these derivatives (Skidmore

1989). A method given by Horn (1981) is:

[62/6z],, = (Zy-10-1+ 2201+ Zyr1,0-1 — Zy—1011 — 2Zyet1 — Zyt1,011) [8AZ
[52/5?/]%;: = (zy—l,z—l + 2Zy—l,:z + Zy—1,24+1 — Zy+l,z—1 — 22y—|—1,:z - zy—l—l,z—l—l) /8Ay
where z, ., is the elevation value at row y column z, Az is the east-west (i.e., column)

grid spacing, and Ay is the north-south (i.e., row) grid spacing. This can be expressed
more clearly with a matrix of coeflicients:

1 0 -1 1 2 1

2 0 =2 0 0 0

1 0 -1 -1 -2 -1
befbe==—gAx— =" 3ay

The elevation map, which has a 30-by-30-meter horizontal grid spacing, can be pro-

3Cell counting, a regional operation, is not supported by r.mapcalc. Cell counts must be deter-
mined using another tool (e.g., the GRASS r.stats command).



cessed with r.mapcalc as follows:

slope = eval( z = (elevation[—1,—1]+ 2 * elevation|0, —1] + elevation|[l, —1]
—elevation[—1,1] — 2 x elevation|0, 1] — elevation|[1, 1]
)/(8.0 % 30.0) ,
y = (elevation[—1,—1]+ 2 % elevation[—1, 0] + elevation[—1, 1]
—elevation[l, —1] — 2 * elevation[l, 0] — elevation|[l, 1]
)/(8.0 % 30.0) ,
atan(sqri(zxz +y *y))

)

aspect = eval( z = (elevation[—1,—1]+ 2 * elevation|0, —1] + elevation|l, —1]
—elevation[—1,1] — 2 x elevation|0, 1] — elevation|[1, 1]
)/(8.0 % 30.0) ,
y = (elevation[—1,—1]+ 2 % elevation[—1, 0] + elevation[—1, 1]
—elevation[l, —1] — 2 * elevation[l, 0] — elevation|[l, 1]
)/(8.0 % 30.0) ,

a = round(atan(may)) )

f(zlly, 2/ (a, a, 360))

Note the use of the temporary variables a, z, and y to capture intermediate results
for use in the latter part of the expression.

Slope is calculated using the single-argument version of atan(), which will produce
angles in the range 0° to 90°. However, for terrain with low relief, degrees may not
give enough information. One modification would be to multiply the result by 10 to
get 10ths of a degree. Another would be to omit the atan() function to get tan(slope)
instead.

Aspect is calculated using the two-argument version of atan(), which will produce
angles in the range 0° to 360°. However, because aspect is undefined if both z and y
are zero (i.e. flat terrain), additional care is required. The code:

a = round(atan(z,y))

f(zlly, 2/ (a, a, 360))

produces values from 1 to 360 for cells that have non-zero slope and a zero value for
flat terrain.

An alternate technique to compute §z/6z and éz/éy is used by Frank (1988):

e T

Pl s



000 0 O 00 100
000 0 O 00 800
1 80 -8 —1 00 000
000 0 O 00 -8 00
000 0 O 00 -1 00

62/6z = 12AX 62/6y = 12AY

This is expressed in r.mapcalc as:
slope = eval( z = (elevation][0,—2]+ 8 x elevation|0, —1]

—elevation|0, 2] — 8 * elevation|0, 1]
)/(12.0 % 30.0)

y = (elevation[—2,0] + 8 * elevation|—1, 0]
—elevation[2,0] — 8 x elevation[l, (]
)/(12.0 % 30.0)

atan(sqri(zxz +y *y))

P P

)

aspect = eval( z = (elevation|[0,—2] + 8 x elevation|0, —1]
—elevation|0, 2] — 8 * elevation|0, 1]
)/(12.0 % 30.0)
y = (elevation[—2,0] + 8 * elevation|—1, 0]
—elevation[2,0] — 8 x elevation[l, (]
)/(12.0 % 30.0)

a = round(atan(may)) )

f(zlly, 2/ (a, a, 360))

T T T T

3.5 Hydrologic Simulation

r.mapcalc can be used to construct a simple hydrologic model that iteratively “flows”
water across a landscape. A constant amount of water is first deposited on each cell
in the landscape. Then, at each time slice, a portion of the water in each cell is
drained into its eight surrounding neighbors. The basic logic is as follows:

for each cell
for each neighbor
let height difference = (cell elevation + water height)
minus (neighbor elevation + water height)

10



if the height difference is positive
then
if the cell elevation is greater than
the neighbor’s elevation + water height
then
drain out a portion of the water
otherwise
drain out a portion of the height difference
otherwise
if the neighbor’s elevation is greater than
the cell’s elevation + water height
then
drain in a portion of the neighbor’s water
otherwise
drain in a portion of the height difference

end

end

The outer loop is for each cell in the landscape and is done automatically by r.mapcalc.
The inner loop applies to the eight neighboring cells and must be explicitly coded by

the user.

