GRASS 4.1 Programmers Manual

Michael Shapiro

James Westervelt
Dave Gerdes
Marjorie Larson
Kenneth R. Brownfield

U.S. Army Construction Engineering Research Laboratory

ABSTRACT

This manual introduces the reader to the Geographic Resources
Analysis Support System from the programming perspecesign theory
system support libraries, system maintenance, and system enhancement are all
presented.

March, 1993

Foreword

This work was performed by the Hronmental Division (EN) of the U.SArmy
Construction Engineering Research Laboratory (QERL). Dr William D. Goran is
Acting Chief of the Emironmental Sustainment Laboratory; Diane K. Mann is Acting
Chief of the Environmental Compliance Division.

COL Daniel Waldo, Jris Commander and Director of USKRL, and DrL.R.
Shaffer is Technical Director.

Chapter 1

Introduction

1.1. Backgound

The Geographic Resources Analysis Support System (GRASS) is a geographic
information system (GIS) designed andvaeleped by researchers at the U.S. Army
Construction Engineering Research Laboratory (OBERL). GRASSprovides softvare
capabilities suitable for genizing, portraying and analyzing digital spatial data.

Since the first release of GRASS software in 1985, the number of users and applications
has rapidly gravn. Becaus&RASS is distributed with source code, user sites (including
mary government oganizations, educational institutions, andvgre firms) are able to
customize and enhance GRASS to meet their own requirements. While researchers at
USACERL still maintain and support GRASS, and stilvelep and oganize nev
versions of GRASS for release, programmers at numerous sitesvoik directly with
GRASS source code.

1.2. Objective

Those who wrk with GRASS source code need detailed information on the structure and
organization of the software, and on procedures and standards for programming and
documentation. Thebjectve d this manual is to provide the necessary information for
programmers to understand and enhance GRASS software.

1.3. Approach

GRASS software is continuously updated and imgilo Software enhancements are
developed at warious sites, and submitted to USACERL to be shared with other sites and
included in future releases of GRASSmprovements to the code are periodically
incorporated into ne releases (which occur approximately once per year).

With each ne release of GRASS, more and more sitegehHagun working directly with

GRASS source code. Sites are encouraged to use standard procedwespmeat of
nev GRASS capabilities. Sites that\a#op GRASS software are encouraged to learn

§1 Introduction

and use GRASS programming libraries, and to use standard procedures for coding,
commenting and documenting sofing. Theuse of GRASS libraries and a@mtions
will:

(1) Eliminate duplication of functions that already exist in GRASS
libraries;

(2) Increasehe capability of multiple sites to share enhancements;

(3) Reduceproblems in adapting contubted GRASS capabilities to we
data structures andweversions of GRASS software;

(4) Proide some common elements (such as documentation and user
interfaces) for users who use code contributed from multiple sites, and
reduce the learning cueessociated with each contributed capability.

The first GRASS ProgrammerManual was deloped for GRASS 2.0 (released in
1987). TheGRASS Programmes’Reference Manual for GRASS 3.0 (released in 1988)
was mmpletely rewritten due to the numerous and fundamental changes made in GRASS
3.0.

Because much of GRASS has remained consistent from 3.0 to 4.0 and 4QERISA
researchers elected to upgrade the 3.0 Programidariual to reflect the changes that
have urned GRASS 3.0 into GRASS 4.0 and 4.1.

The approach used in thevé®pment of this manual wolves a systematic effort to
describe GRASS delopment guidelines, user intades, data structures, programming
libraries and peripheral aers.

1.4. Scope

Information in this manual is valid for GRASS version 4.1, released in M@1. As
changes are made to GRASS libraries, data structures, and user interfaces, elements in
this manual will require updating. Plans to perform updates, and/éhabdlity of these
updates, will be announced in thewsétter GRASSClippingsand other GRASS
information forums.

1.5. Modeof Technology Transfer

Army and Corps of Engineer ganizations can acquire GRASS software from
USACERL. Seeral other federal ganizations provide distribution and support services
for GRASS within their wn agencies, and w&al educational institutions and yaie
firms also provide distribution, training and support services for GRAS&rent
information on the status andadability of services for GRASS can be obtained from
the GRASS Information Centér.

1 See§1.6 GRASS Information Center4 for phone numbers and mail addresses.

81 Introduction

This manual should pve t© be a waluable resource facilitating GRASS sddine
development efforts at the numerousvgmment ageng educational institutions and
private firms that nw use GRASS and plan to modifgnhance or customize the
software. Siteghat deelop nev analytical capabilities or peripheral ders for GRASS

are encouraged to share their products with others in the GRASS/GIS user community
To facilitate this sharing process among usapport and deglopment sites, seral
forums hae been established. These include the following:

The GRASS Information Center,

The GRASS Inter-AgerycCoordinating Committee,

An annual GRASS/GIS User Group Meeting,
GRASSClippingsa periodic newsletterand
GRASSNET an dectronic mail and software retvia forum.

The GRASS Information Center maintains: (1) a set of publications on GRASS and
GRASS-related items, (2) updated information on locations that distrdnd support
GRASS software and on training courses for GRASS, (3) the mailing list for the
newslettertGRASSClippingsand (4) updated information on the status of GRASS user
group meetings and software releases.

The GRASS Inter-Agency Coordinating Committeeis an informal aganization with
members from gernment agencies and othergamizations that use, support and
enhance GRASS. This ganization sponsors the annual User Group Meeting and the
qguarterly nevsletter It holds at least tw meetings annually to share and coordinate
GRASS plans among the patrticipating agencies.

The annualGRASS/GIS User Group Meeting is hosted each year by one of the
member agencies of the Coordinating Committeegoers, demonstrations, and
discussion panels present GRASS applications and aeftdeelopment issues.The
meeting preides opportunities for current and potential users to share and demonstrate
new GRASS software.

The GRASSCIlippings newsletter is published to pvae information to ayone
interested in GRASS softawe. Thenewsletter includes articles on softwarevdlepment,
hardware options and applications of GRASS.

GRASSNET is an electronic mail forum that pides a mechanism through which
GRASS user and sidlopment sites can exchange messages. It can be reached via
Arpanet, Internet and other netiks. GRASSNETalso includes a library of contrbed
software aailable for users to retne and review. Thus, n&v software is &ailable before

it is integrated into a formal release of GRASS code.

81 Introduction

1.6. GRASSInformation Center

Sites wishing to contrilite code to GRASS, or wanting to participate iy ahthese
GRASS/GIS user community forums, should contact the GRASS Information Center by
phone at (800)-USA-CERL, &tension 220 or (217)-373-7220; by U.S. mail GRASS
Information Center USACERL, PO. Box 9005, Champaign, IL, 61826-9005; or by
electronic mail atgrass@zorro.cecer.army.mil .

81 Introduction

Chapter 2

Development Guidelines

GRASS continues its #elopment with seeral key djectives as a gide. The
programmer should beware of these and st t write code that blends well with
existing capabilities. All objecties ae based on an understanding of the needs of the end
users of GRASS.

2.1. IntendedGRASS Audience

GRASS is a general purpose geographic information syst&nintended users are
regional land planners, ecologists, geologists, geographers, archeologists, and landscape
architects. Usetb evaluate broad land use suitabilityis ideal for siting lage projects,
managing parks, forest, and range land, amtlating impacts wer wide areas.These

users are generally NCequipped to write programs or design a system. Inyntases

they havenever used a computer oven a keyboard.

REGIONAL PLANNING TOOL -
GRASS is designed for planning at the couperk, forest, or range Vel. It is
suitable for planning at a macro scale where the land uses are larger than 30 meters
(or so, depending on the database resolutigs)yet, no GRASS tools exist for the
modeling and simulation of traffic, electricalat@r and sevage infrastructure loads,
or for the precise positioning of urban structures.

UTM REFERENCED -
To facilitate area calculations, a planimetric projectioaswdesired for initial
GRASS deelopment. Fundingvas provided through Army military installations
which were familiar with the Umersal Transerse Mercator (UTM) projection.
Due to thesedtctors, GRASS deloped around the UTM coordinate systeirhe
UTM projection allows GRASS to assume equal area cellsviagre in the
database. llso makes distance calculations simple and straightforward.

LATITUDE-LONGITUDE REFERENCING -
It has been recognized that the UTM projection has limitations that rtak
awkward if not impossible to use for regions that spao fw more) UTM zones.
Significant capabilities v keen added to support latitude-longitude referenced
data bases that will support analysegrdarge regions as well global analysis.
However, the deelopment is incomplete, especially on the vector side. The
programmer will find some routines in the libraries which are specifically designed

§2 Development Guidelines

to support this projection.

INTERACTIVE -
GRASS has a strong interaei omponent. Its multileel design allows users to
work either at a very user friendlyvid, at a more flexible commanadvig, or at a
programming leel.

GRAPHIC ORIENTED -
Many of the functions can be accompanied by graphic output results.

FOR NONPROGRAMMER -
Users of GRASS are often first-time users of a compUiethis end, it is important
that the programmer takhe extra time to prade on-line help, clear prompts, and
user tutorials.

INEXPENSIVE -
GRASS can run on microcomputers in the under-$10,000 rahfigher-cost
equipment should be necessary only for providiastdr analyses, and more disk
and memory space.

PORTABLE -
This system is intended to be as portable as possible. At tWmrmider 1986 User
Group meeting, groups interested in GRASS resoundingly stated that portaadity w
the number one concern, ranking firmly e&@eed and user friendlines&RASS
code must run on a wide variety of hardware configurations.

2.2. Programming Standards
Programming is done within the following guidelines.

UNIX ORIENTED -
Primarily for the purpose of portabiljtRASS will continue its deslopment under
the UNIX operating system eimonment. Programmershould accommodate both
AT&T (System 5) and BerkeglgBSD) UNIX.

C LANGUAGE -
All code is written in the C programming language. Some Fortran 77 code has
occasionally been adopted into the systemn ppoblems with portabilityeffi ciengy,
and legibility hae resulted in most Fortran programs being rewritten in C.

FUNCTION LEVELS -
GRASS is designed within a functionakée scheme. EacHlevel is designed to
perform particular functions. Programming must be done within this scheme.
Briefly, these lgels are as follows:

Specialized Interface el -
The nev and occasional user would work at thivde It is expected that
specialized models, natural language imteek, graphic pop-up menu front-
ends, anddncier menus will be deloped in the future. Programswboped
at this lerel may be specifically designed for one hardware arrangement.

Command Les -
This is the lgel most used. Using the userogin shell, GRASS commands
are made \ailable through modification of thBATH variable. Helpand on-

§2 Development Guidelines

line manual commands areadable.

In version 2.0, GRASS programs included both user interface and program
function capabilities and were highly interaeti GRASS 3.0 introduced
complementary command-line versions of these functions in which the
information required by the program was\pded by the user on the command
line or in the standard input stream (with no prompting). This provided the
adwanced user greater flexibility and the system analyst a high-&S
programming language in concert with other UNIX utilities.weeger, this
resulted in a doubling of the number of commands: one for the interacti
form, another for the command-line form.

In GRASS 4.1 the interage and command-line versions of a progranvéia
been "meged"” into a single program (as far as the user is conceriéag.
memging should be understood by programmergeld@ing nev code. It is
described irg11 Compiling and Installing GRASSogramsip.57. A standard
command-line interface has beenveeped to complement thexisting
interactve interface, and an attempt has been made to standardize the
command names.

Programming Leel -
For even greater flaibility in the application of GRASS, a user has the
opportunity to program GRASS functions in the C language. The main
restrictions here are that the programmer is to use the existing GRASS function
libraries to the greatest extent possible, and support both AT&T anel8grk
UNIX.

Library Level -
Work at the library leel should be done with the cooperation and apgrof
one group. At this writing, that group is the GRASS programming ataf
USACERL. Themost critical functions are those that manipulate détas
believed that these functions will be more permanent than the database
structure. Thouglthe database structure may change, these functions (and the
programming environment) will not.

2.3. DocumentationStandards

GRASS is a public domain systerihile such systems are usuallyxpensve © new

sites wishing to adopt them, costs incurred in putting up the system, modifying the code,
and understanding the product can be very higib. minimize these costs, GRASS
programs shall be thoroughly documented aérsé levels.

Source code -
The source code for the functions should be accompanied by liberal amounts of
descriptve variables, algorithm explanations, and function descriptions.

On-line help -
Brief help/information will be @ailable for the ner user of a program.

§2 Development Guidelines

On-line manual -

Manual entries in the style of the UNIX manual entries will alsovaiable to
the user.

Tutorial -

The tools that are morevolved or dificult to use shall be accompanied by
tutorial documents which teach a usewho use the code. Theseveableen
written in nrof/troff using thems macro packagé Final documents & been

kept separate from the GRASS directories, though it is suggested that the
appear with appropriate "makefiles" under $GISBASE/tutofials.

1 This package, iroked with the -ms option to nroff, is documented in section 7 of the UNIX

manual.

2 $GISBASE is the directory where GRASS s installé®ee§10.1 UNIX Ewmironment[p. 53

for details.

§2 Development Guidelines

Chapter 3

Multile vel

As introduced in the previous section, theerall GRASS design incorporatesvesal
levels:

Specialized Interfaces
Command Leel
Programming Leel
Library Level

Each l@dl is associated with a different type of user interface.

3.1. GeneralUser

The general GRASS user is someone with a skill in some resource area (e.g., planning,
biology, agronomy forestry etc.) in which GRASS can be used to support spatial
analysis. Suchusers hae ro dgnificant computer skills, ko nothing of UNIX, and

may struggle with the learning cardor GRASS. Such users should selecBpecialized
Interface, if available, where thg are guided through the GRASS system or a specific
application in a friendly &y. Programs written at this W&l may tale marny forms in the
future. Thepromise of a natural language capability mayetddrm here. Current
success with graphic menu systems in other applications will lead to pleasant graphic
screens with pull-down menusnterfaces deeloped at this Ieel (and this lgel only)

may be hardware specifiéGRASS may tak the form of a wvice-actvated system with

fancy Al capabilities on one machine, while it is\iém by a pll-down menu system
which is also tightly interfaced to an RDBMS on anath&H versions, haever, will

rely heavily on the consistent commandsilable at theCommand Level. It is
anticipated that specialized analysis models using little or no user input wiNd&epbsl

shortly, making use of UNIX shell scripts ar@ommand Level programs. These models

will be written by system analysts and will require no knowledge of C programming.
Until improvements in speed and cost of hardware and flexibility of software are made
available, most general users of GRASS will interface the system throu@lotheand

Level.

TheCommand Level requires some kmdedge of UNIX. The user starts up the GRASS

§3 Multilevel

-10- -10 -

tools individually through the UNIX shell (commonly Bourne or Csh). Once a GRASS
tool is started, the user either enters a very friendly and intexaetvironment or
provides information to the tool in the form ofgaments on the command linklsers
arenot prompted through graphics. Prompting is restricted to written interaction.

3.2. GRASSProgrammer

The GRASS programmeusing an array of programming libraries, writes intexecti
tools and command line tools. Programmers must keep in min&pleaial Interfaces
tools will be:

a. Writtenfor the occasional user;

b. \Merbose in their prompting;

c. Accompaniedy plenty of help; and
d. Ghwe the user fev options.

The programmer also writ€3ommand Level tools. These:

a Carrun in batch (background) mode;

b. Take input from the command line, standard input, or a file;
C Canrun from a shell; and

d Operatevith a standard interface.

GRASS programmers should keep the following design goals in mind:

Consistentiser interface;
Consistent database interface;
Functionatonsistency;
Installationconsistency; and
Codeportability.

®oo oW

As much as possible, interaction with the user (e.g., prompting for database files, or full
screen input prompting) must not vary in style from program to prog®hGRASS
programs must access the database in a standard m&anetional mechanisms (such

as automatic resampling into the currergioa and masking of raster data) which are
independent of the particular algorithm must be incorporated in most GRASS programs.
Users must be able to install GRASS (data, programs, and source code) in a consistent
manner Finally, GRASS programs must compile and run on most (if not all) versions of
UNIX. To achieve these goals, all programming must adhere to the following guidelines:

Use C language -
This language is quite standard, ensuriagy\good portability All of the GRASS
system libraries are written in GAVith very fev exceptions, GRASS programs are
also written in C.While UNIX machines offer a Fortran 77 compjlexperience
has shan that F77 code is not as portable or predictable wherednibetween
machines. Existindgrortran code has occasionally been adopted,ppogrammers
often prefer to rewrite the code in C.

§3 Multilevel

-11- -11-

Use Bourne shell -
GRASS also makes use of the UNIX command interpreter to implenagious
function scripts, such as menu front-ends to a suite of related functions, or
application macros combining GRASS commandlléools and UNIX utilities.
Portability requires that these scripts be written using the Bourne Shell (/bin/sh) and
no other See825 Writing GRASS Shell Scripps283.

Do not access data directly -
The GRASS database MOT guaranteed to retain its existinggamization and
structure. Theshave dhanged in the past; vaver, the library function calls to the
data hae remained more consistentan time. Plangdo exist to significantly change
the data aganization. While the programmer should bewae of the data
capabilities and limitations, it should not be necessary to open and read data files
directly.

Use GRASS Compilation Procedures -
GRASS code is compiled using a special procedusigich is a front-end to the
UNIX makeutility. This procedure alles the programmer to construct a file with
makerules containing instructions for making the binaxrgceitables, manual and
help entries, and other items from the direc®gntents. Hwever, there are no
hardcoded references to other GRASS programs, libraries, or directdaigshles
defining these items are provided by the procedure and are used inStesd.
allows the compilation and installation process to remain identical from system to
system. Thisprocedure is described in detail §11 Compiling and Installing
GRASS Rygramsip. 57.

Use GRASS libraries -
Use of the risting GRASS programming libraries speeds up programmiogtef
While user and data intade may mak up a amge part of a ng program, the
programmer using e&isting library functions, can concentrate primarily on the
analysis algorithms of the wetool. Suchprograms will maintain a consistgnin
data access and (more importantly) grde of consistencin the user integce.
The libraries are listed briefly b&o

GIS Library . This library contains all of the routines necessary to read and write
the GRASS raster data layers and their support files. General GRASS database
access routines are also part of this librdrstandardized method to prompt the
user for map names ivalable. The library also provides some general purpose
tools like memory allocation, string analysis, ethlearly all GRASS programs use
routines from this library See812 GIS Library[p. 69.

Vector Library . While GRASS is primarily a raster map analysis and display
system, it also has some vector capabiliti€be principal uses of GRASSetor

files are to generate raster maps and to plot base maps on top of raster map displays.
However, it is anticipated that additional analysis and data import capabilities will

be added to the vector databaséany vector formats exist in the GIS worldutb

1 Known asGmakeunder GRASS 3.0 argimake4.under GRASS 4.1.

§3 Multilevel

-12 -

-12-

GRASS has chosen to implement itsnointernal vector format. The format is a
variant of arc-node.The Vector Library provides access to the GRASE®ctor
database. Se&l3 Vector Libraryp. 157.

Segment Library. For programs that need random access to an entire map layer
the segment library provides an efficient paging scheme for raster riépke
virtual memory operating systems perform paging, this library sometimegl@so
better control and @tiengy of paging for raster mapsSee819 Segment Lilary

[p.2217.

Vask Library. This screen-oriented user interface is widely used in the GRASS
programs. Itprovides the programmer with a simple means for displaying a
particular screen layout, with defined fields where the user is prompted for answers.
The userusing the carriage return (or line-feed) and ctrielkk maves from prompt

to prompt, filling an answer into each field. When the ESC (escayes ldruck,

the answers are prioled to the program for analysis. Usersvéndound this
interface pleasant and consistent. $2@ Vask Libraryp. 229.

Graphics Libraries. Graphics design has been a difficult issue in GRASS
development. D ensure portability and competid kdding, GRASS has been
designed with graphics flexibility in mindThis has meant restricting graphics to a
minimal set of graphics primites, which generally do not makiull use of the
graphics capabilities on all GRASS machineBwo libraries, displaylib and
rasterlib, are involved in generating graphicS.herasterlib contains the primite
graphics commands used by GRASAt run time, programs using this library
communicate (through fifo files) with another program which translates the graphics
commands into graphics on the desiredick= Eachtime the program runs, it may
be talking to a different graphics \dee. Functionsavailable in therasterlib
include color setting and choosing, linewlirag, mouse access (with three types of
cursor), raster drawing operations, and texwirg. Generallythis library is used

in conjunction with thedisplaylib. The displaylib provides graphics frame
management routines, coordinate \a@sion capabilities, and raster data to raster
graphic comersions. See816 Display Graphics Lilary [p.195 and 815 Raster
Graphics Library[p. 183.

3.3. Driver Programmer

GRASS programs are written to be portable this end, a tremendous amount of
modularity is designed into the system. Throughout it&ldpment, GRASS programs
have become increasingly specialized. The original monolithic approach continues to
fragment into eer smaller pieces. Smaller pieces will allduture deelopers and users
eve more variability in the mixing of the tools.

This modularity has been manifested in the graphics deg\ggraphics-oriented tool
connects, at run time, to a graphicsveri(or translator) programThis separate process
understands the standard graphics commands generated by the GRASS tool,eand mak

§3 Multilevel

-13- -13-

the appropriate graphics calls to a particular graphisgcele Eachgraphics deice
available to a user is accompanied by aa@program, and each program understands the
graphics calls of the application program. Porting of GRASS tonaspstem primarily
means the delopment of one ne graphics diwver. See 823 Writing a Graphics Driver

[p-263.

Those sites using the digitizing software of GRASS must alsaderariver routines for
their digitizer These routines, unlkthe abee gaphics calls, are compiled directly into
the digitizing programs. Se&22 Writing a Digitizer Drivelp. 251.

Similarly, GRASS sites may wish to write code to support different hagd@opor
printers (inkjet, thermal, etc.). S&84 Writing a Paint Drivefp. 271.

3.4. GRASSSystem Designer

To date, GRASS system design has been done at one locateACERL. One,and

only one site must be responsible for the design of the system at the database and
fundamental library hel. As the softvare is public domain, sites are free to do thein o

work. However, the strength of future GRASS releases depends on cooperation and
sharing of softwre. Thereforejt is strongly encouraged thakatabase design and
database library development be fully coordinated with GRASS staff at USEERL.

§3 Multilevel

-14 -

-14 -

-15- -15-

Chapter 4

Database Structure

This section presents the programmer interestedvidaieng nev applications with an
explanation of the structure of the GRASS databases, as implemented under the UNIX
operating system.

4.1. Programming Interface

GRASS Programmers are provided with B& Library, which interfaces with the
GRASS database. It is described in detail8it2 GIS Libary [p.69. Programmers
should use this library to the fullest extent possible. In fact, a programmer will find that
use of the library will ma& knowledge of the database structure almost unnecessary.

GRASS programs are not written with specific database names or directories hardcoded
into them. The user is alled to select the database or change it at will. The database
name, its location within the UNIX file system, and other related database information
are stored as variables in a hidden file in the siserne directoryt GRASS programs
access this information via routines in 1G4S Library. The variables that specify the
database are described briefly below; §&8 Ewironment ¥Wriables [p.53 for more

details about these and other environment variables.

Note. These GRASS environment variables may also be cast into the UMP$ranent

to male them accessible for shell scriptén the discussion belg these wariables will
appear preceded by a dollar sign ($jowever, C pograms should not access the
GRASS environment variables using the UNIX ge{grsince thg do not originate in
the UNIX ervironment. GISLibrary routines, such a&_getengp. 73, must be used
instead.

1 The file in the uses’home directory is called
2 usingg.giseny see§25 Writing GRASS Shell Scripts2s3

84 Database Structure

- 16 - -16 -

4.2. GISDBASE

The database for GRASS makes use of the UNIX hierarchical directory struthee.
top level directory is known as GISDBSE. Usersspecify this directory when entering
GRASS. Thdull name of this directory is contained in the UNIXvignnment \ariable
$GISDBASE, and is returned by library routiGe gisdbasgp. 73.

4.3. Locations

Subdirectories under the GISDBASE are known as locations. Locations are independent
databases. Userselect a location when entering GRASS. All database queries and
modifications are made to this location onlyis not possible to simultaneously access
multiple locations. The currently selected location is contained in thigoement
variable $LOCATION_NAME, and is returned by the library rout@aelocatior(p. 72).

GISDBASE
|
| I | |

location.1 location.2 location.3

When users select a location, ytlaee actually selecting one of the location directories.

Note. GISDBASE may be changed to the parent directory of other sets of locations,
notably on other system hard disks for database management purposes. Note that
GRASS programs will only work within one location under one GISDBASE directory in

a gven GRASS session.

4.4, Mapsets

Subdirectories under wriocation are known as mapsets. Users select a mapset when
entering GRASS. Ne mapsets can be created during the selection step. The selected
mapset is known as the current mapshkt.is named in the environmentarnable
$MAPSET and returned b$_mapsdp. 79).

LOCATION
|

I | | | |
mapset.l mapset.2 mapset.3 ... PERMANENT

Modifications to the database can only be made in the current majsess may only
select (and thus modify) a mapset thaytben (i.e., h&e aeated). Hwever, data in all
mapsets for a gen location can be read by anyone (unlessygoted by UNIX file
permissions). Se®4.7 Database Access Rulgs2q for more details.

84 Database Structure

-17- -17 -

When users select a mapsetythee actually selecting one of the mapset directories.

Note. The full UNIX directory name for the current mapset is
$GISDBASE/$LOCATION_MME/$MAPSET and is returned by the library routine
G_location_patkp. 73.

Note. Each location will hee a pecial mapset called PERMANENT that contains non
volatile data for the location that all users will usdowever, it also contains some
information about the location itself that is not found in other mapsBee 84.6
Peamanent Mapsdp. 19.

4.5. MapsetStructure

Mapsets will containfiles and subdirectories, known as databasements.In the
diagram belw, the elements are indicated by a trailing /.

MAPSET
|

| I | I | | |
SEARCH_RRTH WIND cats/ celll paint/ windows/

4.5.1. MapsefFiles

The following is a list of some of the mapset files used by GRASS programs:

files function

GROUP currenimagery group
SEARCH_RATH mapset search path
WIND currentregion

This list may grav as QRASS gravs. The GROUP file records the current imagery
group selected by the usend is used only by imagery functions. The othes fies are
fundamental to all of GRASS. These are WIND and SEARGH H?

WIND is the current rgion3 This file is created when the mapset is created and is
modified by the gregion command. Thecontents of WIND are returned by
G_get_windo\p.83. See89.1 Regiorp. 49 for a discussion of the GRASS region.

3 Under GRASS 3.0 this was called the database "windowiel#m, the term "window" has
mary meanings. Br clarity this term has been replaced by the termidré. Thedatabase files
and programming interfaces, wever, have not been renamedThus WIND nav contains the
current region.

84 Database Structure

-18- -18-

SEARCH_IATH contains themapset seah path. This file is created and modified by
theg.mapsetcommand. Itontains a list of mapsets to be used for finding database files.
When users enter a database file name without specifying a specific mapset, the mapsets
in this search path are searched to find the file. Library routines that look for database
files follow and use the mapset search paB8ee84.7.1 Mapset Seetn Rath [p.2q for

more information about the mapset search path.

4.5.2. Elements

Subdirectories under a mapset are the datadlassents Elements are not created when
the mapset is created, but are created dynamically when referenced by the application
programst Mapset data reside in files under these elements.

The dynamic creation of database elements makes addindat@base elements simple
since no reconfiguration of existing mapsets is requikéalvever, the programmer must

be avare of the database elements already used by currently existing programs when
creating ne/ elements. Furthermoreas deelopment occurs outside USARL,
guidelines must be geloped for introducing ne element names tovaid using the same
element for tw diverse purposes.

Programmers using shell scripts musdreise care. It is not safe to assume that a mapset
has all, or ap database elements (especially branev meapsets). CertailGRASS
commands automatically create the element when it is referenced gask, In
general, haovever, dements are only created when awnile is to be created in the
element. ltis wise to explicitly check for the existence of database elements.

4 See§12.5.7 Creating and Opening aW®atabase Filgp. sq.

84 Database Structure

-19- -19-

Here is list of some of the elements used by GRASS programs written at USACERL.:

element function

cell binaryraster file

cellhd headefiles for raster maps

cats catgory information for raster maps
colr colortable for raster maps

colr2 secondargolor tables for raster maps
cell_misc miscellaneousster map support files
hist historyinformation for raster maps
dig binaryvector data

dig_ascii ascivector data

dig_att \ector attribute support

dig_cats ector category label support
dig_plus \ector topology support

reg digitizer point registration

bdlg binarydlg files

dig asciidlg files

icons icorfiles used by.map

paint labeland comment files used pymap
group imagengroup support data
site_lists sitdists for sitesrelated programs
windows predefinedegions

COMBINE r.combinescripts
WEIGHT r.weightscripts

Note. The mapset database elements can be simple directory names (e.g., cats, colr) or
multilevel directory names (e.g., paint/labels, group/xyz/subgroup/abc). The library rou-
tines that create the element will create the topl ldirectory and all subdirectories as

well.

4.6. Rermanent Mapset

Each location must ka a ERMANENT mapset. This mapset not only contains original
raster and vector files that must not be modified, but alecgtecial files that are only
found in this mapset. These files are MYNAME and BBET _WIND and are meer
modified by GRASS software.

MYNAME contains a single line descripgi rame for the location. This name is
returned by the routiné_mynam@. 72).

DEFAULT_WIND contains the default region for the location. The contents of this file
are returned bys_get default_windofp. 84). Thisfile is used to initialize the WIND file
when GRASS creates amenapset. andan be used by the user as a reference region at
ary time.

84 Database Structure

-20- -20-

4.7. DatabaseAccess Rules
GRASS database access is controlled at the mapskt Thereare three simple rules:

1 A user can select a mapset asdbhgent mapset only if the user is thevoer
of the mapset directory (s€4.4 Mapsetgp. 14).

2 GRASS will create or modify files only in the current mapset.

3 Hles in all mapsets may be read byame (see84.7.1 Mapset Seeln Rath
[p.20) unless prohibited by normal UNIX file permissions (&2e7.2 UNIX
File Permissiongp. 2Q).

4.7.1. MapsetSearch Path

When users specify a wedata file, there is no ambiguity about the mapset in which to
create the file: it is created in the current mapsédwever, when users specify an
existing data file, the database must be searched to find theofilex&mple, if the user
wants to display the "soils" raster map, the system looks ingheus database mapsets
for a raster file named "soils.The user controls which mapsets are searched by setting
the mapset seah path, which is simply a list of mapsets. Each mapset is examined in
turn, and the first "soils" raster file found is the one that is displaybds users can
access data from other users’ mapsets through the choice of the search path.