Before running this model, the elevation map must be converted to the same units
as the water map and filtered to smooth the elevation. In this example, we assume
that the water will be in units of 0.1 inches. To convert the elevation from meters to

0.1 inches:

elev = elevation * 393.7

Then, the map elev can be smoothed with the following filter:

as follows:

1
2
1

N CO DN

1
2
1
20

elev[—1,—1] + 2 x elev[—1,0] + elev[—1,1] \
2 x elev]0, —1] + 8 x elev + 2 * elev[0, 1] \
elev[l, —1] + 2 x elev[l, 0] + elev[l, 1] \
/20

elev =

(
_I_
_I_
)

(This filter produces a map with smoother contours. It also tends to create dams at
terrain choke points, which will form little lakes during the simulation.)

11



The model itself is

coded as follows:

water = water + eval(z = elev + water,

iof

iof

The result map water represents the water depth after a single iteration. Note that
there are eight similar sections in this model (beginning with ¢f(z > ..
handling a neighboring cell. The first four drain 15% of the water to or from the cells
above, below, and to either side; the last four drain 10% of the water to or from the

cells at the diagona

This model has been applied to a section of the Spearfish data base with realistic
looking results. Water drains away from the uplands forming temporary streams and
ponds. For those wishing to repeat the experiment with GRASS, enter the model

(z > (y = elev[—1,0] + water[—1,0]),
—15x%f (elev >y, water,

A5x2f (elev[—1,0] >z, water[—1,0],
(z > (y = elev[1,0] + water[1,0]),

—15x%f (elev >y, water,
A5xa2f (elev[l,0] > z, water[1, 0],

(z > (y = elev]0, —1] + water|0, —1]),

—15x%f (elev >y, water,

A5x2f (elev[0,—1] >z, water[0,—1],
(z > (y = elev]0,1] + water|0,1]),

—15x%f (elev >y, water,
A5xa2f (elev[0,1] > z, water[0, 1],

(z > (y = elev[—1,1] + water[—1,1]),

—10x2f (elev >y, water,

A0x2f (elev[-1,1] >z, water[—1,1],
(z > (y = elev[l, 1] + water[1,1]),

—10x2f (elev >y, water,
10xe2f (elev[l,1] > z, water[l,1],

(z > (y = elev[l, —1] + water[l, —1]),

—10x2f (elev >y, water,

10x2f (elev[l,—1] >z, water[l,—1],
(z > (y = elev]—1, —1] + water[—1, —1]),
—10x2f (elev >y, water,

€z _y)7
y —z))+
€z _y)7
y —z))+
€z _y)7
y —z))+
€z _y)7
y —z))+
€z _y)7
y —z))+
€z _y)7
y —z))+
€z _y)7
y —z))+
z—y)

A0xe2f (elev[—1,—1] >z, water[—1,—1], y—az)S)

| positions.

code in a file called water.mapcalc, then create a controlling shell script:

#!/bin/sh

r.mapcalc water=120 # start with 12 inches of water in each cell

d.rast water

# display the water map

12
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1=1
while [ $i != 100 |

do
n=1I
while [ $n !=10]
do
r.mapcalc < water.mapcalc # run the simulation
d.rast water # display the water map
n=‘expr §n + 1
done
g.copy rast=water,water.$i # save a snapshot
i=‘expr %1 + 1°
done

This script will run 1000 iterations. Note that the depth starts at 120 (12 inches of
water) across the entire map. After every tenth iteration, the result map water is

copied to a map with a unique name? for later rapid display. Run the shell scriptand
watch the water “flow” off the slopes of South Dakota’s Black Hills.

This model could be improved by considering additional factors, such as (1) evap-
oration and transpiration—in each time-step (iteration), some water will evaporate,
which could be modeled as either a constant value or as a simple function of ground
cover type; (2) flow impedance—the amount of water that can leave a cell in a
given time step could be modified using ground cover information; and (3) ground
saturation—during a rain event, the rate at which soils absorb water can be estimated
based on soil type and length of exposure to water.