Users set the search path usinggineapset€ommand.

Note. If there were more than one "soils" file, the mapset search mechanism returns the
first one found. If the user wishes teeride the search path, then a specific mapset could
be specified along with the file name. Forample, the user could request that
"soils@PERMANENT" be displayed.

4.7.2. UNIXFile Permissions

GRASS creates all files with read/write permission enabled for the owner and read only
for everyone else; directories are created with read/write/search permission enabled for
the owner and read/search only feergone else This implies that all users can read
aryone elses data files. Read access to all files in a mapset can be controlled by
removing (or adding) the read and search permissions on the mapset directory itself using
the GRASSg.accesscommand, without adverselyfafting GRASS programs. If read

and search permissions are remth then no other user will be able to reag &fe in

your mapset.

Warning. Since the PERMANENT mapset contains global database information, all

5 This means -rw-kr-- for files, and drwxixr-x for directories. It is accomplished by setting the
umask to 022 in all GRASS programs.

84 Database Structure

-21- -21-

users must hee read and search access to the PERMANENT mapset dir€dbarynot
remove the read and search permissions from PERMANENT.

6 PERMANENT has the DERULT_WIND and MYNAME files. This is a minor design fla
Global database information should be kept in the database, but not @f tre mapsetsAll
mapsets could then be treated equally.

84 Database Structure

-22 -

-23- -23-

Chapter 5

Raster Maps

This chapter provides an explanation oivhaster map layers are accommodated in the
GRASS databask.

5.1. Whatis a Raster Map Layer?

GRASS raster map layers can be conceptualized, by the GRASS programmer as well as
the user as epresenting information from a paper map, a satellite image, or a map
resulting from the interpretation of other mapssually the information in a map layer is
related by a common theme (e.g., soils, or lanelgor roads, etc.).

GRASS raster data are stored as a matrigriof cells. Each grid cell ceers a knavn,
rectangular (generally square) patch of land. Each raster cell is assigned a siggle inte
attribute value called theategory number For example, assume the landveo map
covers a state parkThe grid cell in the upper-left corner of the map is category 2 (which
may represent prairie); the next grid cell to the east is category 3 (for forest); and so on.

land cover

2|1 3|3 3|4 4
2121 3] 3|4 4
2123 3|4 4
112 3| 3|3]| 4
1|11 3|]3]| 4
11| 3| 3|4 4
1=uwban 3= forest

2 = prairie 4= wetlands

In addition to the raster file itself, there are a number of support files for each raster map
layer The files which comprise a raster map layer allehthe same name, but each
resides in a different database directory under the mapset. These database directories are:

1 The descriptions gén here are for GRASS 4.x data formats orfyevious formats, still
supported by GRASSub no longer generated, are described in documents from earlier releases of
GRASS.

85 Raster Maps

- 24 - 24 -

directory function

cell binaryraster (cell) files

cellhd rasteheader files

cats rastemap category information
colr rastemap color tables

colr2 alternateaster map color tables
hist rastemap history information

cell_misc miscellaneousister map support information

For example, a raster map nameadils would have the files cell/soils, cellhdsoils,
colr/soils, catssoils, etc.

Note. Database directories are also known as datadlasents See84.4 Mapset$p. 14
for a description of database elements.

Note. GIS Library routines which read and write raster files are describegtlth9
Raster File Processing. 99.

5.2. RasterFile Format

The programmer should think of the raster data file aadtmensional matrix (i.e., an
array of rows and columns) of integerlwves. Eaclyrid cell is stored in the file as one to
four 8-bit bytes of data. An XM raster file will contain N nes, each rev containing M
columns of cells.

The physical structure of a raster file canetaine of 3 formats: uncompressed,
compressed, or reclassed.

Uncompressed drmat. The uncompressed raster file actually looke &k NkM matrix.
Each byte (or set of bytes for multibyte data) represents a cell of the raster maphayer
physical size of the file, in bytes, will bews tolsd bytes-per-cell.

Compressed drmat. The compressed format uses a run-length encoding schema to
reduce the amount of disk required to store the rasterRilan-length encoding means
that sequences of the same datlue are stored as a single byte repeat count followed by
a data \alue. Ifthe data is single byte data, then each pair is 2 bytes. If the data is 2 byte
data, then each pair is 3 bytes, éeeMultibyte data format below). Therows are
encoded independently; the number of bytes per cell is constant withim automay

vary from raw to row. Also if run-length encoding results in a largewrthen the rav is

stored non-run-length encoded. And finatipce each nv may have a dfferent length,

there is an indeto each rav stored at the beginning of the file.

Reclass lagrs. Reclass map layers do not contaily data, but are references to another
map layer along with a schema to reclassify the categories of the referenced map layer
The reclass file itself contains no useful information. The reclass information is stored in
the raster header file.

§5 Raster Maps

-25- -5

Multibyte data format. When the dataalues in the raster file require more than one

byte, thg are stored irbig-endian formatZ which is to say as a base 256 number with
the most significant digit first.

Examples:
cell value bas@56 storeds
868 = 3*256+ 100
137,304 = 2*258+24*256 + 88 | 2| | 8]
174,058,106 = 10*256+ 95256 + 234*256 + 122 10 [95 234 | 122

Negative \alues are stored as a signed quaritiy, with the highest bit set to31:

cell value bas&56 storedas
1= D) (1o o] of 1]
-868 = -(3*256+ 100) | 10 | o] 3] 100]
-137,304 = -(2*256+ 24*256 + 88) (10| 2] 24| s8]
-174,058,106 = -(10*256+ 95*2562+234*256+122)] 1/10] 95 | 234| 122

All data values in a gen row are stored using the same number of bytes. This means that

if the value 868, which uses 2 bytes, occurred invathat uses 3 bytes to represent the
largest data value, 868owid be stored 4§3100

Also, one rav may only require 2 bytes to store its datdues, another 4 bytes, and yet

another 1 byte. The rows are stored independently and would be stored using 2 bytes, 4
bytes, and 1 byte respeddiy.

File portability. The multibyte format described almis (except possibly for ngeive
values) machine independent. If raster files are to beednw a nachine with a dierent
cpu, or accessed using a heterogeneous onletfile system (NFS), the folang
guidelines should be kept in mincAll 4.1 format* raster files will transfer between

2 The fact that the values are storbitj-endian should not be construed to mean that the
machine architecture must also lig-endian. The programs which read raster files perform the

necessary arithmetic to construct the valueyTd®NOT assume anything about byte ordering in
the cpu.

3 This means that the value is stored using asynhgtes as required by an integer on the
machine (usually 4).

4 The raster file format did not change from 3.0 to 4.0.

85 Raster Maps

- 26 - -26-

machines, with tw restrictions: (1) if the file contains g&ive values, the size of an
integer on the tw machines must be the same; and (2) the size of the file must be within
the seek capability of the Isedktall.> The pre-3.0 compessedformat is not stored in a
machine-independent format, and cannot generally be used for intermachine,transfer
unless the te machines hee the same integer and long integer format.

5.3. RasterHeader Format

The raster file itself has no information aboutvhmary rows and columns of data it
contains, or which part of the earth the layever®. Thisinformation is in the raster
header file.The format of the raster header depends on whether the map layayusaa re
map layer or a reclass layer.

Note. GIS Library routines which read and write the raster header file are described in
§12.10.1 Raster Header Filp. 104.

5.3.1. RegularFormat

The regular raster header contains the information describing yisec@hcharacteristics
of the raster file. The raster header has the following fields:

raster header

proj: 1

Zone: 18
north: 4660000
south: 4570000
east: 770000
west : 710000
e-w resol: 50

n-s resol: 100
rows: 900
cols: 1200
format: 0
compressed: O

proj, zone
Theprojection field specifies the type of cartographic projecion:

0 is unreferenced x,y (imagery data)
1lis UTM

2 is Sate Plane

3 is Latitude-Longitude

Others may be added in the futuréhe zone field is the projection zone. In the

5 This usually means that the size of a long integer on therachines is the same.
6 State Plane is not yet fully supported in GRASS and Latitude-Longitude is still under

85 Raster Maps

- 27- 27 -

example abwe, the projection is UTM, the zone is 18.

north, south, east, west
The geographic boundaries of the raster file are described hyrtie south, east,
andwest fields. Thesevalues describe the lines which bound the map at its edges.
These lines do NO pass through the center of the grid cells at the edge of the
map, but along the edge of the map itself.

n-s resol, e-w resol
The fieldse-w resolandn-s resoldescribe the size of each grid cell in the map layer
in physical measurement units (e.g., meters in a UTM databddey are also
called the grid cell resolutionThen-s resolis the length of a grid cell from north to
south. Thees-w resolis the length of a grid cell from east to wess can be noted,
cells need not be square.

rows, cols
The fieldsrows and cols describe the number ofws and columns in the raster
matrix.’

format
The format field describes he mary bytes per cell are required to represent the
raster data. 0 means 1 byte, 1 means 2 bytes, etc.

compressed
The compressedield indicates whether the raster file is in compressed format or
not:1 means it is compressed and O means it is not. If this field is missing, then the
raster file vas produced prior to GRASS 3.0 and the compression indication is
encoded in the raster file itself.

Note.
If the rows and columns of the raster matrix are not stored in the raster, hleagler
are computed from the geographic boundaries as follows:

rows = (north — south) / (ngesol)
cols = (east — west) /(ewresol)

If the rows and columns of the raster matrix are stored in the raster héwder
resolution values are computed from the geographic boundaries as follows:

ns resol = (north — south) / (ravs)
ew resol = (east — west) /(cols)

development.

7 These fields were added for 4.0. Under 3.0 the number of rows and columns were calculated
from the other values in the headdoweve, this sometimes resulted in wrong results since the
resolution values could not be stored withfisignt accurag in ascii format. 4.0 used the
resolution fields only if the w and column fields are not present (i.e., 3.0 format header files).

85 Raster Maps

-28- -8 -

5.3.2. Reclas§&ormat

If the raster file is a reclass file, the raster header doesvetieanformation mentioned
above. It will have the name of the referenced raster file and the category reclassification
table.

reclass header

reclass

name: county

mapset: PERMANENT

#5 first category in reclass
1 5 is reclassified to 1

0 6 is reclassified to 0
1 7 is reclassified to 1
0 8 is reclassified to 0
2 9 is reclassified to 2

In this case, the library routines will use this information to open the referenced raster file
in place of the reclass file and wert the raster data according to the reclass scheme.
Also, the referenced raster header is used as the raster header.

5.4. RasterCategory File Format

The category file contains the largest category value which occurs in the data, a title for
the map layeran aitomatic label generation capabilignd a one line label for each
category.

category file
5 categories
title for map layer
<automatic label format>
<automatic label parameters»
0:no data
1:description for category 1
2:description for category 2
3:description for category 3
5:description for category 5

The number which folls the # on the first line is the largest category value in the raster
file. Thenext line is a title for the map layehe next tvo lines are used for automatic
label generationThey are used to create labels for gees which do not va explicit
labels. (Theautomatic label capability is not normally used in most map layers, in which
case thdormat line is a blank line and thgarametersline is: 0.00.0 0.0 0.0.) Category
labels follav on the remaining lines. The formataat : label.

The first four lines of the file are requiredhe remaining lines need only appear if

85 Raster Maps

-29 -

categories are to be labeled.

Note. GIS Library routines which read and write the raster category file are described in
§12.10.2 Raster Category File 109.

5.5. RasterColor Table Format

The GRASS raster color tables and associated programming interfacendagone a

fairly major revision to resoky problems presented by raster maps thaetsmhrge range

of data alues. The previous desfgused arrays to store a color for each datmes
between the minimum and maximum values in the raster map. This array struasure w
also reflected in the format of the color table file -- each color stored as a single line in the
color file. Because GRASS raster maps careltata \alues in the range2147483649

this method of storing color information is clearly untenable.

GRASS 4.1 solves the abm problem by representing color tables as linear ramps for
intervals of data &lues. Colorsare specified (and stored) for the endpoints of each
intenval. Colorsfor values between endpoints are not storedare computed using a
linear interpolation scheme.

The following is an example 4.1 color file:

4.1 color table file
% 1387 1801

1387:255:85:85
1456:170:170:0
1525:85:255:85
1594:0:170:170
1663:85:85:255
1732:170:0:170

1456:170:170:

0 colors for categories 1387-1456

1525:85:255:85 colors for categories 1456-1525
1594:0:170:170 colors for categories 1525-1594
1663:85:85:255 colors for categories 1594-1663

1732:170:0:17|
1801:255:85:8

0 colors for categories 1663-1732
b colors for categories 1732-1801

The first line is a % character (to indicate that this is a 4.x format color file) and tw
numbers indicating the minimum and maximum data values whigh dodors. Therest

of the file are the color descriptors. In thi@mple, the minimum and maximuralues

are 1387 and 1801. Looking at the first color line, the color for category 1387 is red=255,
green=85, blue=85; the color for cgtey 1456 is red=170, green=170, blué20rhe

color for category 1400 is calculated from the colors for categories 1387 and 1456:

8 See thaSRASS 3.0 Pgrammers Manual, for details on the 3.0 color file.
9 These values are for 32-bit architectures.

10 The colors are represented agele of red, green, and blue, where 0 represents theslo
intensity and 255 represents the highest intensity.

85 Raster Maps

-30- -0-

red = interpolate(255,170) = 239
green = interpolate(85,170) = 101
blu = interpolate(85,0) = 69

There are other formats which are simply variants of this forneateXxample, if the red,
green, and blue intensities are all the same, then only the 'akd appears. This xie
example defines a gray scale color table:

4.1 color table file

% 1387 1801
1387:0 1801:255

Also, if the starting and ending categories are the same, only the first appears:

4.1 color table file

%16
1:34:179:112
2:233:110:15
3:127
4:43:135:33
5:70:7:52
6:93:210:163

Note. GIS Library routines which read and write the raster color table are described in
812.10.3 Raster Color Tabjp. 111.

5.6. RasterHistory File

The history file contains historical information about the raster map: creater of
creation, comments, etdt is generated automatically along with the raster file. In most
applications, the programmer need not be concerned with the history file. Occasionally a
program might put information into this file not kmo or readily aailable to the user

such as information about a satellite image: sun angles, dates, etc. The GRASS
program allows the user to wethis information, and thesupportprogram allows the

user to update it. Itis the useresponsibility to maintain this file.

Note. GIS Library routines which read and write the raster history file are described in
812.10.4 Raster History Fil. 114.

85 Raster Maps

-31- -3 -

5.7. RasterRange File

The range file contains the minimum and maximum values which occur in a rast#r file.
is generated automatically for allmeaster files. This file Vies in the cell_miscelement
as "cell_misatamérange" wherenameis the related raster file name.

It contains one line with four integer values. These represent the minimum and maximum
negaive values, and the minimum and maximum pwgsitialues in the raster file. If there

are no ngaive \alues, then the first pair of numbers will be zero. If there are novaositi
values, then the second pair of numbers will be zero.

Note. GIS Library routines which read and write the raster range file are described in
812.10.5 Raster RapdHle [p. 117.

§5 Raster Maps

-32-

-33- - -

Chapter 6

Vector Maps

This chapter provides an explanation owhgector map layers are accommodated in the
GRASS database.

6.1. Whatis a Vector Map Layer?

GRASS vector maps are stored in amc-node representation, consisting of
nonintersecting curves calledcs. An arc is stored as a series of x,y coordinate pairs.
The two endpoints of an arc are callesbdes. Two consecutie xy pairs define an arc
segment

The arcs, either singhor in combination with others, form highervid map features:
lines3 (e.g., roads or streams) areas? (e.g., farms or forest standsircs that form
linear features are sometimes callets, and arcs that outline areas are caleea
edgesor area lines?

Each map feature is assigned a single integer @ttrdalue called theategory number.

For example, assume a vector file contains landecanformation for a state parkOne

area may be assigned apiey 2 (perhaps representing prairie); another is assigned
category 3 (for forest); and so on. Another vector file which contains road information
may hae osme roads assigned category 1 (forgdaroads); other roads may be assigned
category 2 (for grael roads); etc.See85.1 What is a Raster Map Layg?23 for more
information about GRASS category values.

A vector map layer is stored in a number of data fildge files which comprise a single

1 For this reasorarcs are also callegectors.

2 Arc segmentsare sometimes calldihe-segments.

3 A line here does not mean a straight line betweenpints. It only means a linear feature.

4 Areas are also callegpolygons. The GRASS vector format does not store the polygons
explicitly. They are constructed by finding the particuéacs which form the polygon perimeter.

5 Obviously there is some confusion in the GIS vector terminaldyis is partly due to use of
terms that hee a ®mmon meaning as well as a mathematical meaning. Vector terminology is a
subject for much debate in the GIS world.

86 Vector Maps

paste vect.xfig diagram here

vector map layer all hee the same name,ub each resides in a different database
directory under the maps@fhese database directories are:

directory function

dig binaryarc file
dig_ascii asciarc file
dig_att \ector category attribute file

dig_cats ‘ector category labels
dig_plus ector index/pointer file
reg digitizer registration points

For example, a map layer namezbils would have the files dig/soils, dig_attsoils,
dig_plugsoils, dig_ascikoils, dig_catsoils, regsoils,etc.

Note. Vector files are also calledigit files, since thg are created and modified by the
GRASS digitizing program.digit.

Note. When referring to one of thesgtor map layer files, the directory name is used. F
example, the file under traig directory is called thdig file.

Note. Library routines which read and write vector files are describegil$ \éctor
Library [p. 157.

6.2. AsciiArc File Format

The arc information is stored in a binary format in digp file. The format of this file is
reflected in the ascii representation stored indige ascii file. It is the ascii @rsion
which is described here.

6 Database directories are also caliddments.See§4.4 Mapsetsp. 14 for a description of
database elements.

7 The programsvimport, vin.ascii, and v.out.ascii corvert between the ascii and binary
formats.

86 Vector Maps

-35- -%5-

Thedig_asciifile has tvo sections: a header section, and a section containing the arcs.

6.2.1. HeaderSection

The header contains historical information, a description of the map, and its location in
the unverse. ltconsists of fourteen entries. Each entry has a label identifying the type of
information, followed by the information. The format of the header is:

label format description

ORGANIZATION: text (max 29 characters)* ganization that digitized the data
DIGIT DATE: text (max 19 characters)* date the data was digitized

DIGIT NAME: text (max 19 characters)* person who digitized the data
MAP NAME: text (max 40 characters)* title of the original source map
MAP DATE: text (max 10 characters)* date of the original source map
OTHER INFO: text (max 72 characters)* other comments about the map
MAP SCALE: integer scaleof the original source map
ZONE: integer zoneof the map (e.g., UTM zone)
WEST EDGE: real number (double) western edge of the entire map t
EAST EDGE: real number (double) eastern edge of the entire map t
SOUTH EDGE: real number (double) southern edge of the entire map 1
NORTH EDGE: real number (double) northern edge of the entire map t
MAP THRESH: real number (double) digitizing resolution

VERTI: (nodata) markshe end of the header section

The labels start in column 1 and continue through columnLabels are uppercase, left

justified, end with a colon, and blank padded to column 14. The information starts in
column 15. For example:

ORGANIZATION: USArmy CERL

DIGIT DATE: 03/18/88
DIGIT NAME: grass

MAP NAME: Urbana,IL.
MAP DATE: 1975
OTHER INFO: USGS sw/4 urbana 15’ quad. N4000-W8807.5/7.5
MAP SCALE: 24000
ZONE: 16

WEST EDGE: 383000.00
EAST EDGE: 404000.00
SOUTH EDGE: 4429000.00
NORTH EDGE: 4456000.00
MAP THRESH: 0.00

VERTI:

* Currently GRASS programs which read the header information are not tolerant of text fields
which exceed these limits. If the limits areceeded, the ascii to binary a@msion will probably

fail.
T The edges of the map describe gioe which should encompass all the data in the vector file.

1 The MAP THRESH is set by thedigit program. If the data comes from outside GRASS, this
field can be set to 0.0.

§6 Vector Maps

-36- -%-

6.2.2. Arc Section

The arc information appears in the second section daithescii file (following VERTI:

which marks the end of the header section). Each arc consists of a descriptipn entry
followed by a series of coordinate paifghe description specifies both the type of #c (

for area edge, dr for line8), and the number of points (coordinate pairs) in the &hen

the points follov.

For example:

A5
4434456.04 388142.16
4434446.65 388202.64
4434407.49 390524.38
4434107.06 390523.59
4433326.51 390526.48
L3
4434862.31 392043.33
4434872.42 394662.14
4434871.44 398094.75
A3
4454747.38 396579.60
4454722.69 393539.73
4454703.68 390786.90

In this xample, the first arc is an area edge and has 5 points. The second arc is part of a
linear feature and has 3 points. The third arc is another area edge and has 3 points.

The arc description has the let#&ror L in the first column, followed by at least one
space, and followed by the number of pofhts.

Point entries start with a space, angdeha least one space between the mwordinate
values10

Note. The points are stored g (i.e., north, east), which is theveese of the \ay
GRASS usually represents geographic coordinates.

Note. If the vdigit program has deleted an arc, the arc type will be represented using a
lower case letter (i.el, instead ofL, a instead ofA). Of course, this will only be
manifest when a binamig file with a deleted arc is cweerted to the asciulig_asciifile.

8 Other types may be added in the future.
9 This can be written with the Fortran formatt,1X,14.
10 These can be written with the Fortran form2gX,F12.2).

86 Vector Maps

-37- -37-

6.3. \ector Category Attribute File

As was mentioned i86.1 What is a Vector Map LayeJ 33, each feature in theector
map layer has a&ategory number assigned to it. The category number for each map
feature is not stored in thkg file itself, but in thedig_att file.

Thedig_att file is an ascii file that has multiple entries, each with the same foiraah
entry refers to one map feature, and specifies the feature type (area or line), an X,y
marker and a category number.

For example:

A 389668.32 4433900.99 7
L 395103.96 4434881.19 2

In this example, an area feature is assignedyoate/, and a linear feature is assigned
category 2.

The x,y marker is used to find the map feature irdtgdile. It must be located so that it
uniquely identifies its related map featuie. particular an aea marker must be inside
the area, and a line marker must be closer to its related line thary tathem line
(preferably on the line) and not at a node.

If multiple entries identify the same map feature, only one will be used (currently thee
last entry).

A map feature which has no entry in this file is considered to be unlabeled. This means
that during the vector to raster eersion (i.e.,vto.ras), unlabeled areas will coat as
category zero, and unlabeled lines will be ignored.

The format of this file is rather strict, and is described in the following table:

columns data
1 | Type of map feature’or L)*
2-3 | spaces
4-15 | Eastindgx) of the markerright justified

16-17 | spaces
18-29 | Northingy) of the markerright justified
30-31 | spaces
32-39 | Catgory numberright justified
40-49 | spaces

50 | nevline t

* Other types, such amint, may be allowed in the future.

T UNIX text files are terminated with a wkne. Therefore, each entry will appear as 49
characters. The entire file size should be a multiple of 50.

§6 Vector Maps

-38- -3B-

This format is required by programs which modify the vector map (edjgit).
Programs which only read the vector map accept a looser fotheateature type must

start in column 1; the items must be separated by at least one space; and the entries must
be less than 50 characters. Also, the progvaompportwill convert the looser format to

this stricter format.

Note. The marler is specified as,y (i.e., east, north), which is the way GRASS usually
represents geographic coordinates, but whichverse of the way the arcs are stored in
thedig_asciifile.

6.4. \kctor Category Label File

Each category in theeetor map layer may ka a me-line description. These cgtey
labels are stored in théig cats file. The format of this file is identical to the raster
catgory file described ir85.4 Raster Cagory File Format [p.2g, and the reader is
referred to that section for details.

Note. The programv.supportallows the user to enter and modify the vector gatg
labels. Theprogramvio.rastcopies thelig_catsfile to the raster cagery file during the
vector to raster corersion.

Note. Library routines which read and write tlig cats file are described under
§12.11.6 Vector Category File. 123.

6.5. \ector Index and Pointer File

Thedig_plusfile contains information that accelerates vector queries. It is created by the
programbuild.vect(which is run byv.digit when a vector file is created or modified, and
by v.supportat user request) from the data in thg anddig_att files.

For this reason, and since the internal structure oflifpeplusfile is comple, the format
of this file will not be described.

6.6. Digitizer Registration Points File

Thereg file is an ascii file used by thadigit program to store map registration control
points. Eachmap r@istration point has one entry with the easting and northing of the
map control point. For example:

86 Vector Maps

-39 -

383000.000000 4429000.000000
383000.000000 4456000.000000
404000.000000 4456000.000000
404000.000000 4429000.000000

Note. This file is used by.digit only. Itisnot used by ayother program in GRASS.

6.7. \ector Topology Rules
The following rules apply to the vector data:

Arcs should not cross each other (i.e., arcs whichldvcross must be split at their
intersection to form distinct arcs).

Arcs which share nodes must end at exactly the same points (i.e., nsusipped
together). Thigs particularly important since nodes are not explicitly represented in
the arc file, but only implicitly as endpoints of arcs.

Common boundaries should appear only once (i.e., should not be double digitized).

Areas must be explicitly closedhis means that it must be possible to complete
each area by folleing one or more area edges that are connected by common
nodes, and that such tracings result in closed areas.

It is recommended that area features and linear features be placed in separate layers.
However if area features and linear features must appear in one lEyamon
boundaries should be digitized only once. An area edge that is also a line (e.g., a
road which is also a field boundary), should be digitized as an area edge (i.e., arc
type A) to complete the area. The area feature should be labeled as an area (i.e.,
feature typeA in thedig_att file). Additionally, the common boundary arc itself

(i.e., the area edge which is also a line) should be labeled as a line (i.e., feature type
L in thedig_att file) to identify it as a linear feature.

6.8. Importing Vector Files Into GRASS

The following files are required or recommended for importing vector files from other
systems into GRASS:

dig_ascii

Thedig_asciifile, described ir86.2 Ascii Ac File Format(p. 34, is required.

dig_att

The dig_att file, described in86.3 Vector Category Attributeil& [p.37, is
essentially required. While thaig_ascii file alone is suicient for simple ector
display the dig_att file is required for vector to raster a@msion, as well as more

86 Vector Maps

-40 - 40 -

sophisticated vector query.
dig_cats
The dig_cats file, described in86.4 Vector Category Labelil& [p.3g, while not

required, allows map feature descriptions to be imported as well.

Note. Thedig_plusfile, described ir§6.5 Vector Inde and Pointer Fle [p. 39, is aeated
by the GRASS programimportwhen conerting thedig_ascii file to the binarydig file.

86 Vector Maps

-41- -4 -

Chapter 7

Point Data: Site List Files

This section describes Wgoint data is currently accommodated in the GRASS database.

7.1. Whatis a Site List?

Point data is currently stored in ascii files cabéd lists or site files.These files are used
by thes.menti program, which was deloped as an application within GRASS to aid in
archeological site predigt nodeling. Thesite list files were designed for use by this
program, but hae snce become the principal data structure for point @lata.

7.2. SiteFile Format

Site files are ascii files stored under $ite_listsdatabase elemed{The format of a site
file is best explained by example:

name| sample

desc| sample site list
728220|5182440 | sig¥
727060|5181710 | sig8
725500 | 5184000 | sig9
719800 | 5187200 | sigd

name
This line contains the name of the site list file, and is printed on all the reports
generated by the menyrogram. Thevord namemust be all lower case letters.

It is permissible for this line to be missing, since sh@enuprogram will add a
name record using the name of the site list file itself.

1 The GRASS Uses' Refeence Manualcontains a complete description of tlsemenu
capability.

2 Other GRASS programs which read site lists inclidet.ascii, d.siteandp.map

3 See§4.5.2 Elementtp. 19 for an explanation of database elements.

87 Point Data: Site List Files

-42- 42 -

desc
This line contains a description of the site list file, and is printed on all the reports
generated by the menyrogram. Thevord descmust be all lower case letters.

It is also permissible for this line to be missing, in which case the site list wdl ha
no description.

points

The remaining lines arpoint records. Eaclsite is described by point record.
The format for this record :

east | north | description

The east and north fields represent the geographic coordinates (easting and
northing) of the site.The description field provides a one line text description
(label) of the site, and is optional.

comments
Blank lines, and lines beginning with #, are accepted (and ignored).

7.3. Programming Interface to Site Files

The programming inteate to the site list files is describedBit2.12 Site List Rrcessing
[p. 124 and the programmer should refer to that section for details.

4 The pipe character |} is sometimes used to separate the fields in the records, but sometimes
blank spaces are used.

87 Point Data: Site List Files

-43- 43 -

Chapter 8

Image Data: Groups

This chapter provides an explanation ofvhomagery data are accommodated in the
GRASS database.

8.1. Introduction

Remotely sensed images are captured for computer processing by satellite or airborne
sensors by filtering radiation emanating from the image iarows electromagnetic
wavelength bands, coerting the werall intensity for each band to digital format, and
storing the values on computer compatible media such as magneti€@peand color
infrared photographs are optically scanned tovedrihe red, green, and blueavwdength

bands in the photograph into a digital format as well.

The digital format used by image data is basically a raster forGBRASS imagery
program$ which etract image data from magnetic tape extract the band data into cell
files in a GRASS databasdzach band becomes a separate cell file, with standard
GRASS data layer support, and can be displayed and analyzedgusstyliher cell file.

However, snce the band files areteacted as individual cell files, it is necessary teeha
mechanism to maintain a relationship between band files from the same image as well as
cell files dewved from the band files. The GRASfoup database structure accomplishes

this goal.

8.2. Whatis a Group?
The group is a database mechanism which provides the following:
(1) Alist of related cell files,

(2) A place to store control points for image registration and rectification,
and

1 See88.4 Im@ay Programsip. 47 for a list of the major GRASS imagery programs.

88 Image Data: Groups

-44 - -4 -

(3) A place to store spectral signatures, image statistics, etc., which are
needed by image classification procedures.

8.2.1. AlList of Cell Files

The essential feature of a group is that it has a list of cell files that belong in the group.
These can be band data extracted from the same data tape, or cell files fdem the
original band file2 Therefore, the group provides a wemient "handle" for related
image data; i.e., referring to tlggoup is equvalent to referring to all the band files at
once.

8.2.2. ImageRegistration and Rectification

The group also provides a database mechanism for imgiragon and rectification.
The band data extracted from tapes are usuallygisteeed data. This means that the
GRASS software does not kmdhe Earth coordinates for pixels in the image. The only
coordinates known at the time ofteaction are the columns and the rows re&aft the
way the data was stored on the tape.

Image registration is the process of associating Earth coordinates withlgpign the
image. Imagerectification is the process of cearting the image files to the we
coordinate system based on the registration.

Image registration is applied to a group, rather than toighehl cell files. The user
displays aw of the cell files in a group on the graphics monitor and then marks control
points on the image, assigning Earth coordinates to each control point. The control points
are stored in the group, allowing all related group files to ¢pstezed in one step rather

than individually.

Image rectification is applied to indlilual cell files, with the control points for the group
used to control the rectificatiorT-he rectified cell files are placed into another database
known as thearget database. Rectificatiozan be applied to gor dl of the cell files
associated with a group.

8.2.3. ImageClassification

Image classification methods process all or a subset of the band files as Rounit.
example, a clustering algorithm generates spectral signatures which are then used by a
maximum likelihood classifier to produce a lamngganap.

2 Derived cell files can be the results of image classification procedures such as clustering and
maximum likelihood, or band ratios formed usimgapcalg etc.

3 Either a projected database, such as UTM, or argisteeed database, if the image is being
registered to another image.

88 Image Data: Groups

- 45 - 45 -

Sometimes only a subset of the band files are used during image classifidateon.
signatures must be associated only with the cell files actually used in the analysis.
Therefore, within a grougubgroupscan be formed which list only the band files to be
"subgrouped" for classification purposes. The signatures are stored with the subgroup.
Multiple subgroups can be created within a group, which allows different classifications
to be run with different combinations of band files.

8.3. TheGroup Structure

Groups lve in the GRASS database under treup database elemefifThe structure of
a goup can be seen in the following diagraftrailing / indicates a directory.

group/
|

I I I I I
mss.may80/ nhap.jun88/ nhap.oct88tm.apr88/

tm.apr88/

I I I I
REF POINTS TARGET subgroup/

In this example, the groups are nanmads.may80 nhap.jun8§ etc.®> Note that each
group is itself a directory Each group contains some fileREF, POINTS and
TARGET), and a subdirectongbgroup.

8.3.1. TheREF File

The REF file contains the list of cell files associated with the group. The format is
illustrated below:

tm.apr88.1 gras
tm.apr88.2 gras
tm.apr88.3 gras
tm.apr88.4 gras
tm.apr88.5 gras
tm.apr88.7 gras

[" 22 P VP VP R VP R v b)

Each line of this file contains the name and mapset of a cell file. In this case, there are six
cell files in the grouptm.apr88.1, tm.apr88.2 tm.apr88.3 tm.apr88.4 tm.apr88.5and
tm.apr88.7in mapsetgrass. (Presumably these are bands 1-5 and 7 from an April 88
Landsat Thematic Mapper image.)

4 See§4.5.2 Elementgp. 19 for an explanation of database elements.
5 The group names are chosen by the user.

88 Image Data: Groups

- 46 - - 46 -

8.3.2. ThePOINTS File

The POINTS file contains the imagegigration control points. This file is created and
modified by the.pointsprogram. Its format is illustrated below:

image taget status
east north east north (1=0k)
#

504.00 -2705.00 379145.30 4448504.56

458.00 -2713.00 378272.67 4448511.67
2285.80 -2296.00 415610.08 4450456.17
2397.00 -2564.00 417043.22 4444757.65
2158.00 -2944.00 411037.79 4438210.97
2148.00 -2913.00 410834.61 4438656.18
2288.80 -2336.20 415497.19 4449671.77

P ORORRRE

The lines which begin witl¥ are comment lines. The first tmcolumns of data (under
image) are the column (i.eeast) and row (i.e., north®) of the registration control points

as marked on the image. The nexbtwmlumns (undetarget) are theeastandnorth of

the marled points in the target database coordinate system (in this case, a UTM
database). Thkast column (undestatus) indicates whether or not the control point is
well placed’ (If it is ok, then it will be used as a valid registration point. Otherwise, it is
simply retained in the file, but not used.)

8.3.3. TheTARGET File

The TARGET file contains the name of tteeget database; i.e., the GRASS database
mapset into which rectified cell files will be created. The TARGET file is written by
i.target and has tw lines:

spearfish
grass

The first line is the GRASS location (in this capearfish), and the second is a mapset
within the location (in this caggass).

8.3.4. Subgoups
The subgroup directory under a group has the following structure:

6 Note that the o values are rggtive. This is because GRASS requires the northings to
increase from south to north. Nggtive values accomplish this while preserving thev nealue.
The true image w is the absolute value.

7 The user makes this decisioni jpoints.

88 Image Data: Groups

-47- - 47 -

subgroup/
I
I I I
123/ 234/ 1357
1357/
I
I I
REF sig/
I
I I
clusterl cluster2

In this example, the subgroups are nani&8, 234, 1357, etc.8 Within each subgroup,
there is a REF file andsag directory The REF file would list a subset of the cell files
from the group. In this example, it could look like:

tm.apr88.1 gras
tm.apr88.3 gras
tm.apr88.5 gras
tm.apr88.7 gras

("2 VPR VP R Vb)

indicating that the subgroup is composed of bands 1, 3, 5, and 7 from the April 1988 TM
scene. Thefiles cluster.1l and cluster.?® under thesig directory containspectral
signature information (i.e., statistics) for this combination of band files. The files were
generated by different runs of the clustering progratuster.

8.4. ImageryPrograms

The following is a list of some of the imagery programs in GRASS, with a brief
description of what thedo. Refer to theGRASS Uses’ Refelence Manualfor more
details.

8 The subgroup names are chosen by the user (hopefully reflecting the contents of the
subgroup).
9 Again, these file names are chosen by the user.

88 Image Data: Groups

- 48 - - 48 -

image extraction
I.tape.mss Landsddultispectral Scanner data
i.tape.tm Landsafhematic Mapper data
I.tape.other other formats, such as scanned aerial photggmaph
SPA satellite data

image rectification

l.points imageegistration (assign control points)

i.rectify imagerectification

l.target establisharget database for the group
image classification

I.cluster unsuperviseclustering

i.maxlik maximumlikelihood classifier
other

l.group groupmanagement

8.5. Programming Interface for Groups

The programming inteace to the group data is describe@ld Imayery Library [p. 173
and the reader is referred to that chapter for details.

88 Image Data: Groups

-49 - - 49 -

Chapter 9

Region and Mask

GRASS users are provided withdwnechanisms for specifying the area of the earth in
which to viev and analyze their data. These arewnan GRASS as theegion and the
mask.The user is alwed to set aegion which defines a rectangular area of@age on

the earth, and optionally further limit theveoage by specifying a "cookie cuttarfask.

The region and mask are stored in the database under tlreais@nt mapsetGRASS
programs automatically retkie anly data that fall within the gion. Furthermoreif
there is a mask, only data thatlfwithin the mask are retained. Programs determine the
region and mask from the database rather than asking the user.

9.1. Region

The uses aurrent database g@n is set by the user using the GRAG®gion, or d.zoom
commands. lIts stored in the WIND file in the mapset. This file not only specifies the
geographic boundaries of thegien rectangle, but also the region resolution which
implicitly grids the region into rectangular "cells" of equal dimension.

Users expect map layers to be resampled into the curgganreThisimplies that raster
maps must be extended with no data for portions of therrevhich do not ceer the
map layerand that the raster map data be resampled to thenreesolution if the raster
map resolution is diérent. Userslso expect ne map layers to be created witkaetly
the same boundaries and resolution as the current region.

89 Region and Mask

- 50 - -50-

The WIND file contains the following fields:

WIND
north: 4660000.0(¢
south: 4570000.00
east: 770000.00
west : 710000.00

e-wresol: 50.00
n-s resol: 100.00

rows: 900
cols: 1200
proj: 1
zone: 18

north, south, east, west
The geographic boundaries of thgiom are gien by the north, south, eastand
west fields. Note:these values describe the lines which bound the region at its
edges. Thesknes do N pass through the center of the grid cells which form the
region edge, but rather along the edge of the region itself.

rows, cols
These values describe the number of rows and columns in the *egion.

e-w resol, n-s resol
The fieldse-w resoland n-s resol(which stand for east-west resolution and north-
south resolution respeedly) describe the size of each grid cell in the region in
physical measurement units (e.g., meters in a UTM databd$e)e-w resolis the
length of a grid cell from east to westhen-s resolis the length of a grid cell from
north to south. Note that since thew resolmay differ from then-s reso| regon
grid cells need not be square.

proj, zone
The projection field specifies the type of cartographic projection: 0 is unreferenced
x,y (imagery data), 1 is UTM, 2 is State Pl&n@,is Latitude Longitude. Others
may be added in the futur@he zonefield is the projection zone. In theample
above, the projection is UTM, the zone 18.

Note. The format for the region file "WIND" isery similar to the format for the raster
header files. Se85.3 Raster Header Formgt. 29 for details about raster header files.

1 These fields were not present in GRASS 3.0
2 State Plane is not yet fully supported in GRASS.
3 Latitude Longitude is a nonplanimetric projection and is only partially supported in GRASS.

89 Region and Mask

-51- -51-

9.2. Mask

In addition to the region, the user may set a mask usingniaskcommand. Thenask

is stored in the user’aurrent mapset as a raster file with the name MASHe mask

acts like an gaque filter when reading other raster files. No-data values in the mask (i.e.,
category zero) will cause correspondinglwes in other raster files to be read as no data
(irrespectve d the actual value in the raster file).

The following diagram gies a vsual idea of he the mask works:

input MASK output
314 4 0] 1| 1 0| 4| 4
313]| 4 + 11 1] 0 = 3] 3]
2|1 3|3 11 0| O 2| 0| @

9.3. Variations

If a GRASS program does not gbether theregion or themask,the variation must be
noted in the user documentation for the program, and the reason for the vaneson gi

4 Ther.maskprogram creates MASK as a reclass file because the reclass function is fast and
uses less disk space, but it does not actually matter that MASK is a reclagsridigular raster
file can be used. The only thing that really matters is that the raster file be called MASK.

89 Region and Mask

-B2 -

-53- -53-

Chapter 10

Environment Variables

GRASS programs are written to be independent of which database the user is using,
where the database resides on the disk, or where the programs teemaside.When
programs need this information, yhget some of it from UNIX environmentaviables,

and the rest from GRASS environment variables.

10.1. UNIX Environment

The GRASS start-up commandrass4.1l sets the following UNIX evironment
variablesl

GISBASE toplevel directory for the GRASS programs
GIS_LOCK procesd of the start-up shell script
GISRC namef the GRASS environment file

GISBASE is the top lgel directory for the GRASS programs:or example, if GRASS
were installed undefgrass, then GISBASE would be set tlgrass. The command
directory would be/grass/bin,the command support directory would fggass/etc,the

source code directory would bgrass/src,the on-line manual @uld live in /grass/man,
etc.

GISBASE, while set in the UNIX efironment, is gren special handling in GRASS code.
This variable must be accessed usingGhe Library routineG_gisbasé. 79).

GIS_LOCK is used for various locking mechanisms in GRASS. It is set to the process id
of the start-up shell so that locking mechanisms can detect orphaned locks (e.g., locks
that were left behind during a system crash).

GIS_LOCK may be accessed using the UNIX géatenoutine.

GISRC is set to the name of the GRASSviemnment file where all other GRASS

1 Any interface to GRASS must set these variables.

810 Environment Variables

-54- -5 -

variables are stored. This file.igrassrcin the uses home directory.

10.2. GRASSEnvironment

All GRASS users will hee a fle in their home directory namegdrassrc® which is used

to store the variables that comprise the environment of all GRASS programs. This file
will always include the following ariables that define the database in which the user is
working:

GISDBASE toplevel database directory
LOCATION_NAME locationdirectory
MAPSET mapsedirectory

The user sets these variables during GRASS start-up. While the value of &&DB
will be relatvely constant, the others may change each time the user runs GRASS.
GRASS programs access these variables usingstlggsdbas@. 73, G_locatior(p. 72),

and G_mapsdp. 79 routines in theGIS Library. See84.2 GISDBRSE[p. 14 for details
about GISDR\SE, 84.3 Locationgp. 14 for details about database locations, &4d4
Mapsetgp. 19 for details about mapsets.

Other variables may appear in this file. Some of these are:

MONITOR currentlyselected graphics monitor
PAINTER currentlyselected paint output device
DIGITIZER currentlyselected digitizer

These wariables are accessed and set from C programs using the general purpose routines
G_getentp. 739 and G_setenfp. 79. The GRASS prograng.gisenvprovides a command
level interface to these variables.

10.3. Difference Between GRASS and UNIX Environments

The GRASS evironment is similar to the UNIX environment in that programs can access
information stored in "enronment” \ariables. Hwever, snce the GRASS etironment
variables are stored in a disk file, it offersotwapabilities not @ailable with UNIX
ervironment \ariables. Firstyariables may be set by one program for later use by other
programs. Br example, the GRASS start-up sets theméalles for use by all other

2 GRASS programs do not Ve tis file name built into themThey look it up from the UNIX
ervironment variable GISRCNote the similarity in naming ceention to the .cshrc andxe
files.

810 Environment Variables

- 55 - -5 -

GRASS application programs. Second, since the variables remain in the file unless
explicitly removed, they are avallable from session to session. Alsoveal GRASS
environment variables are used as defaults each time a GRASS session is initiated.

810 Environment Variables

-56 -

-57- -57-

Chapter 11

Compiling and Installing GRASS Programs

GRASS programs are compiled and installed using the GR#iv&&e4. front-end to the
UNIX makecommandgmake4.Teads a file name@makefileto construct analerules

file (see811.4.1 Multiple-Achitecture Conventiongp. 64 for more information,) and then
runs malke. The GRASS compilation process al® for multiple-architecture
compilation from a single cgpof the source code (for instance, if the source code is RFS
or NFS mounted toarious machines with differing architectures.) This chapter assumes
that the programmer is familiar withakeand its accompanyingakefiles.

11.1. gmalke4.1

The GRASSgmake4.1lutility allows make compilation rules to be deloped
without haiing to specify machine and installation dependent information.
gmake4.1lcombines predefined variables that specify the machine and installation
dependent information with th@makefile,to create amakefile. (The predefined
variables and the construction of @Gmakefile are described i811.2 Gmakfile
Variables|p.59.)

gmake4.1s invoked as bllows:!

gmake4.1 [source directory] [target]

If run without aguments,gmake4.1will run in the current directorybuild a
makefilefrom the Gmakefilefound there, and then runale. If run with a source
directory agument,gmake4.1will change into this directory and then proceed as
above. If run with a target argument as well, theakewill be run on the specified
target.

1 When GRASS is installedymake4.lis placed into a directory which is in your/Aif (e.g.
/usr/local/bin). Yu should be able to rigmake4.without having to specify its full path name.

811 Compiling and Installing GRASS Programs

- 58 - .58 -
11.2. Gmalefile Variables

The predefined Gmakefilerables which the GRASS programmer must use when
writing a Gmakefile specify libraries, source and binary directories, compiler and
loader flags, etc.The most commonly used variables will be defined here.
Examples of ha to use them follav in 811.3 Constructing a Gmakle[p.6q. The

full set of variables can be seenAppendix A. Annotated GmakefileeBefined
Variables([p. 287. Variables marked with (-) are not commonly used.

GRASS Directories: The following variables teljmake4.where source code and
program directories are:

SRC (-) This is the directory where GRASS source cods. i

BIN This is the directory where useaccessible GRASS programs
live.

ETC This is the directory where support files and prograrnas. li

These support files and programs are used by the $(BIN)
programs, and are not known to, or run by the user.

LIBDIR () This is the directory where most of the GRASS libraries are
kept.

INCLUDE_DIR (-)
This is where include and header file®li For example, "gis.h"
can be found here.gmake4.1lautomatically specifies this
directory to the C compiler as a place to find include files.

GRASS Libraries. The following variables name the various GRASS libraries:

GISLIB This names theGIS Library, which is the principal GRASS
library. See812 GIS Libary [p. 69 for details about this library
and 812.21 Loading the GIS Liary [p.154 for a sample
Gmakefilewhich loads this library.

VASKLIB This names thé&/ask Library, which does full screen user input.

VA SK This specifies theVask Library plus the UNIX curses and
termcap libraries needed to use Wask Library routines. See
820 Vask Libary [p. 229 for details about this librayygnd §20.4
Loading the Vask Lilary [p. 233 for a sampleéGmakefilewhich
loads this library.

811 Compiling and Installing GRASS Programs

SEGMENTLIB
This names theéSgment Libary, which manages large matrix
data. See819 Segment Lilry [p.22] for details about this
library, and §20.4 Loading the Vask Liary [p.233 for a sample
Gmakefilewhich loads this library.

RASTERLIB
This names thdRaster Graphics Likary, which communicates
with GRASS graphics drers. See§15 Raster Graphics Liary
[p. 183 for details about this librayynd §15.9 Loading the Raster
Graphics Libary [p. 193 for a sampleGmakefilewhich loads this
library.

DISPLAYLIB
This names theDisplay Graphics Libary, which provides a
higher level graphics interface to $(RASTERLIB).See 8§16
Display Graphics Libary [p. 199 for details about this librayynd
816.11 Loading the Display Graphics Laoy [p. 207 for a sample
Gmakefilewhich loads this library.

UNIX Libraries: The following \ariables name some useful UNIX system
libraries:

MATHLIB This names the math librarit should be used instead of the -Im
loader option.

CURSES Thisnames both the curses and termcap libraries. It should be
used instead of the -lcurses and -ltermcap loader optiDps.
not use $(CURSES) if you use $(VASK).

TERMLIB This names the termcap librany should be used instead of the
-ltermcap or -ltermlib loader option®o not use $(TERMLIB)
if you use $(VASK) or $(CURSES).

Compiler and loader variables. The following \ariables are related to compiling
and loading C programs:

CC Thisvariable specifies what compiler/loader to use. This should
always be referenced, as opposed to "c8&e811.3.1 Building
programs from source (.c) filgp. 61 for the proper use of the
CC variable.

AR This variable specifies the rule that must be useduit lobject
libraries. Se€g11.3.3 Building object litaries[p. 67 for details.

811 Compiling and Installing GRASS Programs

- 60 - - 60 -

CFLAGS (-) This variable specifies all the C compiler optioris.should
never be recessary to use thiswable -gmake4.Jautomatically
supplies this variable to the C compiler.

EXTRA_CFLAGS
This variable can be used to add additional options to
$(CFLAGS). Ithas no predefinedalues. Itis usually used to
specify additional -1 include directories, or -D preprocessor
defines.

GMAKE This is the full name of thgmake4.lcommand. lcan be used
to drive compilation in subdirectories.

LDFLAGS Thisspecifies the loader flags. The programmer must use this
variable when loading GRASS programs since there is ap w
to automatically supply these flags to the loader.

MAKEALL This defines a command which rungmake4.1l in all
subdirectories that ka aGmakefilein them.

11.3. Constructinga Gmakefile

A Gmakefileis constructed lig@ amakefile. The complete syntax for makefileis
discussed in the UNIX documentation foakeand will not be repeated here. The
essential idea is that a gat (e.g. a GRASS program) is to be built from a list of
dependencies (e.g. object files, libraries, etc.). The relationship betweergtte tar
its dependencies, and the rules for constructing tigettes expressed according to
the following syntax:

target :dependencies
actions
more actions

If the target does not exist, or ifyanf the dependencies Y& a rewer date than the
target (i.e., hae cdhanged), the actions will beeuted to build the target.

The actions must be indented usingABT Makeis picky about this. It does not
like gaces in place of the TAB.

811 Compiling and Installing GRASS Programs

-61- -61-

11.3.1. Buildingprograms from source (.c) files

To huild a program from C source code files, it is only necessary to specify the
compiled object (.0) files as dependencies for thgetgorogram, and then specify

an action to load the object files together to form the prograine makeutility

builds .o files from .c files without being instructed to do so.

For example, the follwing Gmakefile builds the progranxyz and puts it in the
GRASS program directory.

OBJ = main.o subl.o sub2.0 sub3.0

$(BIN)/xyz: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(GISLIB)

$(GISLIB): # in case library changes

The taget xyz depends on the obiject files listed in the variable $(OBJ) and the
$(GISLIB) library. The action runs the C compiler to load xyz from the $(OBJ) files
and $(GISLIB).

$@ is amakeshorthand which stands for thegat, in this casayz. Its use should
be encouraged, since theger name can be changed without having to edit the
action as well.

$(CC) is the C compilerlt is used as the interface to the loadkrshould be
specified as $(CC) instead of cMake defines $(CC) as cc, but using $(CC) will
allow other C-like compilers to be used instead.

$(BIN) is a gmake4.lvariable which names the UNIX directory where GRASS
commands lie. Specifying the taget as $(BIN)/xyz will causgmake4.1to build
xyz directly into the $(BIN) directory.

$(LDFLAGS) specify loader flags which must be passed to the loader in this
manner.

$(GISLIB) is theGIS Library. $(GISLIB) is specified on the action line so that it is
included during the load step. It is also specified in the dependestcso that
changes in $(GISLIB) will also cause the program to be reloaded.

Note that no rules werewgn for kuilding the .o files from their related .c filel

fact, the GRASS programmer shouldvaegive an explicit rule for compiling .c
files. It is sufficient to list all the .o files as dependencies of tigettafhe .c files

will be automatically compiled to build up-to-date .o files before the .o files are
loaded to build the target program.

Also note that since $(GISLIB) is specified as a dependénmust also be

specified as a tget. Make must be told ha to build all dependencies as well as
targets. In this case a dummy rule igegito satisfy male.

8§11 Compiling and Installing GRASS Programs

-62- 62 -

11.3.2. Includefiles

Often C code uses the #include direetb include header files in the source during
compilation. Headefiles that are included into C source code should be specified
as dependencies as well. It is the .o files which depend on them:

OBJ = main.o subl.o sub2.0

$(BIN)/xyz: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(GISLIB)

$(OBJ): myheader.h

$(GISLIB): # in case library changes

In this case, it is assumed that "myheddelives in the current directory and is
included in each source code file. If "myheadechanges, then all .c files will be
compiled &en though thg may not hae changed. Andhen the target prograryz
will be reloaded.

If the header file "myheadél is in a different directorythen a diferent
formulation can be used:

EXTRA_CFLAGS =-I..
OBJ = main.o subl.o sub2.0

$(BIN)/xyz: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(GISLIB)

$(GISLIB): # in case library changes

$(EXTRA_CFLAGS) will add the flag -I.. to the rules that compile .c files into .o
files. This flag indicates that # include files (i.e., "myheader.h") can also be found in
the parent (..) directory.

Note that this example does not specify that "myhelatées a dependemc If

"myheadeh” were to change, this omld not cause recompilation herdhe
following rule could be added:

$(OBJ): ../myheader.h

11.3.3. Buildingobject libraries

Sometimes it is desirable taild libraries of subroutines which can be used inynan
programs. gmake4.lrequires that these libraries be built using the $(AR) rule as

8§11 Compiling and Installing GRASS Programs

- 63 - -63-

follows:

OBJ = subl.o sub2.0 sub3.o

lib.a: $(OBJ)
$(AR)

All the object files listed in $(OBJ) will be compiled and avetiinto the taget
library lib.a. The $(OBJ) variable must be usethe $(AR) assumes that all object
files are listed in $(OBJ).

Note that due to theay the $(AR) rule is designed, it is not possible to construct

more than one library in a single source code directBach library must hae its
own directory and relate@makefile.

11.3.4. Buildingmore than one target

Many target : dependencylines mawy be gven. However, it is the first one in the
Gmakefilewhich is built bygmake4.1 If there are more tgets to be built, the first
target must explicitly or implicitly cauggmake4.1o build the others.

The following builds tw programsabc andxyz directly into the $(BIN) directory:

ABC = abc.o subl.o sub2.0
XYZ = xyz.o0 subl.0 sub3.0

all: $(BIN)/abc $(BIN)/xyz

$(BIN)/abc: $(ABC) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(ABC) $(GISLIB

$(BIN)/xyz: $(XYZ) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(XYZ) $(GISLIB

$(GISLIB): # in case library changes

If it is desired to run the compilation imnous subdirectories,@makefilecould be
constructed which simply runignake4.1in each subdirectoryor example:

all:
$(GMAKE) subdir.1
$(GMAKE) subdir.2
$(GMAKE) subdir.3

811 Compiling and Installing GRASS Programs

-64 - -&4 -
11.4. CompilationResults

This section describes the results of the GRASS compilation process dor tw
separate subjects.

11.4.1. Multiple-Architecture Conventions

The following conentions allav for multiple architecture compilation on a machine
that uses a common or networked GRASS source code directory tree.

Object files and library arches ae compiled into subdirectories that represent the
architecture that tlyewere compiled on.These subdirectories are created in the
$(SRC) directory as OBakch and LIBarch, wherearch represents the architecture

of the compiling machine. Thus, for example, $(SRC)/OBJ.sun4 would contain the
object files for Sun/4 and 8RC architectures, and $(SRC)/LIB.386 would contain
library archves for Sun/4 and SPARC architecturelkikewise, $(SRC)/OBJ.386
would contain the object files for 386 architectures, and $(SRC)/LIB.388dw
contain library archvies for 386 architectures.

Note that 'arch’ is defined for a specific architecture during setup and compilation of
GRASS, it is not limited to sun4 oryagpecific string.

gmale4.1 produces a makules file in the $(SRC)/OBalch drectory instead of a
makefile to allow for multiple-ahitecture compilation.

11.4.2. CompiledCommand Destinations

GRASS v4.1 merges the command-line and interaat#sions of a function under
the same name. This merging happens in one@hiethods.

1. The programmer writes a single program which uses the parser
capability (see812.15 Command LineaPsing [p. 133.) Theparser has both a
command-line and a rudimentary prompt-based intexattierface.

2. Theprogrammer writes writes a command-line version using the pauer
also provides an interagé vasion as a separate module teemwide the
parsers interactve interface.

The second method requires that both the command-line program and the weteracti
program be somelomerged into one program. This is accomplished by placing
both programs in separate directories under $(GISBASE)/etc/bin and creating a link
(as described below) in $(BIN).

811 Compiling and Installing GRASS Programs

- 65 - - 65 -

There are six directories where programs are placed. These, along with their
respectre Gmakefile variables, are:

etc/bin/main/inter $(BIN_MAIN_INTER)
Interactve vasions of the primary GRASS commands.

etc/bin/main/cmd $(BIN_MAIN_CMD)
Command-line versions of the primary GRASS commands.

etc/bin/alpha/inter $(BIN_ALPHA_INTER)
Interactve vesions of the alpha-version commands.

etc/bin/alpha/cmd $(BIN_ALPHA _CMD)
Command-line versions of the alpha-version commands.

etc/bin/contrib/inter $(BIN_CONTRIB_INTER)
Interactve veasions of the contributed commands.

etc/bin/contrib/cmd $(BIN_CONTRIB_CMD)
Command-line versions of the contributed commands.

To merge the command-line and interaetivasions of a command, the compilation
process creates a link in $(BIN) to $(GISBE)/etc/front.end. Thidink has the
same name as the command, and causesitgon of the command to be passed to a

front-end. Thebehaior of the front.end command is st in the figure belw
using the commandreclassas an example.

paste front.end.xfig diagram here

The front.end program will call the interaaiveasion of the command if there were

811 Compiling and Installing GRASS Programs

- 66 -

-66 -

no command-line arguments entered by the .ugatherwise, it will run the
command-line grsion. Ifonly one version of the specific commanxises (for
example, there is only a command-line versioveilable,) that one asting
command isecuted.

811 Compiling and Installing GRASS Programs

-67 -

11.5. Notes

11.5.1. Bypassinghe creation of .o files

If a program has only one .c source file, it is tempting to compile the program
directly from the .c file without creating the .o file. Please do not do Trisre

have keen problems on some systems specifying both compiler and loader flags at
the same time. The .o files must haltfirst. Once all the .o files are built, there

loaded with ap required libraries to build the program.

11.5.2. Simultaneougompilation

The compilation process may be run on only one machine at a lirgeu try to
compile the same source directory om tiwachines simultaneouslihings will not
turn out properly This is your responsibility -- gmake4.1 cannot detect

simultaneous compilations.

811 Compiling and Installing GRASS Programs

©

-68 -

- 69 - - 69 -

Chapter 12

GIS Library

12.1. Introduction

The GIS Library is the primary programming library provided with the GRASS system.
Programs must use this libary to access the databas#.contains the routines which
locate, create, open, rename, and anM@RASS database files. It contains the routines
which read and write raster files. It contains routines which aderthe user to the
database, including prompting the ydesting available files, validating user access, etc.

It also has some general purpose routines (string manipulation, user information, etc.)
which are not tied directly to database processing.

It is assumed that the reader has r&dd Database Structar[p.19 for a general
description of GRASS databasdsfy Raster Mapgp.23 for details about raster map
layers in GRASS, ang89 Region and Madk. 49 which discusses regions and masks.

The routines in thésIS Library are presented in functional groupings, rather than in
alphabetical orderThe order of presentation will, it is hoped, provide a better
understanding of o the library is to be used, as well as white interrelationships
among the various routines. Note that a goay io understand o to use these
routines is to look at the source code for GRASS programs which use them.

Most routines in this library require that the header file "gis.h" be includedyicoaie
using these routiné's Therefore, programmers shouldways include this file when
writing code using routines from this library:

#include "gis.h"

Note. All routines and global variables in this libraocumented or undocumented,
start with the prefixG_. To aoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic indeis provided in825.4 Appendix C. Inddo GIS Library[p. 293.

1 The GRASS compilation process, described 8l Compiling and Installing GRASS
Programsip. 57, automatically tells the C compiler tato find this and other GRASS header files.

812 GIS Library

-70 - -70-

12.2. Library Initialization
It is mandatory that the system be initialized beforeyanther library routines are called.

G_gisinit (program_name) initialize gis library
char *program_name;
This routine reads the useIGRASS environment file into memory and makes sure
that the user has selected @i database and mapset. It also initializes hidden
variables used by other routine#. the users database information is valid, an

error message is printed and the prograitse Theprogram_name s stored for

later recall byG_program_namép. 159. It is recommended that argv[0] be used for
theprogram_name

main(argc, argv) char *gv[J;

G_gisinit(argv[0]);

12.3. DiagnostidViessages

The following routines are used by other routines in the library to report warning and
error messages. Thenay also be used directly by GRASS programs.