4 Imagery Examples

The algebra also supports many image processing operations. A number of these will
be described here. Again, the examples are not exhaustive. They are intended to
illuminate the power of the algebra.

4.1 Spectral Ratios

Ratio transformation of spectral data is one technique used in the analysis of remotely
sensed data (Lillesand and Kiefer 1987). Between-band ratios, which eliminate mul-

“These maps will be named water.1, water.2,...,water.100.

13



tiplicative effects, are easily created with r.mapcalc:
ratio = band.1/band.2

Ratios of between-band differences, which eliminate additive effects, are also straight-
forward:

ratio = (band.l — band.2)/(band.3 — band.2)
A normalized vegetation index for AVHRR data is computed as:

nvt = (avhrr.2 — avhrr.l)/(avhrr.2 + avhrr.1)

These results could be produced with a very simple algebra that uses only arith-
metic operators. The transformed vegetative index for the Landsat Thematic Mapper
illustrates the use of functions in r.mapcalc:

tve = 100 * sqrt((tm.4 — tm.3)/(tm.4 + tm.3) 4 0.5)

Note that 0.5 is added to help ensure that sqrt() isn’t applied to a negative value.
This can be guaranteed by using the max() function:

tve = 100 * sqrt(maz(0, (tm.4 — tm.3)/(tm.4 4+ tm.3) + 0.5))

If it is desired that the results be in the range 0-255, this ratio will produce such
results:

ratio = 255.0/90.0 * atan(float(tm.1)/ float(tm.2))

Note that the float() function is used to ensure that the division is floating point
division, not integer division. Also note that because the output map can hold only
integer values, r.mapcalc will round the results to integers before they are stored in
the map.

4.2 Spatial Filters

A common image processing operation is local neighborhood filtering. A small win-
dow is moved over the image, and the center pixel is replaced by a combination of
all the pixels in the window.

Low-frequency filters (also called low-pass filters) attempt to de-emphasize high spa-
tial frequencies. These involve performing a weighted average of all the pixels in the
window. A simple average, which smoothes the image, is based on the filter:

1 11

1 11

1 11
9



This is expressed with r.mapcalc as:

avedzd = ( wmage[—1,—1]+ tmage[—1,0] + image[—1,1] \
+ wmagel0, —1] + 2magel0, 0] + tmage[0, 1] \
+ wmagell, —1] + wmage[l,0] + tmage[l, 1] \

) /9

High-frequency filters (high-pass filters) attempt to emphasize high spatial frequencies
and can be used for edge enhancement. The technique is the same as for low-frequency
filters, except that some of the weights are negative. One such filter is:

-1 -1 -1
-1 9 -1
-1 -1 -1
This is expressed with r.mapcalc as:
high3z3 = ( —wimage[—1,—1] —image[—1,0] —image[—1,1] \
1\
\

—imagel0, —1] + 9 x 2mage[0, 0] — 1mage|0,
—image[l, —1] — image[l, 0] — tmage[l, 1]

)

The Sobel filter is a non-linear edge enhancement filter:

10 17" 1 2 177
2 02| +| 0o 0 o
10 1 1 -2 —1

It is similar to the method used to determine slope from elevation and is expressed

in r.mapcalc as:

sobel3z3 = eval( z = image|—1,1] + 2 ximagel0, 1] + image|l, 1] \
—image[—1, —1] — 2 x image[0, —1] — image[l, —1] , \

y = wmage|—1,—1]+ 2 x image[—1, 0] + tmage[—1, 1] \

—image[l, —1] — 2 x 1mage[l,0] — image[l,1] , \

sqgri(zxz +y*y) \

Another type of filter is an adaptive filter, which replaces the center pixel only if
some criteria is met. Eliason and McEwen (1990) describe two adaptive filters. The
center pixel is replaced by the average value in the neighborhood if the difference
between the pixel value and the average value exceeds a threshold. One filter sets
the threshold to a multiple of the statistical variance in the neighborhood. The other

15



sets the threshold to a multiple of the statistical variance in the entire image. Both
filters can be coded with r.mapcalc; the variance within the entire image is a regional
calculation and must first be computed by another command® and then inserted into
the r.mapcalc code. The first filter is illustrated.