G_fatal_error (message) print error messge and exit
G_warning (message) print warning messge and continue
char *message;
These routines report errors to the usdre normal mode is to write tlreessagdo

the screen (on the standard error output) and waw afeonds. G_warning()will
return and G dtal_error(will exit.

If the standard error output is not a ttyide, then the message is mailed to the user
instead.

If the file GIS_ER®R_LOG exists (with write permission), in either the user
home directory or in the $GIPEBE? directory the messages will also be logged to
this file.

While most applications will find the normal error reporting quite adequate, there will be
times when different handling is needdeor example, graphics programs may want the

2 $GISBASE is the directory where GRASS is installé8ee§10.1 UNIX Emironment[p. 53
for detalils.

812 GIS Library

-71- - 71-

messages displayed graphically instead of on the standard error olftpthe
programmer wants to handle the error messagksetitly the following routines can be
used to modify the error handling:

G_set_error_routine (handler) change aror handling
int (*handler)();

This routine provides a ddrent error handler for Gafal_error()and G_varning().
Thehandler routine must be defined as follows:

handler (message, fatal)

char *message;
int fatal;

wheremessages the message to be handled &atdl indicates the type of errod
(fatal error) or O (warning).

Note. The handler only prades a way to send the message somewhere other than
to the error output. If the error is fatal, the program will exit after the handler
returns.

G_unset_error_routine() reset normal error handling

This routine resets the error handling €@rfatal_errofp. 70 and G_warnindp. 70
back to the default action.

G_sleep_on_error(flag) sleep on error?
int flag;

If flag is O, then no pause will occur after printing an error or warning message.
Otherwise the pause will occur.

G_suppress_warninggflag) suppress warnings?
int flag;

If flag is O, thenG_warnindp. 70 will no longer print warning messages. flag is
1, then G_wvarning()will print warning messages.

Note. This routine has no effect @a _fatal_errolp. 70).

812 GIS Library

-72- -72-

12.4. Ervironment and Database Information

The following routines return information about the current database selected by the user
Some of this information is retsed from the uses GRASS environment file. Some of

it comes from files in the database itseBee810 Ewironment ¥riables [p.53 for a
discussion of the GRASS environment.

The following four routines can be used freely by the programmer :

char *
G_location () current location name

Returns the name of the current database location. This routine should be used by
programs that need to display the current location to the @eer84.3 Locations
[p. 1 for an explanation of locations.

char *
G_mapset() current mapset name

Returns the name of the current mapset in the current locattos.routine is often
used when accessing files in the current mapSee 84.4 Mapsetgp. 16 for an
explanation of mapsets.

char *
G_myname() location title

Returns a one line title for the database location. This title is read from the file
MYNAME in the PERMANENT mapsetSee alsa84.6 Permanent Mapsét. 19
for a discussion of the PERMANENT mapset.

char *
G_gisbasg) top level pogram drectory

Returns the full path name of the topdedirectory for GRASS programsThis

directory will have sibdirectories which will contain programs and files required for
the running of the system. Some of these directories are:

bin commandsun by the user
etc programsind data files used by GRASS commands
txt helpfiles

menu filesused by thgrass3menu interface

The use of G_gisbasgfo find these subdirectories enables GRASS programs to be
written independently of where the GRASS system is actually installed on the
machine. Br example, to run the prograsroffin the GRASSetc directory:

char command[200];

sprintf (command, "%s/etc/sroff", G_gisbapg(
system (command);

812 GIS Library

-73- -73-

The following two routines return full path UNIX directory nameshey should be used
only in special cases. Thare used by other routines in the library to build full UNIX file
names for database file3he programmer should not use the next tw routines to
bypass the normal database access routines.

char *
G_gisdbasq) top level database directory

Returns the full UNIX path name of the directory which holds the database
locations. Se&4.2 GISDBASHp. 14 for a full explanation of this directory.

char *
G_location_path() current location directory

Returns the full UNIX path name of the current database locakonexample, if
the user is working in locatiospearfishin the/usr/grass3/datadatabase directory
this routine will return a string which looks likesr/grass3/data/spearfish.

These next routines provide thevidevel management of the information in the user’
GRASS environment file.They should not be used in place of the higher Vel
interface routines described abwe.

char *

G_getenv(name) query GRASS environment variable

char *

G_ _geten (name) query GRASS environment variable
char *name;

These routines look up thanablenamein the GRASS erironment and return its
value (which is a character string).

If name is not set, G_getef) issues an error message and cabgt(e
G_ _setenv(just returns the NULL pointer.

G_setenv(name, value) set GRASS environment variable
G_ _seten (name, value) set GRASS environment variable
char *name;
char *value;

These routines set the the GRASS environmaritilslenameto value. If value is
NULL, the nameis unset.

Both routines set the value in program membuy only G_setev() writes the ne
value to the uses' GRASS environment file.

812 GIS Library

- 74 - T4 -

12.5. FundamentalDatabase Access Routines

The routines described in this section provide the-level interface to the GRASS
database. Tlyesearch the database for files, prompt the user for file names, open files for
reading or writing, etc. The programmer shouldenebypass this leel of database
interface. These routines must be used to access the GRASS database unlessther
are aher higher level library routines which perform the same function. For
example, routines to process raster fil8$2.9 Raster File Ricessingp. 9g), vector files
(812.11 Vector File Ricessingp. 121), or site files §12.12 Site List Rrcessingp. 124),

etc., should be used instead.

In the descriptions belg the term databasdementis used. Elements are subdirectories
within a mapset and are associated with a specific GRASS data oypxample, raster
files live in the "cell" element. Se®4.5.2 Elementgp. 19 for more details.

12.5.1. Pompting for Database Files

The following routines interactely prompt the user for a file name from a specific
databaselement. (See84.5.2 Element. 19 for an explanation of elements.) In each,
theprompt string will be printed as the first line of the full prompt which asks the user to
enter a file namelf prompt is the empty string™then an appropriate prompt will be
substituted. Th@ame that the user enters is copied intanémae buffer3 The short (one

or two word) label describing theslementis used as part of a title when listing the files
in element.

The user is required to enter aid file name, or else hit the RETURNYKD cancel the
request. Ifthe user enters anviaid response, a message is printed, and the user is
prompted agin. Ifthe user cancels the request, the NULL pointer is returned. Otherwise
the mapset where the filevdés or is to be teated is returned. Both the name and the
mapset are used in other routines to refer to the file.

An example will be gven here. The G_ask old(routine used in the example is
described a bit latefThe user is asked to enter a file from the "paint/labels" element:

char name[50];
char *mapset;

mapset = G_ask_old ("", name, "paint/labels", "labels");
if (mapset = NULL)

exit(0); /* user canceled the request */

The user will see the following:

3 The size ohameshould be large enough to holdyaBRASS file name. Most systems aWo
file names to be quite long. It is recommended that name be dedharethme[50].

812 GIS Library

-75- -75-

Enter the name of an existing labels file
Enter 'list’ for a list of existing labels files
Hit RETURN to cancel requeASt

>

char *
G_ask_old(prompt, name, element, label) prompt for existing database file

char *prompt;
char *name,;
char *element;
char *label;

The user is asked to enter the name of an existing database file.

Note. This routine looks for the file in the current mapset as well as other mapsets.
The mapsets that are searched are determined from the nmapset search path.
See84.7.1 Mapset Seen Rath [p. 20 for some more details about the search path.

char *
G_ask_new(prompt, name, element, label) prompt for nev database file

char *prompt;
char *name,;
char *element;
char *label;

The user is asked to enter the name ofvafile which does not exist in the current
mapset.

Note. The file chosen by the user mayst in other mapsets. This routine does not
look in other mapsets, since the assumption isriaate will be used to create a
new file. New files are aliays created in the current mapset.

char *
G_ask_in_mapse{prompt, name, element, label) prompt for existing database file

char *prompt;
char *name;
char *element;
char *label;

The user is asked to enter the name of an file which exists in the current mapset.

Note. The file chosen by the user may or may not exist in other mapBeis.
routine does not look in other mapsets, since the assumption isathatwill be

4 This line of the prompt can be modified ustBgset_ask_return_m@gg7e).

812 GIS Library

- 76 - - 76 -

used to modify a file.GRASS only permits users to modify files in the current
mapset.

char *
G_ask_any(prompt, name, element, label, warn) prompt for any valid file name

char *prompt;
char *name;
char *element;
char *label;

int warn;

The user is a"d to enter anlegd file name.If warn is 1 and the file choserxists

in the current mapset, then the user is asked if it is okagovate the file. Ifwarn is

0, then ag legd name is accepted and no warning is issued to the user if the file
exists.

G_set_ask_return_msgdmsg) set Hit RETURN msg
char *msg;

The "Hit RETURN to cancel request” part of the prompt in the prompting routines
described abe, is modified to "Hit RETURNmMsg"

char *
G_get_ask_return_msq) get Hit RETURN msg

The currenimsg (as set by _set_ask_return_mg&g7e) is returned.

12.5.2. FullyQualified File Names

All GRASS routines which access database files muster both the file name and the
mapset where the file resides. Often the name and the mapset are 2 distinct character
strings. Havever, there is a need for a single character string which contains both the
name and the mapset (e.g., for intekecinterfacing to command-line programsyhis

form of the name is known as thdly qualified file nameand is built by the follwing

routine:

812 GIS Library

-77- 77 -

char *
G_fully_qualified_name(name, mapset) fully qualified file name

char *name;
char *mapset;

Returns a fully qualified name for the fdi@amein mapset Currently this string is
in the formname@mapsetbut the programmer should pretend not towtlois and
always call this routine to get the fully qualified name.

The following example shows fwoan interactve vesion of d.rastinterfaces with
the command-line version dfrast :

#include "gis.h"
main(argc,argv) char *gw[];

char name[100], *mapset, *fgn;;
char command[1024];

G_gisinit(argv[0]);

mapset = G_ask_cell_old (", name, "");

if (mapset = NULL) exit(0);

fqn = G_fully_qualified_name (name, mapset);
sprintf (command, "d.rast map="%s", fqn);
system(command);

12.5.3. FindingFiles in the Database

Noninteractve programs cannot makuse of the interacte prompting routines described
above. For example, a command line gen program may require a database file name as
one of the commandguments. Irthis case, the programmer must search the database to
find the mapset where the file resides.

The following routines search the database for files:

char *
G_find_file (element, name, mapset) find a database file

char *element;
char *name;
char *mapset;

Look for the filename under the specifiedlementin the databaseThe mapset
parameter can either be the empty string ", which means search all the mapsets in
the user aurrent mapset search patioy it can be a specific mapset, which means

5 See§4.7.1 Mapset Seeln Rath [p. 2q for more details about the search path.

812 GIS Library

-78- -78-

look for the file only in this one mapset (for example, in the current mapset).

If found, the mapset where the filgds is returned. If not found, the NULL pointer
is returned.

If the user specifies a fully qualified file name, (i.e, a name that also contains the
mapset; se€12.5.2 Fully Qualified File Namgg. 7d) then G_find_file() modifies
name by eliminating the mapset from thame

For example, to find a "paint/labels” file anywhere in the database:

char name[50];
char *mapset;

if ((mapset = G_find_file("paint/labels",name,"")¥-NULL)
/* not found*/

To check that the file exists in the current mapset:

char name[50];

if (G_find_file("paint/labels",name,G_mapset(> NULL)
/* not found*/

12.5.4. LegaFile Names

Not all names that a user may enter will bgdldiles for the GRASS databases. The
routines which create nefiles require that the nefile have a Egd name. Theoutines
which prompt the user for file names (e@.,ask_nep.79) guarantee that the name
entered by the user will begd. If the name is obtained from the command line, for
example, the programmer must check that the namega. |[€he following routine
checks for lgd file names:

G_legal_filename(name) ched for legal database file names

char *name;

Returns 1 ilhameis ok, -1 otherwise.

812 GIS Library

-79- -79-

12.5.5. Openingan Existing Database File for Reading
The following routines open the filmmein mapsetfrom the specified databaskEement

for reading (but not for writing)The filenameandmapsetcan be obtained interaetly
usingG_ask_oldp. 79, and noninteractely usingG_find_fildp. 77)

G_open_old(element, name, mapset) open a database file for reading

char *element;
char *name;
char *mapset;

The database fileame under theelementin the specifiednapsetis opened for
reading (but not for writing).

The UNIX open| routine is used to open the file. If the file does not exist, -1 is
returned. Otherwise the file descriptor from the opénfeturned.

FILE *
G_fopen_old(element, name, mapset) open a database file for reading

char *element;
char *name;
char *mapset;

The database fileame under theelementin the specifiednapsetis opened for
reading (but not for writing).

The UNIX fopen() routine, with "r" read mode, is used to open the fifethe file
does not exist, the NULL pointer is returned. Otherwise the file descriptor from the
fopen()is returned.

12.5.6. Openingan Existing Database File for Update

The following routines open the filekame in the current mapset from the specified
databaselementfor writing. The file must exist. Iteame can be obtained interaetly
usingG_ask_in_mapsgt 79, and noninteractely usingG_find_filép. 77)

812 GIS Library

-80 - -80-

G_open_update(element, name) open a database file for update

char *element;
char *name;

The database filmame under theelementin the current mapset is opened for
reading and writing.

The UNIX open routine is used to open the file. If the file does not exist, -1 is
returned. Otherwise the file is positioned at the end of the file and the file descriptor
from the open|is returned.

G_fopen_appendelement, name) open a database file for update

char *element;
char *name;

The database filmame under theelementin the current mapset is opened for
appending (but not for reading).

The UNIX fopen(routine, with "a" append mode, is used to open the file. If the
file does not exist, the NULL pointer is returned. Otherwise the file is positioned at
the end of the file and the file descriptor from the fopé&n(eturned.

12.5.7. Ceating and Opening a New Database File

The following routines create the wefile name in the current mapsgtunder the
specified databasdementand open it for writing. The databaskementis created, if it
does not already exist.

The file name should be obtained interagtly using G_ask _neyp.75. If obtained
noninteractiely (e.g., from the command lineg_legal_filenamg. 78) should be called
first to male aure thatnameis a valid GRASS file name.

Warning. It is not an error fonameto already gist. However, the file will be remued
and recreated emptylhe interactie routineG_ask _neyp. 79 guarantees thatame will
not exist, but imameis obtained from the command lineame may «ist. Inthis case
G_find_fil€p. 77 could be used to seenaime exsts.

6 GRASS does not alo files to be created outside the current mapset§4ee Database
Access Rulegp. 29.

812 GIS Library

-81- -81-

G_open_newelement, name) open a ne database file

char *element;
char *name;

The database filemame under theelementin the current mapset is created and
opened for writing (but not reading).

The UNIX open routine is used to open the file. If the file does not exist, -1 is

returned. Otherwise the file is positioned at the end of the file and the file descriptor

from the open|is returned.

FILE *
G_fopen_new(element, name) open a ne database file

char *element;
char *name;

The database fil@mame under theelementin the current mapset is created and
opened for writing (but not reading).

The UNIX fopen() routine, with "w" write mode, is used to open the filethe file

does not exist, the NULL pointer is returned. Otherwise the file is positioned at the

end of the file and the file descriptor from the fopes(eturned.

12.5.8. Databasé&ile Management

The following routines allav the renaming and rema of database files in the current
mapset’

G_rename(element, old, new) rename a database file

char *element;
char *old;
char *new;

The file or directoryold under the databasdementdirectory in the current mapset
is renamed toew.

Returns 1 if successful, 0dfd does not exist, and -1 if there was an error.

Bug. This routine does not check to see if theav name is a valid database file
name.

7 These functions only apply to the current mapset since GRASS does permit users to modify
things in mapsets other than the current mapseg4&eDatabase Access Rujg=24.

812 GIS Library

-82- -8 -

G_remove (element, name) remove a database file

char *element;
char *name;

The file or directoryname under the databaselement directory in the current
mapset is remeed.

Returns 1 if successful, Onamedoes not exist, and -1 if there was an error.

Note. If nameis a directoryeverything within the directory is renved as vell.

Note. These functions only apply to the speciilementand not to other "related"
elements. For example,etementis "cell", then the specified raster file will be rared
(or renamed), but the other support files, such as "cellhd" or "cats", willloaemove
these other files as well, specific calls must be made for each reateeht

12.6. MemoryAllocation

The following routines provide memory allocation capabilltyey are simply calls to the
UNIX suite of memory allocation routines malloc(), reallpafd calloc(), except that if
there is not enough memoihey print a diagnostic message to that effect and then call
exit().

Note. Use the UNIX freef routine to release memory allocated by these routines.

char *
G_malloc (size) memory allocation

int size;

Allocates a block of memory at leastebytes which is aligned properly for all data
types. A pointer to the aligned block is returned.

char *
G_realloc (ptr, size) memory allocation

char *ptr;
int size;

Changes thesize of a previously allocated block of memory @t and returns a
pointer to the n& block of memory The size may be larger or smaller than the
original size. If the original block cannot brtended "in place", then aweblock

is allocated and the original block copied to ther biock.

Note. If ptr is NULL, then this routine simply allocates a blocksife bytes. This
is different than malloc(), which does not handle a NipitiL

812 GIS Library

-83- -83-

char *
G_calloc(n, size) memory allocation

int n;
int size;

Allocates a properly aligned block of memarysizebytes in length, initializes the
allocated memory to zero, and returns a pointer to the allocated block of memory.

Note. Allocating memory for reading and writing raster files is discusseglih9.5
Allocating Raster 1/0 Buffer®. 103

12.7. TheRegion

The region concept is explained 9.1 Rgion [p.49. It can be thought of as a ow
dimensional matrix with known boundaries and rectangular cells.

There are logically tev different rgions. Thefirst is the databaseg®n that the user has
set in the current mapset. The other is the region that Meantithe program.This
active program region is what controls reading and writing of raster file data.

The routines described balouse a GRASS data structu€ell_head to hold reion
information. Thisstructure is defined in the "gis.h" header fileis discussed in detall
under812.20 GIS Library Data Structurgs 153.

12.7.1. TheDatabase Region
Reading and writing the usertatabase regidrare done by the following routines:

G_get_window(region) read the databaseegon
struct Cell_head *region;

Reads the database region as stored in the WIND file in thes aseent mapset
into region.

An error message is printed anxit€) is called if there is a problem reading the
region.

Note. GRASS applications that read or write raster files should not use this routine,

8 Previous versions of GRASS called this the "windoDue to weruse of this term (database
window, graphics windw, etc.), the term was changed to "region". wéwer, to maintain
compatibility with eisting programs, library routine names were not changed - hence the term
"window" is used in the routine name (where "region" should probably be used instead.)

812 GIS Library

-84 - - -

since its use implies that the aetirogram region will not be used. Programs that
read or write raster file data (or vector data) can query theegzbgram rgion
usingG_window_rowp. 85 and G_window_col&. 85).

G_put_window (region) write the databaseegion
struct Cell_head *region;

Writes the database region file (WIND) in the useutrent mapset fromegion.

Returns 1 if the mgon is written ok. Returns -1 if not (no diagnostic message is
printed).

Warning. Since this routine actually changes the database region, it should only be
called by programs which the user knows will change th®me Itis probably &ir

to say that under GRASS 3.0 only theegion, andd.zoomprograms should call

this routine.

There is another databasegim. Thisregion is the default region for the locatiomhe
default region provides the user with a "starting" region, i.e., a region to begin with and
return to as a reference point. The GRASS progrmregion allow the user to set their
database gion from the default gion. (See84.6 Permanent Mapsegp.19 for a
discussion of the defaultgmn.) Thefollowing routine reads this region:

G_get_default_window(region) read the defaultegon
struct Cell_head *region;

Reads the default region for the location irggion.

An error message is printed anxitg) is called if there is a problem reading the
default region.

12.7.2. TheActive Rrogram Region

The actve program region is the one that is used when reading and writing raster file
data. This region determines the resampling when reading raster data. It also determines
the extent and resolution ofweaster files.

Initially the actve pogram region and the userthtabase region are the same, but the

programmer can makihem diferent. Thefollowing routines manage the agiprogram
region.

812 GIS Library

-85- -85 -

G_window_rows () number of rows in activeegon
G_window_cols() number of columns in activegon

These routines return the number ofvsoand columns (respeatly) in the actve
program rgion. Beforeraster files can be read or written, it is necessary takno
how mary rows and columns are in the aeti regon. For example:

int nrows, cols;
int row, col;

nrows = G_window_nas();
ncols = G_windw_cols();
for (row = 0; row < rrows; row++)

{

readrow ...

for (col = 0; col < ncols; col++)

{

}
}

proces<ol ...

G_set_window(region) set the activeagon
struct Cell_head *region;

This routine sets the ae#i regon from region. Setting the actie regon does not
change the WIND file in the database. It simply changes the region for the duration
of the progran?.

A warning message is printed and -1 returneegion is not valid. Otherwise 1 is
returned.

Note. This routine werrides the region as set by the usks use should beevy
limited since it changes what the user normalgeets to happen. If this routine is
not called, then the agé regon will be the same as what is in the us&ND file.

Warning. Calling this routine with already opened raster files has some &d¢sef

If there are raster files which are open for reading; wi# be read into the rvely

set region, not the g&on that was acte when thg were openedHowever, CELL
buffers allocated for reading the raster files are not automatically reallocated. The
program must reallocate thempdicitly. Also, this routine does not change the
region for raster files which are open for writing. Thgioa that was acte when

the open occurred still applies to these files.

9 However, the nev regon setting is not retained across the UNRéa) call. This implies that
G_set_windw/() cannot be used to set the region for a program todsmeied using the system(
or popen{ routines.

812 GIS Library

- 86 - -8 -

G_get_set_window(region) get the active egon

struct Cell_head *region;

Gets the values of the currently aetiregon into region. If G_set windop. 85
has been called, then the values set by that call arevedtri®@therwise the user’
database region is retvi.

Note. For programs that read or write raster data, and really need the didhre
information, this routine is preferredves G_get_windo\p.83. However, Ince
G_window_row. 89 and G_window_col. 85 return the number of rows and
columns in the acte regon, the programmer should consider whether or not the
full region information is really needed before using this routine.

char *
G_align_window (region, ref) align two regons

struct Cell_head *region, *ref;

Modifies the inputegion to align to thaef region. The resolutions iregion are set
to match those inef and theregion edges (north, south, east, west) are modified to
align with the grid of theef region.

The region may be enlayed if necessary to achi the alignment. The north is
rounded northward, the south southward, the east eastward and the west westward.

This routine returns NULL if ok, otherwise it returns an error message.

double
G_col_to_eastingcol, region) column to easting

double col;
struct Cell_head *region;

Corverts acolumn relatve o aregion to an easting;
Note. colis a double: col+0.5 will return the easting for the center of the column;

col+0.0 will return the easting for the western edge of the column; and col+1.0 will
return the easting for the eastern edge of the column.

812 GIS Library

-87- - 87 -

double
G_row_to_northing (row, regon) row to rorthing

double row;
struct Cell_head *region;

Corverts arow relative o aregion to a northing;

Note. row is a double: rv+0.5 will return the northing for the center of thevro
row+0.0 will return the northing for the northern edge of the; rand row+1.0 will
return the northing for the southern edge of the ro

double
G_easting_to_coleast, region) easting to column

double east;
struct Cell_head *region;

Corverts aneasing relatve o aregion to a column.

Note. The result is a double. Casting it to an integer witegne column number.

double
G_northing_to_row (north, region) northing to row

double row;
struct Cell_head *region;

Corverts anorthing relatve aregion to a raw.

Note. the result is a double. Casting it to an integer wiledihe rav number.

12.7.3. Ppjection Information

The following routines return information about the cartographic projection and zone.
See89.1 Regionp. 49 for more information about these values.

812 GIS Library

-88- -83-

G_projection () query cartographic projection

This routine returns a code indicating the projection for theveagigon. The
current values are:

0 unreferenced x,y (imagery data)
1 UTM,

2 Sate Plane

3

Latitude-Longitudé!

Others may be added in the future.

char *
G_database_projection_naméproj) query cartographic projection

int proj;

Returns a pointer to a string which is a printable name for projectionpcopéas
returned byG_projectiorfp. 89). ReturndNULL if proj is not a valid projection.

char *
G_database_unit_naméplural) database units

int plural

Returns a string describing the database grid units. It returns a plural tprieg®
if plural is true. Otherwise it returns a singular form (eg. foot).

double
G_database_units_to_meters_factaf) conversion to meters

Returns a factor which coerts the grid unit to meters (by multiplication). If the
database is not metric (eg. imagery) then 0.0 is returned.

G_zone() query cartographic zone

This routine returns the zone for the aetiegon. The meaning for the zone
depends on the projection. For example zone 18 for projection typeult we
UTM zone 18.

12.8. Latitude-Longitude Databases

GRASS supports databases in a longitude-latitude grid using a projection where the x
coordinate is the longitude and the y coordinate is the latitliles projection is called

11 | atitude-Longitude is not yet fully supported in GRASS.

812 GIS Library

-89 - -89-

the Equidistant Cylindrical Projectid®.ECP has the property thahere am landrow-
column calculations are identical to those in planimetric gridse(I{TM13). This
implies that normal GRASS gestration and werlay functions will work without ay
special considerations or modifications to existing code.

However, the projection is not planimetric.This means that distance and area
calculations are no longed Euclidean.

Also, since the world is round, maps may novehalges in the east-west direction,
especially for global databaseBlaps may hee the same longitude at both the east and
west edges of the displayhis feature, called global wraparound, must be accounted for
by GRASS programs (particularly vector based functions,ditting.)

What follows is a description of the GISLIB library routines that asdable to support
latitude-longitude databases.

12.8.1. Coordinates

Latitudes and longitudes are specified igrdes. Northertatitudes range from 0 to 90
degrees, and southern latitudes from 0 to -90. Longitudes halimits since longitudes
+360 degrees are eggient.

Coordinates are represented in ASCII using the fohdathm:ssN or dd:mm:ssS for
latitudes, ddd:mm:sse or ddd.mm.ssW for longitudes, anddd.mm.ss for grid
resolution. Br example, 80:30:24N represents a northern latitude of §feer 30
minutes, and 24 seconds. 120:15W represents a longitute 120 degrees and 15 minutes
west of the prime meridian. 30:15 represents a resolution of 30 degrees and 15 minutes.

These next routines coat between ASCIl representations and the machine
representation for a coordinat&hey work both with latitude-longitude projections and
planimetric projections.

Note. In each subroutine, the programmer must specify the projection nunilide
projection number is RRIECTION_LL14 then latitude-longitude ASCII format is
invoked. Otherwisea dandard floating-point to ASCII cearsion is made.

12 Also known as Plate Carree.
13 Universal Transverse Mercator Projection.
14 Defined in "gis.h".

812 GIS Library

-90 - -0 -

G_format_easting(east, buf, projection) easting to ASCII

double east ;
char *buf ;
int projection ;

Corverts the double representation of geestcoordinate to its ASCII representation
(into buf).

G_format_northing (north, buf, projection) northing to ASCII

double north ;
char *buf ;
int projection ;

Corverts the double representation of theorth coordinate to its ASCII
representation (intbuf).

G_format_resolution (resolution, buf, projection) resolution to ASCII

double resolution ;
char *buf ;
int projection ;

Corverts the double representation of tresolution to its ASCIl representation
(into buf).

G_scan_eastingbuf, easting, projection) ASCII easting to double

char *buf ;
double *easting ;
int projection ;

Corverts the ASCII "easting" coordinate string lf to its double representation
(into easting.

G_scan_northing(buf, northing, projection) ASCII northing to double

char *buf ;
double *northing ;
int projection ;

Corverts the ASCII "northing” coordinate string buf to its double representation
(into northing).

812 GIS Library

-91- -9 -

G_scan_resolution(buf, resolution, projection) ASCII resolution to double

char *buf ;
double *resolution ;
int projection ;

Corverts the ASCII "resolution” string ibuf to its double representation (into
resolution).

The following are examples of Wwahese routines are used.

double north ;
char buf[50] ;

G_scan_northing(buf, north, G_projectid(/* ASCII to double */
G_format_northing(north, buf, G_projectigy{ /* double to ASCII */
G_format_northing(north, buf, -1); /* double to ASCII */

/* This last example forces floating-point ASCII format */

12.8.2. RasteArea Calculations

The following routines perform area calculations for raster mapsy are based on the
fact that while the latitude-longitude grid is not planimetric, the size of the grid cell at a
given latitude is constant. The first routines work iy @rojection.

G_begin_cell_area_calculation$) begin cell area calculations

This routine must be called once beforg aall to G_area_of cell_at_rogp. 97). It

can be used in either planimetric projections or the latitude-longitude projetition.
returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric, and
0 of the projection doeshhavea netric (e.g. imagery If the return value is 1 or O,

all the grid cells in the map & the same area. Otherwise the area of a grid cell
varies with the rav.

double
G_area_of_cell_at_ow (row) cell area in specified row

int row ;

This routine returns the area in square meters of a cell in the speeifiedlhis
value is constant for planimetric grids and varies with the ifothe projection is
latitude-longitude.

812 GIS Library

-92- - -

G_begin_zone_area_on_ellipsoifh, €2, s) begin area calculations for ellipsoid
double a, €2, s ;

Initializes raster area calculations for an ellipsoid, wiageethe semi-major axis of
the ellipse (in metersg2is the ellipsoid eccentricity squared, anid a scaledctor
to allowv for calculations of part of the zones€1.0 is full zones=0.5 is half the
zone, and=360/ew_res is for a single grid cell).

Note. e2must be positie. A negaive value maks no sense, and zero implies a
sphere.

double
G_area_for_zone_on_ellipsoidnorth, south) area between latitudes

double north, south ;

Returns the area between latitudesth andsouth scaled by thedctors passed to
G_begin_zone_area_on_ellips@@id?).

G_begin_zone_area_on_sphelg, 9 initialize calculations for sphere
double north, south ;

Initializes raster area calculations for a sphere. The radius of the sphemdisis
a <ale factor to allw for calculations of a part of the zone (see
G_begin_zone_area_on_ellips(@id?).

double
G_area_for_zone_on_spheréorth, south) area between latitudes

double north, south ;

Returns the area between latitudesth andsouth scaled by thedctors passed to
G_begin_zone_area_on_sph@r®?).

12.8.3. Blygonal Area Calculations

These next routines provide area calculations for polygons. Some of the routines are
specifically for latitude-longitude, while others will function for all projections.

However, there is an issue for latitude-longitude that does not occur with planimetric
grids. \ector/polygon data is described as a series of x,y coordinates. The lines
connecting the points are not stored but are inferred. This is a simple, straigdidforw
process for planimetric grids, but it is not simple for latitude-longitude. What is the
shape of the line that connectotmoints on the surface of a globe?

One choice (among mgnis the shortest path froml,yl to x2,y2, known as the

812 GIS Library

-93- -3 -

geodesic. Anotheis a straight line on the gridThe area routines described lelo
assume the latteRoutines to work with the former t@ rot yet been desloped.

G_begin_polygon_area_calculation$) begin polygon area calculations

This initializes the polygon area calculation routinkss used both for planimetric
and latitude-longitude projections.

It returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric,
and O if the projection doedriiavea metric (e.g. imagery.)

double
G_area_of_polygon(x, y, n) area in squae rreters of plygon

double *x, *y ;
intn;

Returns the area in square meters of the polygon described Ibypthies ofx,y
coordinate ertices. It is used both for planimetric and latitude-longitude
projections.

Note. If the database is planimetric with the non-meter grid, this routine performs
the required unit carersion to produce square meters.

double
G_planimetric_polygon_area(x, y, n) area in coordinate units

double *x, *y ;
intn;

Returns the area in coordinate units of the polygon described loyghes ofx,y
coordinate vertices for planimetric grids. If the units ¢y are meters, then the
area is in square meterH.the units are feet, then the area is in square feet, and so
on.

G_begin_ellipsoid_polygon_areda, e2) begin area calculations
double a, e2;

This initializes the polygon area calculations for the ellipsoid with semi-majoaaxis
(in meters) and ellipsoid eccentricity squae2d

812 GIS Library

-94 - 94 -

double
G_ellipsoid_polygon_areglon, lat, n) area of lat-long polygon

double *lon, *lat ;
intn;

Returns the area in square meters of the polygon described mydirs oflat,long
vertices for latitude-longitude grids.

Note. This routine assumes grid lines on the connecting the vertices (as opposed to

geodesics.)

12.8.4. DistanceCalculations
Two routines perform distance calculations foy @rojection.

G_begin_distance_calculation$) begin distance calculations

Initializes the distance calculations. It is used both for the planimetric and latitude-

longitude projections.

It returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric,

and O if the projection doedriiavea metric (e.g. imagery.)

double
G_distance(x1, y1, x2, y2) distance in meters

double x1, y1, x2,y2 ;
This routine computes the distance, in meters, fx@mlto x2,y2 If the projection
is latitude-longitude, this distance is measured along the geodesic.

Two routines perform geodesic distance calculations.

G_begin_geodesic_distand@, e2) begin geodesic distance
double a, e2;

Initializes the distance calculations for the ellipsoid with semi-major axis
meters) and ellipsoid eccentricity squared It is used only for the latitude-
longitude projection.

812 GIS Library

-95 - -5 -

double
G_geodesic_distancéonl, latl, lon2, lat2) geodesic distance

double lonl, latl, lon2, lat2 ;
Calculates the geodesic distance flomil,latl to lon2,lat2 in meters.
The calculation of the geodesic distance is fairly cosliiese next three routines

provide a mechanism for calculating distance witho tfixed latitudes and arying
longitude separation.

G_set_geodesic_distance_latlatl) set geodesic distance latl
double lat1 ;

Set the first latitude.

G_set_geodesic_distance_la{fat2) set geodesic distance lat2
double lat2 ;

Set the second latitude.

double
G_geodesic_distance_lon_to_loftionl, lon2) geodesic distance

double lonl, lon2 ;

Calculates the geodesic distance frlmml,latl to lon2,lat2 in meters, wherdatl
was the latitude passed tG_set geodesic_distance lgtbs and lat2 was the
latitude passed t@_set geodesic_distance |gi25).

12.8.5. GlobalWraparound

These next routines provide a mechanism for determining thevegtasition of a pair of
longitudes. Sincdéongitudes oft360 are equalent, but GRASS requires the east to be
bigger than the west, some adjustment of coordinates is necessary.

812 GIS Library

- 96 - -9 -

double
G_adjust_easting(east, region) returns east lager than west

double east ;
struct Cell_head *region ;

If the region projection is PROJECTION_LL, then this routine returns anatejoi
eastthat is lager, but no more than 360 degreesglar than the coordinate for the
western edge of thegmn. Otherwiseno adjustment is made and the origiaabt

is returned.

double
G_adjust_east_longitudgeast, west) adjust east longitude

double east, west ;
This routine returns an ewalent eastthat is lager, but no more than 360 Iger
than thewestcoordinate.

This routine should be used only with latitude-longitude coordinates.

G_shortest_way(eastl, east2) shortest way between eastings

double *eastl, *east? ;

If the database projection is PROJECTION_LL, tleastl,east2are changed so
that they are no more than 180 degrees apart. Their true locations are not changed.

If the database projection is not PROJECTION_LL, tleastl,east2are not
changed.

12.8.6. Miscellaneous

char *
G_ellipsoid_name(n) return ellopsoid name

intn;
This routine returns a pointer to a string containg the name forttthellipsoid in
the GRASS ellipsoid table; NULL whemis too lage. Itcan be used as follows:
intn;
char *name ;

for (n=0 ; name=G_ellipsoid_name(n) ; n++)
printf("%s\n", name);

812 GIS Library

-97- - 97 -

G_get_ellipsoid_by namdname, a, €2) get elipsoid by name
char *name
double *a, *e2 ;

This routine returns the semi-major agigin meters) and eccentricity squared
for the named ellipsoid. Returns Indkmeis a known ellipsoid, O otherwise.

G_get_ellipsoid_parameterga, e2) get dlipsoid parameters
double *a, *e2 ;

This routine returns the semi-major agigin meters) and the eccentricity squared
e2 for the ellipsoid associated with the database. If there is no ellipspiitity
associated with the database, it returns the values for the WGS 84 ellipsoid.

double
G_meridional_radius_of curature (lon, a, e2) meridional radius of curvature

double lon, a, e2 ;

Returns the meridional radius of curvature atvaglongitude:

_ a(l-¢
P~ (1-esirtlon)

double
G_transverse_radius_of cuvature (lon, a, €2) transverse radius of curvature

double lon, a, e2 ;

Returns the transverse radius of curvature atendgongitude:

a
V= (A= esiflon)2

double
G_radius_of _conformal_tangent_spherélon, a, e2) radius of conformal tangent sphere

double lon, a, e2 ;

Returns the radius of the conformal sphere tangent to ellipsoid\ard@ngitude:

. a(l _ eZ)l/Z
~ (1-e2sirflon)

812 GIS Library

- 98- -8 -

G_pole_in_polygon(x, y, n) pole in polygon

double *x, *y ;
intn;

For latitude-longitude coordinates, this routine determines if the polygon defined by
then coordinate vertices,y contains one of the poles.

Returns-1 if it contains the south pole; 1 if it contains the north pole; O if it contains
neither pole.

Note. Use this routine only if the projection is PROJECTION_LL.

12.9. RasterFile Processing

Raster files are the heart and soul of GRASS. All analyses are performed with raster file
data. Because of this, a suite of routines which process raster file data has Wded.pro

The processing of raster files consists of determining which raster file or files are to be
processed (either by prompting the user or as specified on the program command line),
locating the raster file in the database, opening the raster file, dynamically allocating i/o
buffers, reading or writing the raster file, closing the raster file, and creating support files
for newly created raster files.

All raster file data is of type CEI®, which is defined in "gis.h".

12.9.1. Pompting for Raster Files

The following routines interastely prompt the user for a raster file name. In each, the
prompt string will be printed as the first line of the full prompt which asks the user to
enter a raster file namédf prompt is the empty string™then an appropriate prompt will

be substituted. The name that the user enters is copied intmihebufferl® These
routines hge a lilt-in ’list’ capability which allavs the user to get a list okisting
raster files.

The user is required to enter alid raster file name, or else hit the RETUR&Y ko
cancel the request. If the user enters amlioh response, a message is printed, and the
user is prompted agn. If the user cancels the request, the NULL pointer is returned.
Otherwise the mapset where the raster fileslior is to be peated is returned. Both the
name and the mapset are used in other routines to refer to the raster file.

15 SeeAppendix B. The CELL Datayfie[p. 291 for a discussion of the CELL type andwto
use it (and woid misusing it).

16 The size ohameshould be large enough to holdyaBRASS file name. Most systems a¥o
file names to be quite long. It is recommended that name be deattarathme[50].

812 GIS Library

-99 - -9 -

char *
G_ask_cell_old(prompt, name) prompt for existing raster file

char *prompt;
char *name;

Asks the user to enter the name of an existing raster fileyinmapset in the

database.
char *
G_ask_cell_in_mapsef{prompt, name) prompt for existing raster file

char *prompt;
char *name;

Asks the user to enter the name of an existing raster file in the current mapset.

char *
G_ask_cell_new(prompt, name) prompt for nev raster file

char *prompt;
char *name;

Asks the user to enter a name for a raster file which does not exist in the current
mapset.

Here is an example of hoto use these routines. Note that the programmer must handle
the NULL return properly:

char *mapset;
char name[50];

mapset = G_ask_cell_old("Enter raster file to be processed", name);
if (mapset = NULL)
exit(0);

12.9.2. FindingRaster Files in the Database

Noninteractve programs cannot makuse of the interacte prompting routines described
above. For example, a command line i program may require a raster file name as
one of the command guments. GRASS&llows the user to specify raster file names (or
ary other database file) either as a simple unqualified name, such as "soils", or as a fully
gualified name, such as "soils@pset, wheremapseis the mapset where the raster file

is to be found.Often only the unqualified raster file name is provided on the command
line.

The following routines search the database for raster files:

812 GIS Library

- 100 - - 100 -

char *
G_find_cell (name, mapset) find a raster file

char *name;
char *mapset;

Look for the raster filmamein the databaseThe mapsetparameter can either be

the empty string ", which means search all the mapsets in the sis@ent mapset
search path/ or it can be a specific mapset name, which means look for the raster
file only in this one mapset (for example, in the current mapset).

If found, the mapset where the raster filediis returned. If not found, the NULL
pointer is returned.

If the user specifies a fully qualified raster file whictises, thenG_find_cell()
modifiesnameby removing the "@apset.

For example, to find a raster file anywhere in the database:

char name[50];
char *mapset;

if ((mapset = G_find_cell(name,""))=NULL)
/* not found*/

To check that the raster file exists in the current mapset :

char name[50];

if (G_find_cell(name,G_mapset()=NULL)
/* not found*/

12.9.3. Openingan Existing Raster File
The following routine opens the raster fl@mein mapsetfor reading.

The raster file name and mapset can be obtained interaofly using
G_ask cell ol(p.99 or G_ask cell in_mapspt99, and noninteractely using
G_find_celfp. 100

17 Seeg§4.7.1 Mapset Seeln Rath[p. 2q for more details about the search path.

812 GIS Library

-101 - -101 -

G_open_cell_oldname, mapset) open an existing raster file

char *name;
char *mapset;

This routine opens the raster filamein mapsetfor reading.

A nonnegaive file descriptor is returned if the open is success@iherwise a
diagnostic message is printed and gatiee \alue is returned.

This routine does quite a bit of work. Since GRASS usepsat that all raster files

will be resampled into the current region, the resamplingxifdethe raster file is
prepared by this routine after the file is opened. The resampling is based on the
active program rgion18 Preparation required for reading the various raster file
formats-?is also done.

12.9.4. Ceating and Opening New Raster Files

The following routines create thewmeaster filenamein the current maps&tand open it
for writing. The raster file name should be obtained interagtly using
G_ask_cell_neg.99. If obtained noninteractely (e.g., from the command line),
G_legal_filenamg. 79 should be called first to makare thatnameis a valid GRASS
file name.

Note. It is not an error fonameto already rist. Neaw raster files are actually created as
temporary files and nved into the cell directory when closed. This allows arsteng
raster file to be read at the same time that it is bewgtten. Theinteractve routine
G_ask_cell_neg. 99 guarantees thatame will not exist, but ifnameis obtained from
the command linename may «ist. Inthis caseG_find_celfp. 100 could be used to see
if nameexsts.

Warning. However, there is a subtle trapThe temporary file, which is created using
G_tempfil€p. 131, is named using the current processlidthe nev raster file is opened

by a parent process which exits after creating a child process usiny4btké raster file

may neer get created since the temporary file would be associated with the parent
process, not the child. GRASS management automatically vesmiemporary files
associated with processes that are no longer running. If)fankét be used, the safest
course of action is to create the child first, then open the raster file. (See the discussion

18 See als®12.7 The Regiop. 83.
19 See§5.2 Raster File Formgp. 24 for an explanation of the various raster file formats.

20 GRASS does not alw files to be created outside the current mapSee8§4.7 Database
Access Rulegp. 29.

21 See als@G_forkp. 150.

812 GIS Library

-102 - -102 -

underG_tempfilép. 139 for more details.)

G_open_cell_newname) open a nw raster file (sequential)

char *name;

Creates and opens the raster ffidgne for writing by G_put_map_rop. 109 which
writes the file rav by row in sequential orderThe raster file data will be compressed
as it is written.

A nonne@aive file descriptor is returned if the open is success@iherwise a
diagnostic message is printed and gatiee \alue is returned.

G_open_cell_new_randon{name) open a ne raster file (random)

char *name;

Creates and opens the raster filename for writing by
G_put_map_row_randofm 109 which allows writing the raster file in a random
fashion. Thefile will be created uncompresséd.

A nonne@aive file descriptor is returned if the open is successful. Otherwise a
diagnostic message is printed and gatiee \alue is returned.

G_open_cell_new_uncompressgame) open a nw raster file (uncompressed)

char *name;

Creates and opens the raster ffidgne for writing by G_put_map_rop. 109 which
writes the file rv by row in sequential order The raster file will be in
uncompressed format when closed.

A nonne@aive file descriptor is returned if the open is success@iherwise a
warning message is printed on stderr andgeinee \alue is returned.

General use of this routine is not recommergfedhis routine is provided so the
r.compresgprogram can create uncompressed raster files.

22 Nor will the file get automatically compressed when it is closéd compressed file is
desired, it can be compressegleitly after closing by a system call: systemgtmpressiamé).

23 At present, automatic raster file compression will create files which, in most cases, are
smaller than if thg were uncompressed. In certain cases, the compressed raster file mggtbe lar
This can happen with imagery data, which do not compress well aHalkever, the size
difference is usually smallSince future enhancements to the compression method mayenpro
compression for imagery data as well, it is best to create compressed raster files in all cases.

812 GIS Library

- 103 - - 103 -

12.9.5. AllocatingRaster 1/0O Buffers

Since there is no predefined limit for the number of columns in tjieré* buffers
which are used for reading and writing raster data must be dynamically allocated.

CELL *
G_allocate_cell_buf() allocate a raster buffer

This routine allocates auffer of type CELL just lage enough to hold onewoof
raster data (based on the number of columns in theeaegon).

CELL *cell;
cell = G_allocate_cell_uf();

If larger buffers are required, the routi@e mallogp. 82 can be used.

If sufficient memory is notwailable, an error message is printed axitl(¢ is called.

G_zero_cell_buf(buf) zeo a raster buffer
CELL *buf;

This routines assigns each member of the rast&rtarraybuf to zero. It assumes
thatbuf has been allocated usi@j allocate_cell_bip. 103.

12.9.6. Readindraster Files

Raster data can be thought of as a two-dimensional matrix. The routines described belo
read one full rev of the matrix. It should be understood wever, that the number of

rows and columns in the matrix is determined by the region, not the raster file itself.
Raster data is ahys read resampled into thegien 2° This allows the user to specify the
coverage of the database during analyses. It also allows databases to consist of raster files
which do not cueer exactly the same area, or do nowvéahe same grid cell resolution.

When raster files are resampled into the regiory, dlhélook” the same.

Note. The rows and columns are specified "C style", i.e., starting with O.

24 SeeG_window_colg. 89 to find the number of columns in the region.

25 The GRASS region is discussed from a user persgeirti§9.1 Region [p.49 and from a
programmer perspeeé in §12.7 The Rgon [p.83. The routines which are commonly used to
determine the number of rows and columns in the region Gareindow_row.85 and
G_window_col§. 89.

812 GIS Library

-104 - -104 -

G_get_map_ow (fd, cell, row) read a raster file

int fd;
CELL *cell;
int row;

This routine reads the specifiemv from the raster file open on file descriptdr(as
returned byG_open_cell_ol¢p. 101) into thecell buffer. The cell buffer must be
dynamically allocated large enough to hold one full f raster data. It can be
allocated using>_allocate_cell_byp. 103.

This routine prints a diagnostic message and returns -1 if there is an error reading
the raster file. Otherwise a nomagve \alue is returned.

G_get_map_pow_nomask(fd, cell, row) read a raster file (without masking)

int fd;
CELL *cell;
int row;

This routine reads the specifiealw from the raster file open on file descriptdr
into thecell buffer like G_get_map_ne() does. Thelifference is that masking is
suppressed. lthe user has a mask set, G_get_map(yavill apply the mask bt
G_get_map_n@_nomask(will ignore it.

This routine prints a diagnostic message and returns -1 if there is an error reading
the raster file. Otherwise a nomagve \alue is returned.

Note. Ignoring the mask is not generally acceptable. Users expect the mask to be
applied. Haevever, in some cases ignoring the mask is justifiedr Example, the
GRASS programs.describe,which reads the raster file directly to report all data
values in a raster file, andslope.aspectwhich produces slope and aspect from
elevation, ignore both the mask and thgim. Howvever, the number of GRASS
programs which do this should be minimabee 89.2 Mask[p.5] for more
information about the mask.

12.9.7. Writing Raster Files
The routines described here write raster file data.

812 GIS Library

- 105 - - 105 -

G_put_map_row (fd, buf) write a raster file (sequential)

int fd;
CELL *buf;

This routine writes one vo of raster data fronbuf to the raster file open on file
descriptorfd. The raster file must ka been opened witls_open_cell_nef. 109.
The cellbuf must hae bkeen allocated large enough for thgiom, perhaps using
G_allocate_cell_byp. 103.

If there is an error writing the raster file, a warning message is printed and -1 is
returned. Otherwise 1 is returned.

Note. The raws are written in sequential ordérhe first call writes v O, the
second writes W 1, ec. The following example assumes that the rastenditeeis
to be created:

int fd, row, nrows, ncols;
CELL *buf;

fd = G_open_cell_neyname);
if (fd < 0) {ERROR

buf = G_allocate_cell_buf);
ncols =G_window_colg);

nrows =G_window_rows();

for (row = 0; row < rrows; row++)

{

/* prepare data for this vointo buf */

/* write the data for the @ */
G_put_map_row(fd, buf);
}

G_put_map_row_random (fd, buf, rawv, col, ncells) write a raster file (random)

int fd;
CELL *buf;
int row, col, ncells;

This routine allavs random writes to the raster file open on file descriptofThe
raster file must he been opened using_ open_cell new_randgmi10). The
raster lffer buf containsncells columns of data and is to be written into the raster
file at the specifiedow, starting at columicol.

812 GIS Library

- 106 - - 106 -

12.9.8. ClosingRaster Files

All raster files are closed by one of the following routines, whether opened for reading or
for writing.

G_close_cellfd) close a raster file
int fd;

The raster file opened on file descriptdris closed. Memory allocated for raster
processing is freed. If open for writing,ed&tal support files for the weraster file
are created as well.

Note. If a program wants to explicitly write support files (e.g., a specific color
table) for a raster file it creates, it must do so after the raster file is closed. Otherwise
the close will @erwrite the support files. Segl2.10 Raster Map Layer Support
Routinegp. 104 for routines which write raster support files.

G_unopen_cell(fd) unopen a raster file
int fd;

The raster file opened on file descriptdris closed. Memory allocated for raster
processing is freed. If open for writing, the raster file is not created and the
temporary file created when the raster filaswopened is remed (see§12.9.4
Creating and Opening NeRaster Filegp. 101).

This routine is useful when errors are detected and it is desired to not create the ne
raster file. While it is true that the raster file will not be created if the prograsn e
without closing the file, the temporary file will not be rem at pogram «it.
GRASS database management wikrgually remae the temporary file, it the file

can be quite large and will takip dsk space until GRASS does revaat. Usethis
routine as a courtesy to the user.

12.10. RasteiMap Layer Support Routines

GRASS map layers kia a umber of support files associated with them. These files are
discussed in detail iB5 Raster Map$p. 23. The support files are thraster headerthe
categoryfile, thecolor table, thehistory file, and therange file. Eachsupport file has

its own data structure and associated routines.

12.10.1. RasteHeader File

The raster header file contains information describing the geographic extent of the map
layer, the grid cell resolution, and the format used to store the data in the raster file. The
format of this file is described i85.3 Raster Headerdfmat [p.24. The routines

812 GIS Library

- 107 - - 107 -

described belo use theCell_head structure which is shn in detail in812.20 GIS
Library Data Structure$p. 153.

G_get_cellhd(name, mapset, cellhd) read the raster header

char *name;
char *mapset;
struct Cell_Head *cellhd;

The raster header for the raster fieme in the specifiednapsetis read into the
cellhd structure.

If there is an error reading the raster header file, a diagnostic message is printed and

-1 is returned. Otherwise, O is returned.

Note. If the raster file is a reclass file, the raster header for the referenced raster file

is read instead. Se¥b.3.2 Reclassdfmat[p. 29 for information about reclass files,
andG_is_reclas. 109 for distinguishing reclass files from regular raster files.

Note. It is not necessary to get the raster header for a map layer in order to read the

raster file data. The routines which read raster file data automaticallyeehée
raster header information and use it for resampling the raster file data intovhe acti
region28 If it is necessary to read the raster file directly without resampling into the
active regon,2’ then the raster header can be used to set thee aetion using
G_set_windoyp. 85).

char *
G_adjust_Cell_head(cellhd, rflag, cflag) adjust cell header

struct Cell_head *cellhd;
int rflag, cflag;

This function fills in missing parts of the input cell header (giom). Italso malks
projection-specific adjustments. Tleellhd structure must he its north, south,
east, west, and proj fields set. Ifrflag is true, then the north-south resolution is
computed from the number mdws in thecellhd structure. Otherwise the number of
rows is computed from the north-south resolution in the structure, similarly for
cflag and the number of columns and the east-west resolution.

This routine returns NULL if xeecution occurs without errpotherwise it returns an
error message.

26 See§12.7 The Regiol. 83.

27 But see§9 Region and Maslp. 49 for a discussion of when this should and should not be
done.

812 GIS Library

- 108 - - 108 -

G_put_cellhd (name, cellhd) write the raster header

char *name,;
struct Cell_head *cellhd;

This routine writes the information from tleellhd structure to the raster header file
for the map layenamein the current mapset.

If there was an error creating the raster headers returned. Nodiagnostic is
printed. Otherwise, 1 is returned to indicate success.

Note. Programmers should ¥ ro reason to use this routine. It is used by
G_close_ce(p. 109 to give new raster files correct header files, and byrthepport
program to gie wsers a means of creating or modifying raster headers.

G_is_reclasgname, mapset, r_name, r_mapset) reclass file?

char *name;
char *mapset;
char *r_name;
char *r_mapset;

This function determines if the raster filamein mapsetis a reclass file. If it is,
then the name and mapset of the referenced raster file are copied intoame
andr_mapsetbuffers.

Returns 1 ifname is a reclass file, O if it is not, and -1 if there was a problem
reading the raster header fame.

12.10.2. RasteCategory File

GRASS map layers ke ategory labels associated with them. The category file is
structured so that each ogey in the raster file can ¥ a me-line description.The
format of this file is described &b.4 Raster Category File Formgi 29.

The routines described balananage the category file. Some of them useCduegories
structure which is described §12.20 GIS Library Data Structur@s 153.

12.10.2.1.Reading and Writing the Raster Category File
The following routines read or write the category file itself:

812 GIS Library

-109 - - 109 -

G_read_cats(name, mapset, cats) read raster category file

char *name;
char *mapset;
struct Categories *cats;

The category file for raster filtamein mapsetis read into theatsstructure.

If there is an error reading the category file, a diagnostic message is printed and -1 is
returned. Otherwisd) is returned.

G_write_cats(name, cats) write raster category file

char *name;
struct Categories *cats;

Writes the category file for the raster filamein the current mapset from tloats
structure.

Returns 0 if successful. Otherwise, -1 is returned (no diagnostic is printed).

char *
G_get_cell_title(name, mapset) gét raster map title

char *name;
char *mapset;

If only the map layer title is needed, it is not necessary to read the entgergate
file into memory This routine gets the title for raster filame in mapsetdirectly
from the category file, and returns a pointer to the tifld.egd pointer is alvays
returned. Ifthe map layer does notVea itle, then a pointer to the empty string "
is returned.

char *
G_put_cell _title (name, title) change raster map title

char *name;
char *title;

If it is only desired to change the title for a map laytas not necessary to read the
entire category file into memarghange the title, and rewrite the category file. This
routine changes thtele for the raster filmamein the current mapset directly in the
category file. It returns a pointer to the title.

812 GIS Library

-110 - -110 -

12.10.2.2.Querying and Changing the Categories Structure

The following routines query or modify the information contained in thegoaye
structure:

char *
G_get_cat(n, cats) get a category label

CELL n;
struct Categories *cats;

This routine looks up cagery n in the cats structure and returns a pointer to a
string which is the label for the cgtay. A legd pointer is alvays returned. If the
category does not exist gats,then a pointer to the empty stringis returned.

Warning. The pointer that is returned points to a hidden statffeb Successie
calls to G_get_caj(overwrite this buffer.

char *
G_get_cats_title(cats) get title from category structure

struct Categories *cats;

Map layers store a one-line title in the category structure as well. This routine
returns a pointer to the title contained in ta¢s structure. Alegd pointer is alvays
returned. Ifthe map layer does notVea ttle, then a pointer to the empty string "

is returned.

G_init_cats (n, title, cats) initialize category structure

CELL n;
char *title;
struct Categories *cats;

To oonstruct a ne category file, the structure must first be initialized. This routine
initializes thecats structure, and copies thigle into the structure. The number of
categories is set initially to.

For example:

struct Categories cats;

G_init_cats ((CELL)O, "", &cats);

812 GIS Library

-111 - -111 -

G_set_cat(n, label, cats) set a category label

CELL n;
char *label;
struct Categories *cats;

Thelabel is copied into theatsstructure for categony.

G_set_cats _title(title, cats) set title in category structure

char *title;
struct Categories *cats;

Thetitle is copied into theatsstructure.

G_free_cats(cats) free category structermemory
struct Categories *cats;

Frees memory allocated byG read cat§.109, G_init_catgp.110 and
G_set_cdp. 11)).

12.10.3. RastelColor Table

GRASS map layers kia wlors associated with them. The color tables are structured so
that each category in the raster file has its own cdlbe format of this file is described
in 85.5 Raster Color Table Formpt 29.

The routines that manipulate the raster color file useCilers structure which is
described in detail i812.20 GIS Library Data Structurgs 153.

12.10.3.1.Reading and Writing the Raster Color File
The following routines read, create, moddgd write color tables.

G_read_colors(name, mapset, colors) read map layer color table

char *name;
char *mapset;
struct Colors *colors;

The color table for the raster fillame in the specifiednapsetis read into the
colors structure.

If the data layer has no color table, a default color table is generated and O is

returned. Ifthere is an error reading the color table, a diagnostic message is printed
and -1 is returned. If the color table is read ok, 1 is returned.

812 GIS Library

-112 - -112 -

G_write_colors (name, mapset, colors) write map layer color table

char *name;
char *mapset;
struct Colors *colors;

The color table is written for the raster filamein the specifiednapsetfrom the
colors structure.

If there is an errgr-1 is returned. No diagnostic is printed. Otherwise, 1 is returned.

The colors structure must be created properlg., G_init_colorgp. 113 to initialize
the structure an6_add_color_rulép. 113 to set the category color$

Note. The calling sequence for this function deserves special attenfibe.
mapsetparameter seems to imply that it is possibleviawrite the color table for a
raster file which is in another mapséiowever, this is not what actually happens.
It is very useful for users to create thewrocolor tables for raster files in other
mapsets, but withoutverwriting other users’ color tables for the same raster file.
mapsetis the current mapset, then the color filerfamewill be overwritten by the
new color table. But ifmapsetis not the current mapset, then the color table is
actually written in the current mapset under tlelr2 element as:
colr2imapseiname

12.10.3.2.Lookup Up Raster Colors
These routines translates raster values to their regpectors.

G_lookup_colors(rasterred, green, blue, set, n, colors) lookup an array of colors

CELL *raster;
unsigned char *red;
unsigned char *green;
unsigned char *blue;
unsigned char *set;
int n;

struct Colors *colors;

Extracts colors for an array oéster values. The colors for the values in the
raster array are stored in thed, green,andblue arrays. Thevalues in theset
array will indicate if the correspondirgster value has a color or not (1 means it
does, 0 means it does not). The programmer must allocatedthgreen, blue and
setarrays to be at least dimension

28 These routines are called by higherderoutines which read or create entire color tables,
such ass_read_color§. 111 or G_make_ramp_colo¢s. 119.

812 GIS Library

-113 - -113 -

Note. Thered, green,andblue intensities will be in the range 0-255.

G_get_color(cat, red, green, blue, colors) get a category color

CELL cat;

int *red;

int *green;

int *blue;

struct Colors *colors;

Thered, green,andblue intensities for the color associated with gaiey cat are
extracted from theolors structure. Théntensities will be in the range 0-255.

12.10.3.3.Creating and/or Modifying the Color Table

These routines alw the creation of customized color tables as well as the modification
of existing tables.

G_linit_colors (colors) initialize color structure
struct Colors *colors;

The colors structure is initialized for subsequent callsGoadd_color_rulép. 113
andG_set_colofp. 119.

G_add_color_rule(catl, r1, g1, b1, cat2, r2, g2, b2, colors) set colors

CELL catl, catz,;
intrl,gl,bl;
intr2,02,b2;

struct Colors *colors;

This is the heart and soul of the new color logiclt adds a color rule to theplors
structure. The colors defined by the red, green, and kdhesrl,gl,bl and
r2,g2,b2are assigned toatl andcat2 respectrely. Colors for data values between
catl andcat2 are not stored in the structuratkare interpolated when queried by
G_lookup_coloré. 119 and G_get_colo(p. 113. The color componentsl,gl,bl
andr2,g2,b2must be in the range 0-255.