Let P be the value of the center pixel, s the sum of all values in the neighborhood, n
the number of pixels in the neighborhood, and ss the sum of the squares of the values
in the neighborhood. The average is given by:

s
K=
n
and the variance is given by:
2 55 2
o= ——yu
n
The center pixel is replaced if
(P —u)®> Co?

where C is usually between 1.0 and 4.0. The r.mapcalc code for a 3x3 window with
C set to 2.25 is:

filter = eval( s = mage|—1, —1] + mage[—1,0] + tmage[—1,1]+
1mage|0, —1] 4+ imagel0, 0] + imagel0, 1]+
wmagell, —1] 4 imagell, 0] 4+ image[l,1] ,
ss = awmage[—1,—1] % image[ 1,—1]+
image[—1,0] * image[—1, 0]+
—1,1] * emage[—1, 1]+
image 0, 1] x 1magel0, —1]+

1mage 17 1] * 2mage[l, —1]+
wmage(l, 0] x image[l, 0]+
image[l,1] x image[l,1] ,
ave = /9.0,
var = s5/9.0 — ave * ave ,

x = mage — ave ,
if(z * ¢ > 2.25 x var, ave,image)

3
<
Q
[0}
o
*
§
<
Q
[0}
o
2
_|_
PPl A L A

)

5The GRASS r.stats command could be used to compute the variance across the entire image.
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4.3 Radiometric Calibration

Radiometric calibration is the conversion of digital values recorded by a remote sens-
ing system to radiance values at the top of the atmosphere, possibly followed by
conversion to surface reflectance values. Radiance values can be computed using the

following formula (Chavez 1989):

rad;(z,y) = (dn;(z,y) — offset;)/gain;

where rad is the radiance for band ¢ at pixel z,y; dn is the value recorded by the
sensors; and offset and gain are the sensor offset and gain for band 2. This formula
is handled easily by r.mapcalc. For example, using the values for the offset and gain
as reported by Chavez for October 3, 1988 Thematic Mapper data, radiance images
are constructed as follows:

rad.l = (tm.l —2.4899)/16.5993
rad.2 = (tm.2—2.3871)/8.5104
rad.3 = (tm.3 —1.4815)/12.4074
radd = (tm.4—1.8418)/12.2790
rad.5 = (tm.5— 3.4240)/92.5292
rad.7T = (tm.7—2.6323)/175.4878

The radiance formula for the Spot sensor appears in a slightly modified form (Spot,
1989):

Ta’di(m7 y) = dnz(m7 y)/14Z
where A; are the absolute calibration coefficients. The May 27, 1989 Spot multispec-

tral image in the Spearfish data base can be converted to radiance, using r.mapcalc,
as follows:

rad.l = spot.ms.1/1.05586
rad.2 = spot.ms.2/1.12140
rad.3 = spot.ms.3/0.97244

Surface reflectance calculations are more involved because the formulas must incor-
porate atmospheric effects. There are various methods for modeling these effects

(Richards 1986, Price 1987, Chavez 1989). A formula given by Chavez is:

ndist?[rad,(z,y) — haze;]
Ri(z,y) = ’
E;slope(z,y) - sun - mhaze;
where R is the surface reflectance image; rad is the radiance image; slope is a slope

map; dist is the Earth-Sun distance; haze and mhaze are the additive and multiplica-
tive atmospheric haze factors; F is exoatmospheric spectral irradiance; and sun is the
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sun elevation at the time the image was captured. Combining the non-map factors
into single constants, the formula can be written in the form:

A, [Ta'di(ma y) - Bi]
slope(z,y)

Ri(ma y) =

which, after substituting the appropriate values for the constants A and B, is ex-
pressed with r.mapcalc as:

R1 = A;x(rad.l — By)/slope
R.2 Ay x (rad.2 — B,)/slope
R3 = As;x(rad.3 — B;)/slope

4.4 Principal Components

Principal components analysis involves transforming a set of correlated variables into
a new, uncorrelated set. In this case the variables are the band files from a multi-
spectral sensor. The transformation is a linear combination of the band data:

N
component; = Zwij *band; 1=1,...,N

j=1
where N is the number of band files and w,; are the eigenvectors for the between-band
covariance matrix. While neither the covariance computation nor the determination
of the eigenvectors can be accomplished using the map algebra, the components can
be computed. For example, suppose the three multispectral bands from a Spot image
had the following covariance matrix:

462.88 480.41 281.76
480.41 513.02 278.92
281.76 278.91 336.33

A set of eigenvectors for this matrix (in decreasing order of spectral variance) is:

vector; 21.24 22.15 14.77
vector, 2.91 446 —10.87
vector; 1.82 —-1.62 —0.18

To compute the second component with r.mapcalc:

pc.2 = 2.91 % spot.ms.1 4+ 4.46 x spot.ms.2 — 10.87 x spot.ms.3
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4.5 Merging Panchromatic Data with Multispectral Data

The French SPOT satellite produces a 10-meter panchromatic image plus three spec-
tral bands with 20-meter resolution. Landsat Thematic Mapper produces six spectral
bands with 30-meter resolution (as well as a 120-meter resolution thermal band). A
sharpened color image can be produced by merging the high resolution panchromatic
image with the lower resolution spectral bands. Assuming that the spectral data
have been registered and resampled to the 10-meter panchromatic data, a number of
techniques have been used to perform the merger, most of which can be done with
the map algebra.