For example, to create a linear grscale for the range 200-1000:

struct Colors colr;

G_init_colors (&colr);
G_add_color_rule ((CELL)200, 0,0,0, (CELL)1000, 255,255,255);

The programmer is encouraged toieg 85.5 Raster Color Tabledfmat[p. 29 how
this routine fits into the 4.1 raster color logic.

812 GIS Library

-114 - -114 -

Note. Thecolors structure must he been initialized byG_init_colorgp. 113.

See812.10.3.4 Predefined Coloafles[p. 114 for routines to build some predefined
color tables.

G_set_color(cat, red, green, blue, colors) set a category color

CELL cat;

int red;

int green;

int blue;

struct Colors *colors;

Thered, green,andblue intensities for the color associated with gaiey cat are
set in thecolors structure. Theéntensities must be in the range 0-255. Valuesvbelo
zero are set as zero, values\ab@b5 are set as 255.

Use of this routine is discouraged because it defeats the new color logitis
provided only for backwrd compatibility Overuse can create large color tables.
G_add_color_rulé. 113 should be used whewer possible.

Note. Thecolorsstructure must he keen initialized byG_init_colorgp. 113.

G_get_color_range(min, max, colors) get color range

CELL *min, *max;
struct Colors *colors;

Gets the minimum and maximum rastedues that hae olors associated with
them.

G_free_colors(colors) free color structue memory

struct Colors *colors;

The dynamically allocated memory associated withctilers structure is freed.

Note. This routine may be used aft& read coloré.11) as well as after
G_init_colorgp. 113.

12.10.3.4.Predefined Color Tables

The following routines generate entire color tabl&ke tables are loaded intocalors
structure based on a range of category valuesinomto max. The range of &lues for a
raster map can be obtained, for example, uGingead_rangép. 119.

Note. The color tables are generated without information abouparticular raster file.

812 GIS Library

-115- -115-

These color tables may be created for a raster file, bytnthg also be generated for
loading graphics colors.

These routines return -1niin is greater thamax, 1 atherwise.

G_make_aspect_colorgcolors, min, max) male aspect colors

struct Colors *colors;
CELL min, max;

Generates a color table for aspect data.

G_make_ramp_colors(colors, min, max) male color ramp

struct Colors *colors;
CELL min, max;

Generates a color table with 3 sections: red,aglyen only and blue only each
increasing from none to full intensityrhis table is good for continuous data, such
as eleation.

G_make_ware_colors(colors, min, max) male wlor wave

struct Colors *colors;
CELL min, max;

Generates a color table with 3 sections: red,agrlsen only and blue only each
increasing from none to full intensity and backvddo none. This table is good for
continuous data |#&devation.

G_make_grey_scale_colorgolors, min, max) male linear grey <ale

struct Colors *colors;
CELL min, max;

Generates a gyescale color table. Each color is asdkof grey, increasing from
black to white.

G_make_rainbow_colors(colors, min, max) male rainbow colors

struct Colors *colors;
CELL min, max;

Generates a "shifted" rainlocolor table - yellav to green to cyan to blue to
magenta to red. The color table is based on ramnbalors. (Normalrainbow
colors are red, orange, yeMpgreen, blue, indigo, and violet.) This table is good for
continuous data, such as\&igon.

812 GIS Library

-116 - - 116 -

G_make_random_colorgcolors, min, max) male random colors
struct Colors *colors;
CELL min, max;

Generates random colors. Good as a first pass at a color table for nominal data.

G_make_ryg_colors(colors, min, max) male red,yellow,green colors
struct Colors *colors;
CELL min, max;

Generates a color table that goes from red towebtagreen.

G_make_gyr_colors(colors, min, max) male geen,yellow,red colors
struct Colors *colors;
CELL min, max;

Generates a color table that goes from green towétioed.

G_make_histogram_eq_colorgcolors, s) male histogram-stretched gy ®lors

struct Colors *colors;
struct Cell_stats *s;

Generates a histogram contrast-stretchegl grale color table that goes from the
histogram information in the Cell_stats structuse (See 812.10.6 Raster
Histogramgp. 119.)

12.10.4. RasteHistory File

The history file contains documentary information about the raster file: who created it,
when it was created, what was the original data source, what information is contained in
the raster file, etc. This file is discusse@m6 Raster History Filgp. 37.

The following routines manage this file. Jheise the History structure which is
described ir§12.20 GIS Library Data Structur@s 153.

Note. This structure has existed relety unmodified since the inception of GRASS. It

is in need of werhaul. Programmers should b&ase that future versions of GRASS may
no longer support either the routines or the data structure which support the history file.

812 GIS Library

-117 - -117 -

G_read_history (name, mapset, history) read raster history file

char *name;
char *mapset;
struct History *history;

This routine reads the history file for the rasterridene in mapsetinto thehistory
structure.

A diagnostic message is printed and -1 is returned if there is an error reading the
history file. Otherwise, 0 is returned.

G_write_history (name, history) write raster history file
char *name;
struct History *history;

This routine writes the history file for the raster filemein the current mapset from
thehistory structure.

A diagnostic message is printed and -1 is returned if there is an error writing the
history file. Otherwise, 0 is returned.

Note. The history structure should first be initialized usif short_histor{p. 117.

G_short_history (name, type, history) initialize history structure
char *name;
char *type;
struct History *history;

This routine initializes thaistory structure, recording the date, yggogram name
and the raster fileamestructure. Theype is an anachronism from earlieergions
of GRASS and should be specified as "raster".

Note. This routine only initializes the data structuré.does not write the history
file.

12.10.5. RasteRange File

The follonving routines manage the raster range file. This file contains the minimum and
maximum values found in the raster fildhe format of this file is described §b.7
Raster Rang Fle [p. 31.

The routines bels use theRange data structure which is described 812.20 GIS
Library Data Structure$p. 153.

812 GIS Library

-118 - -118 -

G_read_range(name, mapset, range) read raster range

char *name;
char *mapset;
struct Range *range;

This routine reads the range information for the rastenéifee in mapsetinto the
range structure.

A diagnostic message is printed and -1 is returned if there is an error reading the
range file. Otherwise, O is returned.

G_write_range (name, range) write raster rang fie

char *name;
struct Range *range;

This routine writes the range information for the raster rfidene in the current
mapset from theange structure.

A diagnostic message is printed and -1 is returned if there is an error writing the
range file. Otherwise, O is returned.

The range structure must be initialized and updated using the following routines:
G_init_range (range) initialize range gructure
struct Range *range;
Initializes the range structure for updates byG_update rangg.119§ and

G_row_update_rande. 119.

G_update_range(cat, range) update rang gructure

CELL cat;
struct Range *range;

Compares thecat vaue with the minimum and maximum values in t@nge
structure, modifying the rangedt extends the range.

812 GIS Library

-119 - -119 -

G_row_update_range(cell, n, range) update rang gructure
CELL *cell;
int n;
struct Range *range;
This routine updates theange data just lile G_update range. 119, but for n
values from thecell array.
The range structure is queried using the following routine:

G_get_range_min_maxrange, min, max) get range nin and max

struct Range *range;
CELL *min, *max;

Themininum andmaximum CELL values are extracted from ttamge structure.

12.10.6. RasteHistograms

The following routines provide a reledly efficient mechanism for computing and
guerying a histogram of raster data. yhese theCell_stats structure to hold the
histogram information. The histogram is a count associated with each unique ahster v
representing the number of times each value was inserted into the structure.

These next t@ routines are used to manage the Cell_stats structure:

G_init_cell_stats(s) initialize cell stats

struct Cell_stats *s;

This routine, which must be called first, initializes the Cell_stats strugture

G_free_cell_statqs) free cell stats
struct Cell_stats *s;

The memory associated with structwés freed. This routine may be calledyan
time after callingG_init_cell_statép. 119.

This next routine stores values in the histogram:

812 GIS Library

-120 - -120 -

G_update_cell_statgdata, n, s) add data to cell stats

CELL *data;
int n;
struct Cell_stats *s;

Then CELL values in thedata array are inserted (and counted) in the Cell_stats
structures.

Once all values are stored, the structure may be queried either randomly (ie. search for a
specific raster value) or sequentially (reteiedl raster values, in ascending ordand
their related count):

G_find_cell_stat(cat, count, s) random query of cell stats

CELL cat;
long *count;
struct Cell_stats *s;

This routine allows a random query of the Cell_stats structur@he count
associated with the rastesluecat is set. The routine returns 1aét was found in
the structure, 0 otherwise.

Sequential retrial is accomplished using these next 2 routines:

G_rewind_cell_stats(s) reset/iewind cell stats
struct Cell_stats *s;

The structures is rewound (i.e., positioned at the first raster category) so that sorted
sequential retrieal can begin.

G_next_cell_stat(cat, count, s) retrieve sorted cell stats

CELL *cat;
long *count;
struct Cell_stats *s;

Retrieves the net cat,countcombination from the structuse Returns O if there are
no more items, non-zero if there are more.

For example:

812 GIS Library

-121 - -121 -

struct Cell_stats s;
CELL cat;
long count;

. I* updatings occurs here */

G_rewind_cell_stats(&s);
while (G_next_cell_stat(&cat,&count,&s)
printf("%Ild %ld\n", (long) cat, count);

12.11. \éctor File Processing

TheGIS Library contains some functions related to vector file processing. These include
prompting the user forector files, locating vector files in the database, openaatpw
files, and a f& others.

Note. Most vector file processing, Wwever, is handled by routines in théector Library,
which is described i813 Vector Libranjp. 157.

12.11.1. Pompting for Vector Files

The following routines interastely prompt the user for aector file name. In each, the
prompt string will be printed as the first line of the full prompt which asks the user to
enter a vector file namdf prompt is the empty string™'then an appropriate prompt will

be substituted. The name that the user enters is copied intontrae buffer2® These
routines hge a hilt-in ’list’ capability which allavs the user to get a list okisting
vector files.

The user is required to enter alid vector file hame, or else hit the RETURMBykio
cancel the request. If the user enters amlioh response, a message is printed, and the
user is prompted an. If the user cancels the request, the NULL pointer is returned.
Otherwise the mapset where the vector filesliar is to be ceated is returned. Both the
name and the mapset are used in other routines to refer to the vector file.

29 The size ohameshould be large enough to holdyaBRASS file name. Most systems aWo
file names to be quite long. It is recommended that name be dedharethme[50].

812 GIS Library

-122 - 122 -

char *
G_ask _vector_old(prompt, name) prompt for an existing vector file

char *name;
char *mapset;

Asks the user to enter the name of arsteng vector file in ap mapset in the
database.

char *
G_ask_vector_in_mapsef{prompt, name) prompt for an existing vector file

char *name;
char *mapset;

Asks the user to enter the name of an existing vector file in the current mapset.

char *
G_ask_vector_new(prompt, name) prompt for a ne vector file

char *name;
char *mapset;

Asks the user to enter a name foraeztoer file which does not exist in the current
mapset.

Here is an example of hoto use these routines. Note that the programmer must handle
the NULL return properly:

char *mapset;
char name[50];

mapset = G_ask_vector_old("Enter vector file to be processed", name);
if (mapset = NULL)
exit(0);

12.11.2. FindingVector Files in the Database

Noninteractve programs cannot makuse of the interacte prompting routines described
above. For example, a command line gen program may require a vector file name as
one of the command guments. GRAS&llows the user to specify vector file names (or

ary other database file) either as a simple unqualified name, such as "roads", or as a fully
gualified name, such as "roadsnrapset, wheremapsetis the mapset where theator

file is to be found.Often only the unqualified vector file name is provided on the
command line.

The following routines search the database for vector files:

812 GIS Library

-123 - -123 -

G_find_vector (name, mapset) find a vector file
G_find_vector2 (name, mapset) find a vector file
char *name;

char *mapset;

Look for the vector filmmamein the databaseThe mapsetparameter can either be
the empty string "", which means search all the mapsets in the aseent mapset
search patRO or it can be a specific mapset name, which means look foettierv
file only in this one mapset (for example, in the current mapset).

If found, the mapset where the vector fikedi is returned. If not found, the NULL
pointer is returned.

The difference between theseotwoutines is that if the user specifies a fully
qualified vector file which exists, then G_finéctor2() modifies name by
remaving the "inmapset while G_find_\ector()does noe! Normally, the GRASS
programmer need notosry about qualified vs. unqualified names since all library
routines handle both formsHowever, if the programmer ants the name to be
returned unqualified (for displaying the name to the,usetoring it in a data file,
etc.), then G_find ector2()should be used.

For example, to find a vector file anywhere in the database:

char name[50];
char *mapset;

if ((mapset = G_find_ector(name,"")F = NULL)
/* not found*/

To check that the vector file exists in the current mapset:

char name[50];

if (G_find_wector(name,G_mapset(3)F NULL)
/* not found*/

30 See§4.7.1 Mapset Seeln Rath [p. 2g for more details about the search path.

31 Be warned that G_find ector2()should not be used directly on a command lingiaent,
since modifying agv[] may not be alid. The argument should be copied to another character
buffer which is then passed to G_finéctor2().

812 GIS Library

-124 - -124 -

12.11.3. Openingan Existing Vector File
The following routine opens the vector filamein mapsetfor reading.

The vector file name and mapset can be obtained interastly using
G_ask_vector_olg. 129 or G_ask_vector_in_mapget129, and noninteractely using
G_find_vectdip. 123 or G_find_vectorf. 123.

FILE *
G_fopen_vector_old(name, mapset) open an existing vector file

char *name;
char *mapset;

This routine opens the vector filemein mapsetfor reading.

A file descriptor is returned if the open is successtherwise the NULL pointer
is returned (no diagnostic message is printed).

The file descriptor can then be used with routines inDigeLibrary to read the
vector file. (See813 Vector Libraryp. 157.)

Note. This routine does not call ymoutines in theDig Library; No initialization of
the vector file is done by this routine, directly or indirectly.

12.11.4. Ceating and Opening New Vector Files

The following routine creates theweector filenamein the current maps&tand opens
it for writing. The vector file name should be obtained interastly using
G_ask_vector_ngw.129. If obtained noninteractely (e.g., from the command line),
G_legal_filenamg@. 79 should be called first to makwure thathnameis a valid GRASS
file name.

Warning. If namealready &ists, it will be erased and re-created empiiie interacire
routine G_ask_vector_nefy. 129 guarantees thaname will not exist, but if name is
obtained from the command lineame may «ist. In this caseG_find_vectafp. 123
could be used to seenameexsts.

32 GRASS does not alw files to be created outside the current mapSee§4.7 Database
Access Rulep. 29.

812 GIS Library

-125 - -125 -

FILE *
G_fopen_vector_new(name) open a ne vector file

char *name;

Creates and opens the vector filane for writing.

A file descriptor is returned if the open is successitherwise the NULL pointer
is returned (no diagnostic message is printed).

The file descriptor can then be used with routines inDiigeLibrary to write the
vector file. (See813 Vector Libraryp. 157.)

Note. This routine does not call ymoutines in théDig Library; No initialization of
the \ector file is done by this routine, directly or indirectélso, only the ector
file itself (i.e., thedig file), is created. None of the otheector support files are
created, remeed, or modified in apway.

12.11.5. Readin@nd Writing Vector Files

Reading and writing vector files is handled by routines inDige Library. See 813
Vector Library [p. 157 for details.

12.11.6. \éctor Category File

GRASS vector files he ategory labels associated with them. The category file is
structured so that each category in the vector file ces hane-line description.

The routines described beloread and write the ector category file.They use the
Categoriesstructure which is described §12.20 GIS Library Data Structurgs 153.

Note. The vector category file has exactly the same structure as the ragjer\céite.
In fact, it exists so that the prograno.rastcan cownert a \ector file to a raster file that
has an up-to-date category file.

The routines described #12.10.2.2 Querying and Changing the Categories Strectur

[p. 119 which modify theCategoriesstructure can therefore be used to set and change
vector categories as well.

812 GIS Library

- 126 - - 126 -

G_read_vector_catgname, mapset, cats) read vector category file

char *name;
char *mapset;
struct Categories *cats;

The category file for vector filrkamein mapsetis read into theatsstructure.

If there is an error reading the category file, a diagnostic message is printed and -1 is
returned. Otherwisd) is returned.

G_write_vector_cats(name, cats) write vector category file

char *name;
struct Categories *cats;

Writes the catgory file for the vector filmamein the current mapset from tlcats
structure.

Returns 0 if successful. Otherwise, -1 is returned (no diagnostic is printed).

12.12. Sitelist Processing

GRASS has a point database capability cadlesknuwhich manages a database of point
or site information. The s.menuprogram provides the majority of the analytical
capabilities within GRASS for site data. The routines described hereidero
programmers with mechanisms for reading existing site list files and for creating ne
ones. Theaeader should also s&¥ Point Data: Site List ifes [p. 41 for more details
about the site list files.

12.12.1. Pompting for Site List Files

The following routines interactely prompt the user for a site list file name. In each, the
prompt string will be printed as the first line of the full prompt which asks the user to
enter a site list file namdf prompt is the empty string™then an appropriate prompt
will be substituted. The name that the user enters is copied intathebuffer33 These
routines hae a hiilt-in "list" capability which allavs the user to get a list of existing site
list files.

The user is required to enter a valid site list file name, or else hit the RETENRN k
cancel the request. If the user enters amlioh response, a message is printed, and the

33 The size ohameshould be large enough to holdyaBRASS file name. Most systems allo
file names to be quite long. It is recommended that name be dealtarathme[50].

812 GIS Library

-127 - -127 -

user is prompted an. If the user cancels the request, the NULL pointer is returned.
Otherwise the mapset where the site list filedior is to be peated is returned. Both the
name and the mapset are used in other routines to refer to the site list file.

char *
G_ask_sites_oldprompt, name) prompt for existing site list file

char *prompt;
char *name;

Asks the user to enter the name of arsteng site list file in ap mapset in the
database.

char *
G_ask_sites_in_mapsdprompt, name) prompt for existing site list file

char *prompt;
char *name;

Asks the user to enter the name of an existing site list file in the current mapset.

char *
G_ask_sites_newprompt, name) prompt for nev ste list file

char *prompt;
char *name;

Asks the user to enter a name for a site list file which doesxisbtie the current
mapset.

Here is an example of hoto use these routines. Note that the programmer must handle
the NULL return properly:

char *mapset;
char name[50];

mapset = G_ask_sites_old("Enter site list file to be processed", name);

if (mapset = NULL)
exit(0);

12.12.2. OpenindSite List Files
The following routines open site list files:

812 GIS Library

-128 - -128 -

FILE *
G_fopen_sites_newname) open a ne ste list file

char *name;

Creates an empty site list filmmein the current mapset and opens it for writing.

Returns an open file descriptor if successful. Otherwise, returns NULL.

FILE *

G_fopen_sites_oldname, mapset) open an existing site list file
char *name,;
char *mapset;

Opens the site list filsamein mapsetfor reading.

Returns an open file descriptor if successful. Otherwise, returns NULL.

12.12.3. Readingand Writing Site List Files
G_get_site(fd, east, north, desc) read site list file

FILE *fd;
double *east, *north;
char **desc;

This routine setgastandnorth for the next "point” from the site list file open on
file descriptorfd (as returned bys_fopen_sites_o(d. 129), anddescis set to point
to the description of the site.

Returns: 1 if a site was found; -1 if there were no more sites.

For example:

double east, north;
char *desc;
FILE *fd;

fd = G_fopen_site_oldh@ame mapsej;
while (G_get_site (fd, &east, &north, &desc) > 0)
printf ("%lIf %lf %s\n", east, north, desc);

Note: descpoints to static memoyygo ech call eerrides the description from the
previous call.

812 GIS Library

-129 - -129 -

G_put_site(fd, east, north, desc) write site list file

FILE *fd;
double east, north;
char *desc;

Writes theeast and north coordinates and site descriptigescto the site file
opened on file descriptéd (as returned b_fopen_sites_ndw 129).

12.13. GeneraPlotting Routines

The following routines form the foundation of a general purpose line and polygon
plotting capability.

G_bresenham_ling(x1, y1, x2, y2, point) Bresenham line algorithm

int x1, yl1;
int x2, y2 ;
int (*point)() ;

Draws a line fromx1,yl to x2,y2 using Bresenharma’dgorithm. A routine to plot
points must be provided, as is defined as:

point(x, y) plot a point at x,y

This routine does not require a previous callGosetup_pldp. 129 to function
correctly and is independent of all following routines.

G_setup_plot(t, b, I, r Move Cont) initialize plotting routines

doublet, b, I, r;
int (*Move)();
int (*Cont)();

Initializes the plotting capability This routine must be called once before calling
theG_plot_*() routines described belo

The parameters, b, I, r are the top, bottom, left, and right of the output X,y
coordinate space.They are not integers, but doubles to a&lofor subpiel
registration of the input and output coordinate spadd®g input coordinate space is
assumed to be the current GRAS§ioa, and the routines supports both planimetric
and latitude- longitude coordinate systems.

Move and Cont are subroutines that will dralines in x,y space.They will be
called as follows:

812 GIS Library

-130 - -130 -

Move(x,y) move o X,y (no draw)

Cont(x, y) drav from previous position
to x,y. Cont() is responsible
for clipping

G_plot_line (eastl, northl, east2, north2) plot line between latlon coordinates
double eastl, northl, east2, north2 ;
A line fromeastl,north1to east2,north2is plotted in output x,y coordinates (e.g.

pixels for graphics.)This routine handles global wrap-around for latitude-longitude
databases.

SeeG_setup_pldp. 129 for the required coordinate initialization procedure.

G_plot_polygon(east, north, n) plot filled polygon with n vertices

double *east, *north ;
intn;

The polygon, described by thevertices east,north, is plotted in the output X,y
space as a filled polygon.

SeeG_setup_pldp. 129 for the required coordinate initialization procedure.

G_plot_where_en(X, y, east, north) X,y to east,north

intx,y;
double *east, *north ;

The pixel coordinates,y are conerted to map coordinatesast,north.

SeeG_setup_pldp. 129 for the required coordinate initialization procedure.

G_plot_where_xy(east, north, X, y) east,north to x,y

double east, north ;
int *x, *y ;

The map coordinate=ast,northare conerted to pixel coordinatesy.

SeeG_setup_pldp. 129 for the required coordinate initialization procedure.

812 GIS Library

-131 - -131 -

G_plot_fx (f, eastl, east2) plot f(east1) to f(east2)

double (*f)() ;
double east, east? ;

The functionf(east)is plotted fromeastl1to east2. The functionf(east) must return
the map northing coordinate associated with east.

SeeG_setup_pldp. 129 for the required coordinate initialization procedure.

12.14. Emporary Files

Often it is necessary for programs to use temporary files to store information that is only
useful during the program run. After the program finishes, the information in the
temporary file is no longer needed and the file is x&tho Commonlyit is required that
temporary file names be unique fronvaoation to ivocation of the program. It euld

not be good for a fixed name dik/tmp/mytempfile” to be used. If the program were run

by two users at the same time, yheould use the same temporary file.

The following routine generates temporary file names which are unique within the
program and across all GRASS programs.

char *
G_tempfile () returns a temporary file name

This routine returns a pointer to a string containing a unique file name that can be
used as a temporary file within the prograBuccessie alls to G_tempfile) will
generate ng names.

Only the file name is generated. The file itself is not createdrehte the file, the
program must use standard UNIX functions which create and open files, e.g), creat(
or fopen().

The programmer should takeasonable care to remeo (unlink) the file before the
program exits. Hoever, GRASS database management wilergually remae Al
temporary files created by G_tempfilefiat hae keen left behind by the programs
which created them.

Note. The temporary files are created in the GRASS database rather than under /tmp.
This is done for tw reasons. Thdirst is to increase the likelihood that enough disk is
available for large temporary files since /tmp may beesy\small file system.The
second is so that abandoned temporary files can be automaticallyedefoat see the
warning below).

Warning. The temporary files are named, in part, using the process id of the program.

GRASS database management will remthese files only if the program which created
them is no longer running. Mever, this feature has a subtle trap. Programs which create

812 GIS Library

-132 - -132 -

child processes (using the UNIX fod¢ routine) should let the child call G_tempfi)e(
If the parent does it and then exits, the child may find that GRASS hasecethe
temporary file since the process which created it is no longer running.

12.15. CommandLine Parsing

The following routines provide a standard mechanism for command line parsing. Use of
the provided set of routines will standardize GRASS commands that expect command
line arguments, creating a family of GRASS programs that is easy for users toAsarn.
soon as a GRASS useamiiliarizes himself with the general form of command line input

as defined by the parsd@rwill greatly simplify the necessity of remembering or at least
guessing the required command line arguments fpGRASS command.

It is strongly recommended that GRASS programmers use this set of routines for all
command line parsingWith their use, the programmer is freed from the burden of
generating user interface code foery command. The parser will limit the programmer

to a pre-defined look and feeljtdimiting the interface is well worth the shortened user
learning curve.

12.15.1. Description

The GRASS parser is a collection ofefigibroutines which use twdructures that are
defined in the GRASS "gis.h" header file. These structurews #lle programmer to
define the options and flags that malp te \alid command line input of a GRASS
command.

The parser routines belain one of three ways:

(1) If no command line guments are entered by the ygbe parser searches for a
completely interactie vasion of the command. If the interaaivesion is found,
control is passedwver to this version. Ifnot, the parser will prompt the user for all
programmerdefined options and flags. This prompting conforms to the same
standard foreery GRASS command that uses the parser routines.

(2) If command line arguments are enteratlithey are a subset of the options and flags
that the programmer has defined as requirgdraents, three things happehhe
parser will pass an error message to the user indicating which required options
and/or flags were missing from the command line, the parser will then display a
complete usage message for that command, and finally the parser casmgisre

34 See als@G_forkp. 150.

812 GIS Library

-133 - -133 -

of the command.

(3) If all necessary options and flags are entered on the command line by fhHeuser
parser gecutes the command with thevgn options and flags.

12.15.2. Structues

The parser routines described elase two dructures as defined in the GRASS "gis.h"
header file.

This is a basic list of members of the Option and Flag structukesomprehensie
description of all elements of theseot@ructures and their possiblalues can be found
in 812.15.5 Full Structwe Membes Description[p. 14q.

12.15.2.1.0ption structure

These are the basic members of the Option structure.

struct Option *opt; [* to declare a command line option */
Structure Member Description of Member
opt->key Option name that user will use
opt->description Optiodescription that is shown to the user
opt->type \Ariable type of the useranswer to the option
opt->required Ishis option required on the command line? (Boolean)

12.15.2.2.Flag structure

These are the basic members of the Flag structure.

struct Flag *flag; * to declare a command line flag */
Structure Member Description of Member
flag->key Sngle letter used for flag name
flag->description Flagescription that is shown to the user

812 GIS Library

-134 - -134 -

12.15.3. Rrser Routines

Associated with the parser aredimutines that are automatically included in the GRASS
Gmalefile process. The Gmakefile process is documente@lih Compiling and
Installing GRASS RBgrams[p. 57.

struct Option *
G_define_option() returns Option structure

Allocates memory for the Option structure and returns a pointer to this memory (of
type struct Option ¥.

struct Flag *
G_define_flag() return Flag structure

Allocates memory for the Flag structure and returns a pointer to this memory (of
typestruct Flag *).

G_parser (argc, argv) parse command line

int argc;
char *agv[];

The command line parametessgv and the number of parametergc from the
main() routine are passed directly t&_ parser(). G_parser() accepts the
command line input entered by the ysed parses this input according to the input
options and/or flags that were defined by the programmer.

G_parsen() returns 0 if successfulf not successful, a usage statement is displayed
that describes the expected and/or required options and flags and a non-zero value is
returned.

G_usage() command line help/uge nessage

Calls toG_usae() dlow the programmer to print the usage message \atice.

This will explain the allowed and required command line input to the Udes
description is gien according to the programmaertefinitions for options and flags.

This function becomes useful when the user enters options and/or flags on the
command line that are syntactically valid to the patagrfunctionally irvalid for

the command (e.g. anvalid file name.)

For example, the parser logic doesmirectly support grouping options. If tw
options be specified together or not at all, the parser must be told that these options
are not required and the programmer must check that if one is specified the other
must be as well. If this additional check fails, ti&nparse(p. 134 will succeed, bt

the programmer can then c&l usae() to print the standard usage message and
print additional information about tothe two options work together.

812 GIS Library

-135 - -135 -

G_disable_interactve () turns of interactive capability

When a user calls a command with nguanents on the command line, the parser
will enter its own standardized interagtigssion in which all flags and options are
presented to the user for inpuf call to G_disable_inteaictive() disables the
parsers interactve promprting.

12.15.4. Rrser Programming Examples

The use of the parser in the programming process is demonstrated here. Both a basic step
by step example and full code example are presented.

12.15.4.1.Step by Step Use of the Parser

These are the four basic steps to felkw implement the use of the GRASS parser in a
GRASS command:

(1) Allocatememory for Flags and Options:

Flags and Options are pointers to structures allocated through the parser routines
G_define_optiofp. 139 and G_define_flafp. 139 as defined in §12.15.3 Arser
Routinegp. 134.

#include "gis.h" ; /* The standard GRASS include file */
struct Option *opt ; [* Establish an Option pointer for each option */
struct Flag *flag ; [* Establish a Flag pointer for each option */

opt = G_define_optiod(; /* Request a pointer to memory for each option */
flag = G_define_flag(; [* Request a pointer to memory for each flag */

(2) Definemembers of Flag and Option structures:

The programmer should define the characteristics of each option and flag desired as
outlined by the following example:

opt->key ="option"; /* The name of this option is "option". */
opt->description =Option test"; [* The option description is "Option test" */
opt->type =TYPE_STRING; /*The data type of the answer to the option */
opt->required =YES; [* This option *is* required from the user */
flag->key =t /* Single letter name for flag */
flag->description ZFlag test"; [* The flag description is "Flag test" */

812 GIS Library

- 136 - - 136 -

(3)

(4)

(5)

Note. There are more options defined later §42.15.5.1 Complete Struceur
Membes Table[p. 14qQ.

Callthe parser:

main(argc,agv) charqargv[]; /* command line args passed into mgin(
G_parser(argc,gv); /* Returns 0O if successful, non-zero otherwise */

Extractinginformation from the parser structures:

printf("For the option \"%s\" you chose: <%s>\n", opt->description, opt->answer);
printf("The flag \"-%s\" is %s set.\n", flag-e¥ flag->answer ? ™"

Runningthe example program

Once such a program has been compiled (for example to theltdekcutable file
a.out, execution will result in the following user interface scenarios.

Lines that begin witk imply user entered commands on the command line.
aout help

This is a standard user call for basic help information on the progidm.
command line options (in this case, "help”) are sent to the parser via
G_parse(p.139. Theparser recognizes the "help" command line option and returns
a list of options and/or flags that are applicable for the specific command. Note ho
the programmer provided option and flag information is captured in the output.

a.out [-t] option=name

Flags:
-t Flagtest

Paameters:
option Optiontest

Now the following command isxecuted:
#aout -t

This command line does not contain the required optidote that the output
provides this information along with the standard usage message (as already sho
above.)

Required parameter <option> not set (Option test).

Usage:

812 GIS Library

-137 - -137 -

a.out [-t] option=name

Flags:
-t Flagtest

Paameters:
option Optiontest

The following commands are correct and ggleint. Theparser provides no error
messages and the prograxeaites normally:

aout option=Hello -t
aout -t option=Hello

For the option "Option test" you chose: Hello
The flag "-t" is set.

If this specific command has no fully interaetivasion (a user interface that does
not use the parser), the parser will prompt for all prograntteéned options and/or
flags.

User input is intalics, default answers are displayed in square brackets [].

#a.out

OPTION: Optiontest
key: option
required: YES

enter option >Hello

You havechosen:
option=Hello

Is this correct? (y/n) [yy

FLAG: Set the following flag?
Flag test? (y/n) [nh

You chose: <Hello>
The flag is not set

12.15.4.2.Full Program Example

The following code demonstrates some of the basic capabilities of the persempile
this code, create this Gmakefile and run gheake command (se&€11 Compiling and
Installing GRASS Rigrams|p. 57).

sample: sample.o
$(CC) $(LDFLAGS) -0 $@ sample.o $(GISLIB)

812 GIS Library

-138 - -138 -

The sample.c code folis. You might experiment with this code to familiarize yourself
with the parser.

Note. This example includes some of the advanced structure members described in
812.15.5.1 Complete StructuMembes Table[p. 14q.

812 GIS Library

-139 -

-139 -

#include "gis.h"

main(argc , argv)
int argc ;
char *argv ;

{

struct Option *opt ;
struct Option *coor ;
struct Flag *flag ;

double X, Y ;

intn;

opt =G_define_option()
opt->key ="debug" ;
opt->description =Debug level" ;
opt->type =TYPE_STRING ;
opt->required NO;

opt->answer =0";

coor =G_define_option()
coor->key ="coordinate" ;
coor->key desc =Xy
coor>description ='One or more coordinates" ;
COOF>type =TYPE_STRING ;
coor>required =YES;
coor>multiple =YES;

/* Note that coor->answer is notvgh a default value. */

flag =G_define_flag()
flag->key =y
flag->description *\erbose &ecution" ;

/* Note that flag->answer is notwgh a cefault value. */

if (G_parser(argc, argv))
exit(-1);

printf("For the option \"%s\" you chose: <%s>\n", opt->description, opt->answer);
printf("The flag \"-%s\" is: %s set\n", flag-2k flag->answer ? " : "not");

printf("You specified the following coordinates:\n");
for (n=0 ; coor->answers[n] != NULL ; n+=2)

{
G_scan_easting (cooianswers[n] &X, G_projection());
G_scan_northing (coor->answers[n+1] , &Y , G_project)on(
printf("%.31f,%.21f\n", X, Y);

}

812 GIS Library

-140 -

12.15.5. FullStructure Members Description

- 140 -

There are manmembers to the Option and Flag structures. The vatig tables and
descriptions summarize all defined members of both the Option and Flag structures.

An in-depth summary of the more compkructure members is presentedit2.15.5.2
Description of CompbeSructure Membergp. 143.

12.15.5.1.Complete Structure Members Table

struct Flag
structure member| Ctype | required| defult | descriptiorand example
key char YES none key char used on command line
flag->key =1’ ;
description chat YES none | String describing flag meaning
flag->description = "run in fast mode' ;
answer char NO NULL | Default and parser-returned flag states.
struct Option
structure member| C type required| default | descriptiorand example
key char * YES none | Keyword used on command line.
opt->key = 'map" ;
type int YES none | Option type:
TYPE_STRING
TYPE_INTEGER
TYPE_DOUBLE
opt->type = TYPE_STRING ;
description chat YES none | String describing option
opt->description = "Map name" ;
answer chat NO NULL | Default and parser-returned answer t

an option.
opt->answer = "defaultmap” ;

812 GIS Library

-141 -

- 141 -

struct Option

structure member

C type

required

default

descriptiorand example

key desc

multiple

answers

required

options

gisprompt

checler

chat

int

int

char

char

char*()

NO

NO

NO

NO

NO

NO

NO

NULL

NO

NULL

NO

NULL

NULL

NULL

Single word describing the el
Commas in this string denote to the
parser that seral comma-separated
arguments are expected from the user 4
one answer For example, if a pair of
coordinates is desired, this elemen
might be defined as follows.

opt->key desc = "x,y" ;

Indicates whether the user can \pde
multiple answers or not. YES and NO
are defined in "gis.h" and should be
used (NO is the defilt.) Multiple is
used in conjunction with the answers
structure member beko
opt->multiple = NO ;
Multiple parser-returned answers to af
option.
N/A
Indicates whether user MUST pide
the option on the command lin&XES
and NO are defined in "gis.h" and
should be used (NO is the default.)
opt->required = YES ;
Approved values or range of values.
opt->options = "red,blue,white" ;

For integgers and doubles, the
following formatis available:

opt->options = "0-1000" ;

Interactve pompt guidance. There are
three comma separated parts to th
argument which guide the use of the
standard GRASS file name prompting
routines.

opt->gisprompt = "old,cell,raster"
Routine to check the answer to an optio
opt->checker = my_routing(

S

>

812 GIS Library

- 142 - - 142 -

12.15.5.2.Description of Compbe Structure Members

What follows are explanations of possibly confusing structure members. It is intended to
clarify and supplement the structures tablevabo

12.15.5.2.1.Answer member of the Flag and Option structures.

The answer structure member serves functions for GRASS commands that use the
parser.

(1) To =t the default answer to an option:

If a default state is desired for a programitefined option, the programmer may
define the Option structure member "answer" before calingarse(p. 134 in his
program. Afterthe G_parse(p. 139 call, the answer member will hold this preset
default value if the user dishot enter an option that has the default answer member
value.

(2) To obtain the command-line answer to an option or fla&fter a call to
G_parse(p. 139, the answer member will contain one obtvalues:

(a) If the user provided an option, and answered this option on the command line,
the default lue of the answer member (as described@hs replaced by the
users input.

(b) If the user preided an option, but didot answer this option on the command
line, the dedwilt is not used. The user may use the default answer to an option
by withholding mention of the option on the command line. But if the user
enters an option without an answire default answer member value will be
replaced and set to a NULL value By parse(p. 139.

As an example, pleaseview the use of answer members in the structures implemented
in 812.15.4.2 Full Psgram Example[p. 137.

12.15.5.2.2.Multiple and Answers Members

The functionality of the answers structure member is reliant on the programmer’
definition of the multiple structure membelf the multiple member is set to NO, the
answer member is used to obtain the answer to an option as descrized abo

If the multiple structure member is set to YES, the programmer ha&tqdrse(p. 139

to capture multiple answers. Multiple answers are separated by commas on the command
line after an option.

812 GIS Library

- 143 - - 143 -

Note. G_parse(p. 139 does not recognize grcharacter other than a comma to delimit
multiple answers.

After the programmer has set up an option to weceultiple answers, these the answers

are stored in the answers member of the Option structure. The answers member is an
array that contains each individual user-entered ansWes elements of this array are

the type specified by the programmer using the type meriberanswers array contains
however mary comma-delimited answers the user entered, Vi@t (terminated) by a

NULL array element.

For example, here is a sample definition of an Option using multiple and answers
structure members:

opt->key ="option" ;
opt->description Zoption example" ;
opt->type =TYPE_INTEGER ;
opt->required NO;
opt->multiple =YES ;

The abwoe cefinition would ask the user for multiple integer answers to the oplian.
response to a routine that contained thevatwode, the user entered "option=1,3,8,15" on
the command line, the answers array would contain the following values:

answers[0] =1
answers[1l] =3
answers[2] = 8
answers[3] = 15
answers[4] = NULL

12.15.5.2.3.key_desc Member

The key_desc structure member is used to define the format of a single command line
answer to an optionA programmer may wish to ask for one answer to an option, but this
answer may not be a singlggament of a type set by the type structure membdhe
programmer wants the user to enter a coordinate, for example, the programmer might
define an Option as follows:

opt->key ="coordinate" ;
opt->description =Specified Coordinate" ;
opt->type =TYPE_INTEGER ;

opt->required NO;
opt->key desc =X, y"

812 GIS Library

- 144 - - 144 -

opt->multiple =NO ;

The answer to this optionomld not be stored in the answer membart in the answers
member If the user entered "coordinate=112,225" on the command line in response to a
routine that contains the al® qtion definition, the answers array wouldvaahe
following values after the call t8_parse(p. 139:

answers[0] = 112
answers[1] = 225
answers[2] = NULL

Note that "coordinate=112" would not balid, as it does not contain both components of
an answer as defined by theykdesc structure member.

If the multiple structure member were set to YES instead of NO in the exampie abo

the answers are stored sequentially in the answers merberexample, if the user
wanted to enter the coordinates (112,225), (142,155), and (43,201), his response on the
command line would be “coordinate=112,225,142,155,43,201". Note that
G_parse(p. 139 recognizes only a comma for both theykdesc memberand for
multiple answers.

The answers array would\ethe following values after a call & _parse(p. 139:

answers[0] = 112 answers[1¥ = 225
answers[2] = 142 answers[3} = 155
answers[4] = 43 answers[5] = 201

answers[6] = NULL

Note. In this case as well, neither "coordinate=112" nor "coordinate=112,225,142"
would be valid command line gmments, as tlyedo not contain gen pairs of coordinates.
Each answes format (as described by theeykdesc member) must be fulfilled
completely.

The overall function of the ky desc and multiple structure members is very similéue

key desc member is used to specify the numberegfiired components of a single
option answer (e.g. a multi-valued coordinate.) The multiple member tells
G_parse(p. 139 to ask the user for multiple instances of the compound answer as defined
by the format in thedy desc structure member.

Another function of the &y desc structure member is to explain to the user the type of
information expected as an answ&he coordinate example is explained\abo

The usage message that is displayedGoyarse(p. 139 in case of an errgror by
G_usaegp. 139 on pogrammer demand, is shown beloThe Option "option" for the

812 GIS Library

- 145 - - 145 -

commanda.outdoes not hee its key_desc structure member defined.

Usage:
a.out option=name

The use of "name" is &_parse(p.139 standard. Ifthe programmer defines the
key desc structure member before a callGtgparse(p. 139, the \alue of the ky desc
member replaces "name". Thus, if threyykdesc member is set to "x,y" as was used in an
example abwe, the following usage message would be displayed:

Usage:
a.out option=x.,y

The key desc structure member can be used by the programmer to clarify the usage
message as well as specify single or multiple required components of a single option
answer.

12.15.5.2.4.gisprompt Member

The gisprompt Option structure item requires a bit more description. The three comma-
separated (no spaces allowed) sub-arguments are defined as follows:

First agument :
"old" results in a call to the GRASS library subroutf@eask_olgp. 79, "new" to
G_ask_nep. 79, "any" to G_ask _anfp. 796, and "mapset"” to
G_ask_in_mapsgt 75.

Second ayjument :
This is identical to the "element"qument in the ab@ subroutine calls. It specifies
a drectory inside the mapset that may contain the sisesponse.

Third agument :
Identical to the "prompt" gument in the ab@ subroutine calls. This is a string
presented to the user that describes the type of data element being requested.

Here are tw examples:

gisprompt aguments Resultingall
"new,cell,raster" G_ask_mg"", buffer, "cell", "raster")
"old,dig,vector"” G_ask_old("buffer, "dig", "vector")

812 GIS Library

- 146 - - 146 -

12.15.6. CommorQuestions
"How is automatic prompting turned off?"

GRASS 4.0 introduced a wemethod for driving GRASS interage axd non-
interactve programs as described 11 Compiling and Installing GRASSograms
[p.57. Here is a shortw@rview.

For most programs a user runs a front-end program out of the GRASS bin directory
which in turn looks for thexéstence of standard, alpha, and contributed intemacti
and non-interacte vasions of the program. If an interaiveasion exists and the
user provided no command line arguments, then that versigecisted.

In such a situation, the parsedefault interaction will neer be sen by the userA
programmer using the parser is able void the front-ends default search for a
fully interactve vesion of the command by placing a call to
G_disable_interactivg. 139 before callingG_parse(p. 139 (see812.15.3 Brser
Routinegp. 134 for details.)

"Can the user mix options and flags?"
Yes. Optionsand flags can begn in any arder.
"In what order does the parser present options and flags?"

Flags and options are presented by the usage message in the order that the
programmer defines them using calls t&_define_optiofp.139 and
G_define_flafp. 139.

"How does a programmer query for coordinates?"”

For any user input that requires a set of argument® (kair of map coordinates,)
the programmer specifies the number of arguments ineynel&sc member of the
Option structure.For example, if opt->ky desc was set to "x,y", the parser will
require that the user enter a pair of arguments separated only by a cG@entne
source code for the GRASS commands r.drain or r.cost for examples.

"Is a user required to use full option names?"

No! Usersare required to type in only as nyatharacters of an option name as is
necessary to makthe option choice unambiguous. If, faxaenple, there are twv
options, "input=" and "output=", the following would be valid command line
arguments:

812 GIS Library

- 147 - - 147 -

command i=mapl o=map2
command in=mapl out=map2

"Are options standardized at all?"

Yes. Thereare a fev conventions. Optionswhich identify a single input map are
usually "map=", not "raster=" or &¢tor=". Inthe case of an input and output map
the cowention is: "input=xx output=yy". By passing the ’'help’ option txisting
GRASS commands, it is ity that you will find other corentions. Thedesire is to

make it as @sy as possible for the user to remember (or guess correctly) what the
command line syntax is for avgh command.

12.16. StringManipulation Functions

This section describes some routines which perform string manipulaimimgs hsae
the usual C meaning: a NULL terminated array of characters.

These next 3 routines cppharacters from one string to another.

char *
G_strcpy (dst, src) copy strings

char *dst, *src;

Copies thesrc string todst up to and including the NULL which terminates 8re
string. Returnslst.

char *
G_strncpy (dst, src, n) copy strings

char *dst, *src;
int n;

Copies at mosh characters from therc string todst. If src contains less than
characters, then only those characters are copiddULL byte is added at the end
of dst. This implies thatlst should be at least+1 bytes long. Returrst.

Note. This routine varies from the UNIX strngf) in that G_strncy() ensures that
dstis NULL terminated, while strnggd) does not.

812 GIS Library

- 148 - - 148 -

char *
G_strcat (dst, src) concatenate strings

char *dst, *src;

Appends thesrc string to the end of thest string, which is then NULL terminated.
Returnsdst.

These next 2 routines rer@wnwanted white space from a single string.

char *
G_squeezds) remove unnecessary white space

char *s;

Leading and trailing white space is rerad from the strings and internal white
space which is more than one character is reduced to a single space character
White space here means spaces, tabs, linefeeds, newlines, and forRistedsss.

G_strip (s) remove leading/training white space
char *s;

Leading and trailing white space is rerad from the strings. White space here
means only spaces and tabs. There is no return value.

This next routine copies a string to allocated memory.

char *
G_store(s) copy string to allocated memory

This routine allocates enough memory to hold the ssjrgpiess to the allocated
memory and returns a pointer to the allocated memory.

These 2 routines cuert between upper and lower case.

char *
G_tolcase(s) convert string to lower case

char *s;

Upper case letters in the strirggare conerted to their lower case egalent.
Returnss.

812 GIS Library

- 149 - - 149 -

char *
G_toucase(s) convert string to upper case

char *s;

Lower case letters in the strilgjare comerted to their upper case eugdent.
Returnss.

And finally a routine which ges a pintable version of control characters.

char *
G_unctrl (c) printable version of control character

unsigned char c;

This routine returns a pointer to a string which contains an English-lik
representation for the characterThis is useful for nonprinting characters, such as
control characters. Control characters are represented by ctrl-C, e.g., control A is
represented by ctrl-A0177 is represented by DELWB. Normalcharacters remain
unchanged.

This routine is useful in combination wi _intr_chaip. 152 for printing the uses’
interrupt character :

char G_intr_char();

char *G_unctrl();

printf("Your interrupt character is %s\n", G_unctrl(G_intr_char()));

Note. G_unctrl()uses a hidden static buffer which \geawritten from call to call.

12.17. EnhancedJNIX Routines

A number of useful UNIX library routines @ sde effects which are sometimes
undesirable. The routines here provide the same functions as their corresponding UNIX
routine, but with different side effects.

12.17.1. Runningn the Background

The standard UNIX forkY routine creates a child process which is ayaoipthe parent
process. Thdork() routine is useful for placing a program into the backgrourmd. F
example, a program that gathers input from the user inteectbut knows that the
processing will ta& a bng time, might w&nt to run in the background after gathering all
the input. It would forkj to create a child process, the parent wowld(¢ allowing the
child to continue in the background, and the user could then do other processing.

However, there is a subtle problem with this logic. The fgrkéutine does not protect

812 GIS Library

- 150 - - 150 -

child processes fromekboard interrupts ven if the parent is no longer running.
Keyboard interrupts will also kill background processes that do not protect thesiSelv
Thus a program which puts itself in the background magrrimish if the user interrupts
another program which is running at trethoard.

The solution is to fork(but also put the child process in a process group which is
different from the kyboard process group. G_fopkgoes this.

G_fork () create a protected child process

This routine creates a child process by calling the UNIX foroutine. It also
changes the process group for the child so that interrupts froneyheakd do not
reach the child. It does not cause the parentit¢)e

G_fork() returns what fork] returns: -1 if fork(failed; otherwise 0 to the child,
and the process id of thewehild to the parent.

Note. Interrupts are still acte for the child. Interrupts sent using tié command,
for example, will interrupt the childlt is simply that keyboard-generated interrupts
are not sent to the child.

12.17.2. Rrtially Interruptible System Call

The UNIX systemj call allows one program, the parent, taeeute another UNIX
command or program as a child procesajtvior that process to complete, and then
continue. Theroblem addressed here concerns interrupts. During the standard gystem(
call, the child process inherits its responses to interrupts from the parestneans that

if the parent is ignoring interrupts, the child will ignore them as well. If the parent is
terminated by an interrupt, the child will be also.

However, in some cases, this may not be the desired effect. In a mgmarenent where

the parent aotetes menu choices by running commands using the systah(it would

be nice if the user could interrupt the command, but not terminate the menu program
itself. The G_systenj(call allows this.

35 Programmers who use /bin/sh knthat programs run in the background (using & on the
command line) are not automatically protected fragybkard interrupts.To protect a command
that is run in the background, /bin/sh users mushaltup command. Programmeravho use
the /bin/csh (or other variants) do not noor forget that the C-shell automatically protects
background processes froraykoard interrupts.

812 GIS Library

-151 - -151 -

G_system(command) run a shell level command

The shell leel command is executed. Interrupt signals for the parent program are
ignored during the call. Interrupt signals for tbemmand are enabled. The
interrupt signals for the parent are restored to their previous settings upon return.

G_system(yeturns the samealue as system(), which is essentially the exit status
of thecommand. See UNIX manual system(1) for details.

12.18. Miscellaneous
A number of general purpose routinesénaéeen provided.

char *
G_date() current date and time

Returns a pointer to a string which is the current date and fiihe.format is the
same as that produced by the UNlXtecommand.

G_gets(buf) get a line of input (detect ctrl-z)
char *buf;

This routine does gets() from stdin intobuf. It exits if end-of-file is detectedif
stdin is a tty (i.e., not a pipe or redirected) then ctrl-z is detected.

Returns 1 if the read was successful, or O if ctrl-z was entered.

Note. This is very useful for allowing a program to reprompt when a program is
restarted after being stopped with a ctrlizthis routine returns 0, then the calling
program should reprint a prompt and ¢allgety) agan. For example:

char buf[1024];
do {

printf("Enter some input ") ;
}while (! G_gets(buf)) ;

812 GIS Library

-152 - -152 -

char *
G_home() user's home directory

Returns a pointer to a string which is the full path name of thesusene directory

char
G_intr_char () return interrupt char

This routine returns the ussrkeyboard interrupt charactefThis is the character
that generates the SIGINT signal from tlegldoard.

See alsd@_unctrlp. 149 for corverting this character to a printable format.

G_percent(n, total, incr) print percent complete mesggs
int n;
int total;
int incr;

This routine prints a percentage complete message to.stllber percentage
complete isrf/ total)*100, and these are printed only for e@wtr percentage. This
is perhaps best explained by example:

#include <stdio.h>

int row;
int nrows;

nrows = 1352; /* 1352 is not a special value - example only */
fprintf (stderr "Percent complete:);
for (row = 0; row < rrows; row++)

G_percent (rev, nrows, 10);

This will print completion messages at 10% increments; i.e., 10%, 20%, 30%, etc.,
up to 100%. Each message does not appear onvdime but rather erases the
previous message. After 100%, awiee is printed.

char *

G_program_name() return program rame
This routine returns the name of the program as set by the Gllgisinii(p. 70).

812 GIS Library

- 153 - - 153 -

char *
G_whoami() users rame

Returns a pointer to a string which is the usBgin name.

G_yes(question, default) ask a yes/no question

char *question;
int default;

This routine prints guestionto the userand expects the user to respond either yes
or no. (Invalid responses are rejected and the process is repeated until the user
answers yes or no.)

The default indicates what the RETURNel¢g done should mean. Aefault of 1
indicates that RETURN means yes, 0 indicates that RETURN means no, and -1
indicates that RETURN alone is not a valid response.

The questionwill be appended with "(y/n) ", and, default is not -1, with "[y] " or
"[n] ", depending on thdefault.

G_yeq) returns 1 if the user said yes, and 0 if the user said no.

12.19. DeletedRoutines
The following routines ha been deleted from the GIS Library:

G_parse_command()
G_parse_command_us);
G_set_parse_command_gsf);

Replaced bys parse(p. 139 and G_usae(p. 139.

G_make_histo_@gy scale()

Replaced byc_make _histogram_eq_colgss119.

12.20. GlISLibrary Data Structures

Some of the data structures, defined in the "gis.h" header file and used by routines in this
library, are described in the sections helo

812 GIS Library

- 154 - - 154 -

12.20.1. structCell_head

The raster header data structure is used for gwposes. ltis used for raster header
information for map layers. It also used to hold region values. The structure is:

struct Cell_head

{

int format; /¥ numberof bytes per cell */
int compressed; /* compressed(19r not compressed(0) */
int rows, cols; /* numberof rows and columns */
int proj; /* projection */
int zone; /* zone *
double & _res; /* east-west resolution *
double ns_res; /* north-southresolution */
double north; /¥ northernedge */
double south; /¥ southernedge */
double east; /* easterredge */
double west; /¥ westernedge */

3
The format and compressedfields apply only to raster header3he format field
describes the number of bytes per raster data value acdrtipressedield indicates if
the raster file is compressed or not. The other fields apply both to raster headers and
regions. Thegeographic boundaries are describechbyth, south, easandwest. The
grid resolution is described bgw res and ns_res. The cartographic projection is
described byproj and the related zone for the projection2mne. The rows and cols
indicate the number of rows and columns in the raster file, or in ¢henreSee85.3
Raster Header érmat[p. 24 for more information about raster headers, 88d Rgion
[p. 49 for more information about regions.

The routines described §12.10.1 Raster Header Fije. 109 use this structure.

12.20.2. structCategories

The Categoriesstructure contains a title for the map laytke largest category in the map
layer, an aitomatic label generation rule for missing labels, and a list of category labels.

The structure is declarestruct Categories

This structure should be accessed using the routines describ®t2ih0.2 Raster
Category Filelp. 109.

812 GIS Library

- 155 - - 155 -

12.20.3. structColors

The color data structure holds red, green, and blue color intensities for ragjerieate
The structure has become so complicated that it will not be described in this manual.

The structure is declaresitruct Colors

The routines described EiL2.10.3 Raster Colorable [p. 111 must be used to store and
retrieve wlor information using this structure.

12.20.4. structHistory

TheHistory structure is used to document raster files. The information contained here is
for the user It is not used in apoperational way by GRASS. The structure is:

define MAXEDLINES 25
define RECORD_LEN 80

struct History

{

char mapid[RECORD_LEN];

char title[RECORD_LEN];

char mapset{RECORD_LEN];

char creatorfRECORD_LEN];

char maptype[RECORD_LEN];

char datsrc_1[RECORD_LEN];

char datsrc_2[RECORD_LEN];

char leywrd[RECORD_LEN];

int edlinecnt;

char edhistfMAXEDLINES][RECORD_LEN];

The mapid and mapsetare the raster file name and mapsde is the raster file title,
creator is the user who created the fitaaptypeis the map type (which shouldwadys

be "raster")datasrc_landdatasrc_2describe the original data sour&eywrd is a one-
line data description aretlhist containsedlinecntlines of user comments.

The routines described §12.10.4 Raster HistoryilE [p. 116 use this structure. kiever,
there is very little support for manipulating the contents of this structure. The
programmer must manipulate the contents directly.

Note. Some of the information in this structure is not meaningkdr example, if the
raster file is renamed, or copied into another mapsetmtq@d and mapsetwill no
longer be correct. Also thiiZle does not reflect the true raster file title. The true title is
maintained in the category file.

Warning. This structure has remained unchanged since the inception of GRA®BE

812 GIS Library

- 156 - - 156 -

is a good possibility that it will be changed or eliminated in future releases.

12.20.5. structRange

The Rangestructure contains the minimum and maximusfues which occur in a raster
file.

The structure is declarestruct Range

The routines described §12.10.5 Raster Raedrle [p. 117 should be used to access this
structure.

12.21. Loadingthe GIS Library

The library is loaded by specifying $(GISLIB) in the Grefille. Thefollowing example
is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(GISLIB)
OBJ = main.o subl.o sub2.0

pgm: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(GISLIB)

$(GISLIB): # in case the library changes

See811 Compiling and Installing GRASSdgrams|[p.57 for a complete discussion of
Gmakefiles.

812 GIS Library

- 157 - - 157 -

Chapter 13

Vector Library

13.1. Introduction

The Vector Library provides the GRASS programmer with routines to process the binary
vector files. It is assumed that the reader has ghdatabase Structaer[p.19 for a
general description of GRASS databases, 8d/ector Mapgp.33 for details about
vector file formats in GRASS.

The routines in th&/ector Library are presented in functional groupings, rather than in
alphabetical orderThe order of presentation will, it is hoped, provide a better
understanding of o the library is to be used, as well as whibe interrelationships
among the various routines. Note that a goaay wo understand moto use these
routines is to look at the source code for GRASS programs which usé them.

Note. All routines and global ariables in this librarydocumented or undocumented,
start with one of the following prefes Vect_ or V1_ or V2_ or dig_.2 To avoid name
conflicts, programmers should not create variables or routines in their own programs
which use this prefix.

An alphabetic indeis provided in825.4 Appendix D. Indeo \ector Library[p. 299.

13.1.1. IncludeFiles

The following file contains definitions and structures required by some of the routines in
this library The programmer should therefore include this file in @de that uses this
library:#

1 Some of these programs ati@.ascii, v.out.ascii, v.to.rast, d.vect, p.mapdv.patch.

2 All names beginning with V#_ (where # isyaprimary number) are also reserved for future
use.

3 Warning. There are also four additional global variables and/or routines which d NO
begin with these prefixedebugf Lines_In_MemoryMem_Line_PtrandMem_curr_position.

4 The GRASS compilation process, described §ihl Compiling and Installing GRASS
Programsip. 57, automatically tells the C compiler twato find this and other GRASS header files.

8§13 Vector Library

- 158 - - 158 -

#include "Vect.h"

13.1.2. \éctor Arc Types

A complete discussion of GRASS vector terminology can be fourgbih What is a
Vector Map Layer?p. 33 and the reader shouldview that section.Briefly, vector data
are stored as arcs representing lina@a, or point featuresThese arc types are coded as
LINE, AREA, and DA respectrely, (and are #efined in the file "dig_defines.h", which
is automatically included by the file "Vect.h").

13.1.3. Levels of Access
There are tw levds of read access to these vector files:

Level One provides simple access to the arc information contained in the vector files.
There is no access to category or topology information at tresde

Level Two provides full access to all the information contained in the vector file and its
support files, including line, cajery, node, and area informationlhis level requires
more from the programmemore memoryand longer startup tim@.

Note. Higher levels of access are planned, so when checking success return codes for a
particular leel of access (when callingé¢t_open_old(jor example), the programmer
should use = instead of = for compatibility with future releases.

13.2. Changesn 4.0 from 3.0

The 4.0 Vector Library changed significantly from g Library used with GRASS
3.1. Belav is an overview of why the changes were made, andvio program using the
newVect Library.

But also se&13.9 Loading the Vector Library. 17q.

5 The category information isvalable through the dig_att libranbut there are no data
structures to link them to the spatial features at thig.le

6 The routines in this library which proceasss are named using theord line. They should
be named using theond arc instead. Since that would require modifying a lot xiSeéng code,
the names hee ot been changed.

8§13 Vector Library

- 159 - - 159 -

13.2.1. Ppblem

The Digit Library was a collage of subroutines created foveldping the map
development programs. kKeof these subroutines were actually designed as a user access
library. They required indviduals to assume too much responsibility and contvet o
what happened to the data filehus when it came time to change vector data file formats
for GRASS 4.0, manprograms also required modification.

By using the FILE * structure as the tag for files, there was no means of expansion since
the FILE * structure is not modifiable by GRASEor example, there was no way to
open supporting files since all that was passed in to dig) w#é a FILE * which had no

file name associated with it.

The two different access Vels for 3.0 vector files provided very different ways of calling
the library; thg offered little consisterycfor the user.

The Digit Library was originally designed to only V& me file open for read or write at a
time. Althoughit was possible in some cases to get around this, one restric®thes
globalheadstructure. Sinc¢here vas only one instance of this, there could only be one
copy of that information, and thus, only one open vector file.

13.2.2. Solution

The solution to these problems was to designve user library as an inteate to the
vector data files. This melibrary was designed to provide a simple consistent aderf
which hides as much of the details of the data format as possible. It also caenoee
for future enhancements without the need to change existing programs.