Welch (1987) describes two direct methods:

where M; is spectral band z; P is the panchromatic band; w; and w, are weights; and
a; and b; are chosen to make the results fall within the range 0-255. Both of these
methods can be implemented using the algebra.

A simple average, based on the first method, is coded as:

merge.l = (spot.ms.l + spot.pan)/2
merge.2 = (spot.ms.2 + spot.pan)/2
merge.3 = (spot.ms.3 + spot.pan)/2

Or a combination of both methods can be used:

merge.l = sqrit(spot.pan * spot.ms.1)
merge.2 = sqrit(spot.pan * spot.ms.2)
merge.3 = (spot.pan + 3 * spot.ms.3)/4

A third method is to transform three selected bands from red, green, and blue color
space to intensity, hue, and saturation color space. The intensity is replaced by the
panchromatic image, and the new intensity, hue, saturation combination is trans-
formed back into red, green, and blue.

4.6 Intensity, Hue, Saturation

Conversion from red, green, and blue colors to intensity, hue, and saturation involve
formulas that can be represented using the algebra. The following is based on the
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hue, saturation, and value (HSV) algorithm found in Foley and Van Dam (1984).
Assuming that R, G, and B represent the red, green, and blue components of an
image, the value (V), saturation (5), and hue (H) can be formed as follows:

V = maz(R,G,B)
S — 255.0 % (V — min(R, G, B))/V

if(G==V,247— b+
Zf(B::V74+g_T)7
if(h <=0,k +6,h)%60))

H = zf(S eval( \
m = float(mzn(RGB)) \

r = (V-R)/(V—-m), \

g = (V-G)/(V-m), \

b = (V-B)/(V-m), \

h = zf(R——Vb— 9)+ \

\

\

While saturation is normally defined in the range 0-1, it is multiplied here by 255 to
retain more information after conversion to integer. Hue will be in the range 0-360,
with 0 representing undefined hue (i.e., white, black, or grey).

The inverse transformation is:

R = eval( \
s = §/255.0 , \
h = +f(H >=360,H — 360,H)/60.0 , \
v = nt(h), \
b= Va(l-s), \
g = Ve(l-s+f), \
b= Va(lose(io ), \
(== 0,V) 4 if(i == Lg) +if(i == 2,p)+ \
if( == 3,p) +ifli == 4,8) + if(i == 5,V"))

G = eval( \
s = §/255.0 , \
h = +f(H >=360,H — 360,H)/60.0 , \
v = nt(h), \
b= Va(l-s), \
g = Ve(l-s+f), \
b= Va(lose(io ), \
Zf('L::();t)—l_Zf(Z:: 17V)+Zf(ZZ:27V)+ \
if(1==23,9) +if(r ==4,p) +:f(2 == 5,p))
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B = eval( \
s = 5/255.0, \
h = if(H >=360,H — 360, H)/60.0 , \
v = nt(h), \
f = h—1, \
p = Va(l-s), \
¢ = Vell-sxf), \
t = Vx(l—sx(1-71)), \
== 09) +4f(6 == L) +ifli =2 004\
if(i == 3.V) +f(i == 4, V) + 1f(i == 5,q))

5 Conclusion

The approach of providing a map algebra for manipulation of raster data results in a
very flexible system. Given the appropriate raster data layers, the type and number of
potential data manipulations are virtually limitless. For many applications, users are
freed from software limits and bounded only by their ability to employ this algebra.
The potential of r.mapcalc in fact supports three levels of usage: (1) it is a resource for
users who need to perform specific algebraic functions that are not provided by other
GRASS programs; (2) it is a foundational tool for advanced GIS users to develop a
limitless set of image and map analysis functions; and (3) it is an important resource
for programmers and developers to use in building new functions.

r.mapcalc is perhaps most important at the intermediate level, as a tool for advanced
GIS users. A common implementation model for GIS in larger organizations is one or
two sophisticated users supporting numerous casual users. In this context, r.mapcalc
becomes a language that opens an array of possiblities for spatial analysis and pro-
vides a means to develop macros to support routine operations by less sophisticated
users.
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