13.2.3. Approach

A new library VECTLIB has been created. It provides routines for opening, closing,
reading, and writing vector files, as well agesal support functions. The Digit Library
has been renved, so that all existing programs will V& be ®nverted to use the me
library. Those routines thatxested in the Digit Library and were not affected by these
changes continue to exist in unmodified form, and are included in the VECTLIB.
Most of the commonly used routinesvhabeen discarded, and replaced by th& ne
Vector routines.

The token that is used to identify each map isMla@_infostructure. Thistructure vas

used by leel two functions in GRASS 3.1.It maintains all information about an
individual open file. This structure must be passed to most Vector subroutines.

813 Vector Library

- 160 - - 160 -

The headstructure has gonenay, as has the global instance of it whichag/also called
head All programs which used this global structure must roeate their wn local
version of it. The structure that replacstiuct heads struct dig_head

There are still tw levds of interface to the vector files (future releases may include
more). Le&el one provides access only to arc (i.e. polyline) information and to the type of
line (AREA, LINE, DQT). Level two provides access to polygons (areas), attributes, and
network topology There is nw only one subroutine to open a file for read,
Vect_open_old()and one for write, ¥ct_open_n&(). Vect _open_old()attempts to
open a vector file at the highest possiblellef access. Iwill return the number of the
level at which it opened.Vect_open_ne() alwaysopens at heel 1 only.

If you require that a file be opened at a loweell€e.g. one), you can call the routine
Vect_set_open_lel(1); Vect_open_old(will then either open at W&l one or &il. If
you instead require the highestvde access possible, you should not use
Vect_set_open_iel(), but instead check the returralue of \éct_open_old(}o male
sure it is greater than or equal to the lowegtl lat which you need access. This a®
for future levels to work without need for program change.

13.2.4. Implementation

There are tw macros set up for use in the Gmakefile to support the Vector library:

EXTRA_CFLAGS = $(VECT_INCLUDE)
must exist in the Gmakefile for yprogram which uses the Vector librarfOTE:
GRASS 3.1 required the line-I$(DIG_INCLUDE) ; do NOT uwse -l with
VECT_INCLUDE .

$(VECTLIB)
is to be used on the link statement to include the vector librahis basically
replaces the$(DIGLIB) macro from 3.1. Currently this macro represents tw
different libraries which are in directoriesrc/mapdev/Vlitand src/mapdev/diglib
These will probably change in the future and axergonly for aid in looking up
include files or functions.

The basic format of a program that reads a vector file is:

#include "\ect.h" /*new include file */
struct Map_info Map; [* Map info */
struct line_pnts *Points; /* Poly-Line data */
G_gisinit (agv[0]); [* init GIS lib */

7 Because there are twlibraries ivolved and there are some cross-dependencies, it may
occasionally be necessary to specify $(VECTLIB) twice on the link statement in order t@ resolv
all references.

813 Vector Library

- 161 - - 161 -

if (0 > Vect_open_old (&Map, name, mapset)) /* open file */
G_fatal_error ("Cannot open vector file");
Points = Vect_new_line_struct (\h’|209350u’);

while (0 < Vect_read_next_line (&Map, Points)) /* loop reading */

{ /* each line */
[* do something with Points */
}
Vect_destroy_line_struct (Points); /* renmdlocation */
Vect_close (&Map); [* close up */

All Vect_ routines work in the same way onyaevd of access unless otherwise
noted. Routinethat are designed for onevét of access or another v the naming
convention V#_ where# is an nteger (currently 1 or 2)For example: V2_line_att

() is only valid with level 2 or higher access, and will return the attribute number
for a specified line.

13.3. Openingand closing vector maps

Vect_open_old(Map, name, mapset) open existing vector map

struct Map_info *Map;
char *name, *mapset;

This routine opens thesetor mapamein mapsetfor reading. It returns the Vel
of successful open, or agative \value on failure.

Vect_open_new(Map, name) open nev vector map

struct Map_info *Map;
char *name,;

This routine opens the vector magmein the current mapset for writingt returns
the level of successful open which must be one, or gatiee \value on failure.

8§13 Vector Library

-162 - -162 -

Vect_set_open_led (level) specify level for opening map
int level,

This routine allows you to specify at whitével the map is to be openedt is
recommended that it only be used to force openingvat tme(1). Theres no
return value.

Vect_close(Map) close a vector map
struct Map_info *Map;

This routine closes an open vector map and cleans up the structures associated with
it. It MUST be called before exiting the program/hen used in conjunction with
Vect_open_nep. 163, it will cause the final writing of theector header before
closing the vector mapThe header data is in the structidap->head, which also
changed in 4.0 to be an instance of the structure (struct dig_head head) instead of a
pointer (struct dig_head *head).

13.4. Readingand writing vector maps

Vect_read_next_line(Map, Points) read next vector line

struct Map_info *Map;
struct line_pnts *Points;

This is the primary routine for reading through a vector magimply reads the
next line from the map into thBaints structure. Thigoutine should not be used in
conjunction with ap other read_line routine. Return value is type of line, or

-2 on EOF
-1 on Error (generally out of memory)

This routine is modified by:

Vect_rewind(p. 163
Vect_set_constraint egon(p. 163
Vect_set_constraint_tyfje 163

This routine normally only reads lines that are V&li(as opposed to dead or
deleted) from the ector map. This can be varidden using
Vect_set_constraint_type(Map,-1).

8§13 Vector Library

- 163 - - 163 -

Vect_rewind (Map) rewind vector map for re-reading
struct Map_info *Map;

This routine will reset the read pointer to the beginning of the map. This only
affects the routin¥ect_read _next_ling. 162.

Vect_set_constraint_region(Map, n, s, e, w) set restrictedegon to read vector arcs from
struct Map_info *Map;
double n, s, e, w;

This routine will set a restriction on reading only those lines wradheftirely or
partially in the specified rectangulagren. Vect_read_next_lin@. 162 is currently
the only routine affected by this, and it doesTNsDrrently cause line clipping.

Constraints affect only thielap specified. Thg do not affect ay other Maps that
may be open.

Vect_set_constraint_type(Map, type) specify types of arcs to read
struct Map_info *Map;
int type;

This routine will set a restriction on reading only those lines which matdypbs
specified. Thiscan be ay combination oftypes htwise OR’ed togetherFor
example: LINE | AREAwould exclude ap DOT (or future NEAT) linetypes.

Vect_read_next_lin@. 162 is currently the only routine affected by this.

If type is set to -1, all lines will be read including deleted deadlines. An
example of this exists imout.ascij where it is desirable to include all lines, (ie. not
exclude deleted lines).

Constraints affect only thielap specified. Thg do rot affect ag other Maps that
may be open.

813 Vector Library

- 164 - - 164 -

Vect_remove_constraints (Map) unset any vector read constraints

struct Map_info *Map;

Remaves dl constraints currently affectinglap.

long
Vect_write_line (Map, type, Points) write out ac to vector map
struct Map_info *Map;
int type;
struct line_pnts *Points;
This routine will write out a line to a vector map which has previously been opened
for write by Vect_open_ne. 161). Thetype of line is one of: AREA, LINE, DOT
It returns the déet into the file where the line started. If this number gatinee o
0, there was an error.
V1 read_line(Map, Points, offset) read vector ac by $ecifying offset
struct Map_info *Map;
struct line_pnts *Points;
long offset;
This routine will read a line from the vector map at the speciftst in the file.
This function is gailable at lerel 1 or higher.
Return value is the same ¥t _read _next_ling. 162.
V2_read_line(Map, Points, line) read vector ac by pecifying line id

struct Map_info *Map;
struct line_pnts *Points;
int line;

This routine will read a line from the vector map at the specified line imdhe

map. Refeto V2_num_line®. 167 for number of lines in the map. This function is
available at lgel 2 or higher.

Return value is the same¥t_read_next_lin@. 162.

813 Vector Library

- 165 - - 165 -
13.5. DataStructures

struct line_pnts *
Vect_new_line_struct() create nev initialized line points structure

This routine MUST be used to initializeyaand all line_pnts structurestou cannot
simply create a line_pnts structure and pass its address to routinasst first be
initialized. Thecorrect procedure is:

struct line_pnts *Points;

Points = Vect_ne_line_struct();

This routine will print an error message and exit with an error on out of memory
condition.

Vect_destroy_line_struct(Points) deallocate line points structergpace
struct line_pnts *Points;

This routine will free apm memory created for a line_pnts structurdou can use
this when you are done with a line_pnts struct or when you need to free up unused
memory The structure must kia keen created byect _new_line_stru¢p. 169.

13.6. DataConversion

Vect_copy_xy_to_pntg(Points, X, yn) convert xy arrays to line_pnts structure

struct line_pnts *Points;
double *x, *y;
int n;

Since all Vector library routines require the use of the line_pnts structure, agd man
programs out there avk with X and Y arrays of points, this routine was to created
to copy n data pairs fronk,y arrays to a line_pnts structuRmints. It handles all
memory management.

813 Vector Library

- 166 - - 166 -

Vect_copy_pnts_to_xy(Points, X, yn) convert line_pnts structarto xy arays

struct line_pnts *Points;
double *x, *y;
int *n;

Since all Veector library routines require the use of the line_pnts structure, agd man
programs out there work with X and Y arrays of points, this routia® ter created

to copy data from a line_pnts structuReints into user supplied,y arrays. Thecy
arrays MUST each be @ enough to holdPoints.n_points doubles or memory
corruption will occur No bounds checking is done. Upon returnvill contain the
number of points copied.

Vect_copy_head_datgfrom, to) copy vector header struct data
struct dig_head *from, *to;

This routine should be used to gogatafrom one dig_head stru¢d another For
example, if a 3.1 program used to fill in a local dig_head struct and then called
dig_write_head_binary()(which no longer xsts), you would na call
Vect_copy_head_data (local_head, &Map.heah) copy the data into the Map
structure which would then be written out whéatt_closép. 162 was called. This
routine must used because there ane other fields in the head structure which
applications programmers should not touch, and this program copies only those
fields which are\ailable to the programmer.

13.7. Miscellaneous

Vect_get_area_pointgMap, area, Points) gét defining points for area polygon

struct Map_info *Map;
int area;
struct line_pnts *Points;

This routine replaceslig_get_area()lt will fill in the Points structure with the list
of points which describe an area in clockwise order.
Note. This function, works only for kel 2 or higher.

It returns the number of points or -1 on error.

8§13 Vector Library

- 167 - - 167 -

V2_num_lines(Map) get number of arcs in vector map

struct Map_info *Map;

Return total number of lines in the veckdap.

Note. The line ind&es ae numbers from 1 to n, where n is the number of lines in
the vector map, as returned by this routine.

V2_num_areas(Map) get number of areas in vector map
struct Map_info *Map;

Return total number of areas in the vedttap.

Note. The area indaes ae numbers from 1 to n, where n is the number of areas in
the vector map, as returned by this routine.

V2_line_att (Map, line) gét attribute number of arc

struct Map_info *Map;
int ling;

Given ac inde n, return its attribute number.

Returns O if not labeled or on error.

V2_area_att(Map, area) gét attribute number of area

struct Map_info *Map;
int area;

Given area inde& n, return its attribute number.

Returns O if not labeled or on error.

8§13 Vector Library

- 168 - - 168 -

V2_get_area(Map, n, pa) get area info from id

struct Map_info *Map;
int n;
P_AREA **pa;

Given aea inde n, the P_AREA information for the area is read into a/gbei
structure. Apointer to this structure is placed in pa. The pointer palid until the
next call to this routine. Note that *pa does not need to point to anything on entry.

Returns O if found, or metive a error.

V2_get_area_bboxMap, area, n, s, e, w) get bounding box of area

struct Map_info *Map;
int area;
double *n, *s, *e, *w;

Given aea ind& n, st n (north, s (south), e (east), and w (west) to #heeg of the
bounding box for the area.

Returns O if ok, or -1 on error.

V2_get_line_bbox(Map, line, n, s, e, w) get bounding box of arc

struct Map_info *Map;
int line;
double *n, *s, *e, *w;

Given ac inde n, st n (north, s (south), e (east), and w (west) to the values of the
bounding box for the arc.

Returns O if ok, or -1 on error.

813 Vector Library

- 169 - - 169 -

Vect_print_header (Map) print header info to stdout
struct Map_info *Map;

This routine replaces dig_print_headerdnd simply displays selected information
from the headeNamely oganization, map name, source date, and original scale.

Vect_level (Map) get open level of vector map
struct Map_info *Map;

This routine will return the number of thevéeat which aMap is opened at or -1 if
Map is not opened.

13.8. Routineghat remain from GRASS 3.1

dig_point_to_area(Map, X,) find whid area point is in

struct Map_info *Map;
double x, y;

Returns the indeof the area containing the poixyy, or O if none found.

double
dig_point_in_area(Map, X, y pa) is point in area?

struct Map_info *Map;
double x, y;
P_AREA *pa,;

Given a filed P_AREA structurepa, determine ifx,y is within the area.The
structurepa can be filled withvV2_get_aref. 169.

Returns 0.0 ifx,y is not in the area, the posei mnimum distance to the nearest
area edge i,y is inside the area, or -1.0 on error.

8 The levels correspond to the 3.1vie 1 and level 2 accesses.

8§13 Vector Library

-170 - -170 -

dig_point_to_line (Map, X, y type) find whid arc point is closest to

struct Map_info *Map;
double x, y;
char type;

Returns the indeof the arc which is nearest to the poity. The pointx,y must be
within the arc$ bounding box. Settype to a combination of LINE, AREA, or DD
(eg. LINE | AREA), or (char) -1 if you want to search all arc types.

dig_check_dist(Map, n, X, yd) find distance of point to line

struct Map_info *Map;
int n;

double x, y;

double *d;

Computed], the square of the minimum distance from paigtto arcnR.

Returns the number of the segment that was closest, or -1 on En@sgment
number in combination withV2_read_lin€p. 1649 can be used to determine the
endpoints of the closest line-segment in the arc.

13.9. Loadingthe Vector Library

The library is loaded by specifying $(VECTLIB) in the Grafile. The following
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile using $(VECTLIB)

OBJ = main.o subl.o sub2.o
EXTRA_CFLAGS = $(VECT_INCLUDE)

$(BIN_MAIN_CMD)/pgm: $(OBJ) $(VECTLIB) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(0OBJ) $(VECTLIB) $(GISLIB

~

$(VECTLIB): # in case the library changes

Note. EXTRA_CFLAGS tells the C compiler where additionainglude files are
located. This is necessary since the required #include files do not curremtiy fhe
normal GRASS #include directoryNotice that-l must not be provided before the
$(VECT_INCLUDE)

Note. Because $(VECTLIB) currently referencesotwistinct libraries, on occasion it
may be necessary to specify it twice on the link command because of library cross-
references.

813 Vector Library

-171 - -171 -

See811 Compiling and Installing GRASSdgrams|[p.57 for a complete discussion of
Gmakefiles.

813 Vector Library

-172 - -172 -

-173 - -173 -

Chapter 14

Imagery Library

14.1. Introduction

Thelmagery Library was aeated for ersion 3.0 of GRASS to support integrated image
processing directly in GRASS. It contains routines thawideo access to thgroup
database structure which was also introduced in GRASS 3.0 for the same purpose.

It is assumed that the reader has ré&dd Database Structar[p.19 for a general
description of GRASS databas&8 Image Data: Groups [p.43 for a description of
imagery groups, angs Raster Mapg. 23 for details about map layers in GRASS.

The routines in thémagery Library are presented in functional groupings, rather than in
alphabetical orderThe order of presentation will, it is hoped, provide a better
understanding of o the library is to be used, as well as whibe interrelationships
among the various routines. Note that a goaay wo understand moto use these
routines is to look at the source code for GRASS programs which usé them.

Most routines in this library require that the header file "imagery.h" be included in an
code using these routinég.herefore, programmers shoulavays include this file when
writing code using routines from this library:

#include "imagery.h"

This header file includes the "gis.h" header file as well.

Note. All routines and global ariables in this librarydocumented or undocumented,
start with the prefix_. To avoid name conflicts, programmers should not creat@ables
or routines in their own programs which use this prefix.

1 Since this is a melibrary, it is expected to gr. It is hoped that image analysis functions will
be added to complement the database functions already in the library.

2 See§8.4 Imayay Programsip. 47 for a list of some imagery programs.

3 The GRASS compilation process, described §ihl Compiling and Installing GRASS
Programsip. 57, automatically tells the C compiler tato find this and other GRASS header files.

814 Imagery Library

- 174 - - 174 -

An alphabetic indeis provided in§25.4 Appendix E. Inddo Imagery Library [p. 301.

14.2. Group Processing

The group is thedy database structure which permits integration of image processing in
GRASS.

14.2.1. Pompting for a Group

The following routines interactely prompt the user for a group name in the current
mapsett In each, theprompt string will be printed as the first line of the full prompt
which asks the user to enter a group namfigorompt is the empty string ", then an
appropriate prompt will be substituted. The name that the user enters is copied into the
group buffer® These routines e a hiilt-in ’list’ capability which allows the user to get

a list of existing groups.

The user is required to enter alid group name, or else hit the RETURBYyko cancel
the request. If the user enters awalitl response, a message is printed, and the user is
prompted agin. Ifthe user cancels the request, 0 is returned; otherwise, 1 is returned.

| _ask _group_old(prompt, group) prompt for an existing group
char *prompt;
char *group;

Asks the user to enter the name of an exigjnogip in the current mapset.

|_ask_group_new(prompt, group) prompt for nev group

char *prompt;
char *group;

Asks the user to enter a name fogm@up which does not exist in the current
mapset.

4 This library only vorks with groups in the current mapset. Other mapsets, taose in the
users mapset search path, are ignored.

5 The size ofgroup should be lage enough to hold rGRASS file name. Most systems allo
file names to be quite long. It is recommendednhate be declareadhar group[50].

814 Imagery Library

-175 - -175 -

|_ask_group_any(prompt, group) prompt for any valid group name
char *prompt;
char *group;

Asks the user to enter ald group name. Thegroup may or may not exist in the
current mapset.

Note. The user is not warned if thgroup exists. The programmer should use
|_find_grougp. 179 to determine if thegroup exsts.

Here is an example of hoto use these routines. Note that the programmer must handle
the O return properly:

char group[50];

if (!1_ask _group_ayn ("Enter group to be processed"”, group))
exit(0);

14.2.2. FindingGroups in the Database

Sometimes it is necessary to determine if \a&rgigroup already x@sts. The folleving
routine provides this service:

|_find_group (group) does group exist?
char *group;

Returns 1 if the specifiegtoup exists in the current mapset; O otherwise.

14.2.3. REFFile

These routines puide access to the information contained in the REF file for groups and
subgroups, as well as routines to update this informafidvey use theRef structure,
which is defined in the "imagery.h" header file; €B1.4 Im@eay Library Data
Structuregp. 18Q.

The contents of the REF file are read or updated by the following routines:

814 Imagery Library

-176 - -176 -

| _get_group_ref(group, ref) read group REF file

char *group;
struct Ref *ref;

Reads the contents of the REF file for the specifiedp into theref structure.

Returns 1 if successful; 0 otherwise (but no error messages are printed).

|_put_group_ref (group, ref) write group REF file

char *group;
struct Ref *ref;

Writes the contents of thref structure to the REF file for the specifgaup.
Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. This routine will create thgroup, if it does not already exist.

|_get_subgroup_ref(group, subgroup, ref) read subgroup REF file

char *group;
char *subgroup;
struct Ref *ref;

Reads the contents of the REF file for the spec#iddjroup of the specifiedroup
into theref structure.

Returns 1 if successful; 0 otherwise (but no error messages are printed).

|_put_subgroup_ref (group, subgroup, ref) write subgroup REF file

char *group;
char *subgroup;
struct Ref *ref;

Writes the contents of thef structure into the REF file for the specifieabgroup
of the specifiedjroup.

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. This routine will create theubgroup, if it does not already exist.

These next routines manipulate &ef structure:

814 Imagery Library

-177 - -177 -

|_init_group_ref (ref) initialize Ref structure
struct Ref *ref;

This routine initializes theef structure for other library calls which requireRef
structure. This routine must be called beforg @se of the structure can be made.

Note. The routined_get_group_rep. 179 and |_get_subgroup_réb. 179 call this
routine automatically.

|_add_file_to_group_ref(name, mapset, ref) add file name to Ref structure

char *name;
char *mapset;
struct Ref *ref;

This routine adds the filkame andmapsetto the list contained in theef structure,
if it is not already in the list. Theef structure must hee keen properly initialized.

This routine is used by programs, such.amxlik, to add to the group e raster
files created from files already in the group.

Returns the indeinto thefile array within theref structure for the file after
insertion; se&@14.4 Imgery Library Data Structuregp. 18Q.

|_transfer_group_ref file (src, n, dst) copy Ref lists

struct Ref *src;
int n;
struct Ref *dst;

This routine is used to cgfile names from onRef structure to anothefThe name
and mapset for fila from thesrc structure are copied into thust structure (which
must be properly initialized).

For example, the following code copies oRef structure to another:

struct Ref src,dst;
int n;

/* some code to get information insoc */

|_init_group_ref (&dst);
for (n = 0; n < src.nfiles; n++)
I_transfer_group_ref_file (&src, n, &dst);

This routine is used hypointsto create the REF file for a subgroup.

814 Imagery Library

-178 - -178 -

|_free_group_ref (ref) free Ref structure
struct Ref *ref;

This routine frees memory allocated to théstructure.

14.2.4. ARGET File
The following two routines read and write the TARGET file.

|_get_target(group, location, mapset) read taiget information

char *group;
char *location;
char *mapset;

Reads the tget location and mapset from the TARGET file for the specified
group.

Returns 1 if successful; O otherwise (and prints a diagnostic error).

This routine is used bypoints andi.rectify and probably should not be used by
other programs.

Note. This routine doesot validate the target information.

|_put_target (group, location, mapset) write target information

char *group;
char *location;
char *mapset;

Writes the targelbcation andmapsetto the TARGET file for the specifiegtoup.
Returns 1 if successful; 0 otherwise (but no error messages are printed).
This routine is used hytarget and probably should not be used by other programs.

Note. This routine doesot validate the target information.

14.2.5. POINTSFile

The following routines read and write the POINTS file, which contains the image
registration control points. This file is created and updated by the pragramts and
read byi.rectify.

814 Imagery Library

-179 - -179 -

These routines use theontrol _Points structure, which is defined in the "imagéty
header file; se@14.4 Imgery Library Data Structuregp. 18Q.

Note. The interface to th€ontrol_Points structure preided by the routines belois
incomplete. Aroutine to initialize the structure is needed.

|_get_control_points(group, cp) read group control points

char *group;
struct Control_Points *cp;

Reads the control points from the POINTS file forghgup into thecp structure.
Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. An error message is printed if the POINTS file islial, or does not exist.

| _new_control_point (cp, €1, nl, e2, n2, status) add nev control point

struct Control_Points *cp;
double el, n1;

double e2, n2;

int status;

Once the control points @ been read into thep structure, this routine addswe
points to it. The n& control point is gien by el (column) andnl (row) on the

image, and the2 (east) andh2 (north) for the target database. The valustatus

should be 1 if the point is a valid point; 0 othervfise.

|_put_control_points (group, cp) write group control points

char *group;
struct Control_Points *cp;

Writes the control points from thep structure to the POINTS file for the specified
group.

Note. Points incp with a ngdive statusare not written to the POINTS file.

6 Use of this routine implies that the point is probably goodtatusshould be set to 1.

8§14 Imagery Library

-180 - -180 -

14.3. Loadingthe Imagery Library

The library is loaded by specifying $(IMPERYLIB) in the Gmalefile. Thefollowing
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(IMAGERYLIB)
OBJ = main.o subl.o sub2.0

pgm: $(OBJ) $(IMAGERYLIB) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(IMAGERYLIB) $(GISLIB

$(IMAGERYLIB): # in case the library changes
$(GISLIB): #in case the library changes

Note. This library must be loaded with $(GISLIB) since it uses routines from that
library. See812 GIS Library[p. 69 for details on that library.

See811 Compiling and Installing GRASSograms[p.57 for a complete discussion of
Gmakefiles.

14.4. ImageryLibrary Data Structures
Some of the data structures in the "imagery.h" header file are describ&d belo

14.4.1. structRef

The Ref structure is used to hold the information from the REF file for groups and
subgroups. The structure is:

814 Imagery Library

-181 - -181 -

struct Ref
{
int nfiles; /* numberof REF files */
struct Ref_Files
{
char name[30]; /* REFfile name */
char mapset[30]; /* REFfile mapset */
} * file;
struct Ref_Color
{
unsigned char *table; /* color table for min-max alues */
unsigned char *inde /* datatranslation inde */
unsigned char *lif; [* data buffer for reading color file ~ */
int fd; [* for image i/o */
CELL min, max; /* min,maxCELL values */
int n; /* index into Ref_Files */
}red, grn, blu;
H

The Ref structure hasifiles (the number of raster filesfije (the name and mapset of
each file), anded,grn,blu (color information for the group or subgroiip

There is no function inteste to thenfiles andfile elements in the structure. This means
that the programmer must reference the elements of the structure difgotyname and
mapset for theth file arefile[il.name, andfile[i].mapset.

For example, to print out the names of the raster files in the structure:
int i;
struct Ref ref;

/* some code to get the REF file for a group ir*/

for (i = 0; i < ref.nfiles; i++)
printf ("%s in %s\n", ref.file[i].name, ref.file[i].mapset);

14.4.2. structControl_Points

The Control_Pointsstructure is used to hold the control points from the group POINTS
file. Thestructure is:

7 The red,grn,blu elements arexpected to change as the imagery codedldps. Do not
reference them. Pretend yhao rot exist.

8 Thenfiles andfile elements are not expected to change in the future.

814 Imagery Library

-182 -

struct Control_Points

{

int count;

double *el;
double *n1;
double *e2;
double *n2;
int *status;

}s

/*
/*
/*
/*
/*

numberof control points */

imageeast (column) */
imagenorth (raw) *

target east */
target north */
statusof control point */

-182 -

The number of control points ount. Control pointi is el[i], n1[i], e2[i], n2[i], and

its status istatudi].

814 Imagery Library

-183 - - 183 -

Chapter 15

Raster Graphics Library

15.1. Introduction

The Raster Graphics Lilary provides the programmer with access to the GRASS
graphics deices. All video graphics calls ae made through this library (directly or
indirectly). No standard/portable GRASS video graphics programwegirany video
display directly This library proides a powerful, but limited number of graphics
capabilities to the programmefhe tremendous benefit of this approach is seen in the
ease with which GRASS graphics applications programs port W0 machines or
devices. Becauseo device-dependent coderists in application programs, virtually all
GRASS graphics programs port without modificatidbach graphics device must be
provided a dmwer (or translator program).At run-time, GRASS graphics programs
rendezwous with a user-selected vl program. Tvo dgnificant prices are paid in this
approach to graphics: 1) graphics displays run significantlyegloand 2) the
programmer does not Ve access todng/ (and sometimes more efficient) resident library
routines that hae been specially created for the device.

This library uses a couple of simple concepts. First, there is the idea of a current screen
location. Theras nothing which appears on the graphics monitor to indicate the current
location, but may graphic commands begin their graphics at this locatibrcan, of
course, be setxplicitly. Second, there is alys a current color Mary graphic
commands will do their work in the currently chosen color.

The programmer alays works in the screen coordinate systddamlike mary graphics
libraries deeloped to support CAD, there is no concept of a world coordinate system.
The programmer must address graphics requestgpiaie screen locations. This is
necessaryespecially in the interest of fast raster graphics.

The upper left hand corner of the screen is the origire actual pixel rows and columns
which define the edge of the video surface are returned with c&lsstoeen_lefp. 189,
R_screen_ritép. 189, R_screen_b@b. 189, andR_screen_tq(p. 189.

Note. All routines and global ariables in this librarydocumented or undocumented,
start with the prefixR_. To avoid name conflicts, programmers should not create

815 Raster Graphics Library

-184 - -184 -

variables or routines in their own programs which use this prefix.

An alphabetic indeis provided in825.4 Appendix G. Indeto Raster Graphics Libary
[p. 309.

15.2. Connectingo the Driver

Before ai other graphics calls can be made, a successful connection to a running and
selected graphics aer must be made.

R_open_driver () initialize graphics
Initializes connection to current graphicsveri Refer to GRASS Uses’ Manual
entries on thed.moncommand. Ifconnection cannot be made, the application
program sends a message to the user stating thatea lths not been selected or
could not be opened\ote that only one application program can be connected to a
graphics dner at once.

After all graphics hee keen completed, the a&r should be closed.

R_close_drver () terminate graphics

This routine breaks the connection with the graphicsvedriopened by
R_open_d~er().

15.3. Colors

GRASS is highly dependent on color for distinguishing betwederdiit catgories. No
graphic patterning is supported inyaautomatic vay. There are tw color modes.Fixed

color refers to set and immutable color look-up tables on the hardwace.dén some
cases this is necessary because the graphics device does not contain programmer
definable color look-up tables (LUT). Floating colors use the LUTs of the grapkice de
often in an interacte node with the userThe basic impact on the user is that under the
fixed mode, multiple maps can be displayed on the device with apparently no color
interference between mapkinder float mode, the user may intenadti manipulate the
hardware color tables (using programs suctldaslorg. Otherthan the fact that in float
mode no more colors may be used than color registeifalde on the uses’ chosen
driver, there are no other programming repercussions.

815 Raster Graphics Library

-185 - -185 -

R_color_table_fixed() select fixed color table

Selects a fixed color table to be used for subsequent color itallsexpected that
the user will follav this call with a call to erase and reinitialize the entire graphics
screen.

Returns O if successful, non-zero if unsuccessful.

R_color_table float() select floating color table

Selects a float color table to be used for subsequent color calls. It is expected that
the user will follav this call with a call to erase and reinitialize the entire graphics
screen.

Returns O if successful, non-zero if unsuccessful.

Colors are set using irger values in the range of 0-255 to setrée, green,andblue
intensities. Infloat mode, thesealues are used to directly modify the hardware color
look-up tables and instantaneously modify the appearance of colors on the madmitor
fixed mode, these values modify secondary look-up tables in the deviesspdygram

so that the colors wolved point to the closesvalable color on the device.

R_reset_color(red, green, blu, num) define single color

unsigned char red, green, blue ;
int num ;

Sets color numbetum to the intensities representedieyl, green,andblue.

R_reset_colorgmin,max,red,green,blue) define multiple colors

int min, max ;
unsigned char *red, *green, *blue ;

Sets color numbemin throughmax to the intensities represented in the arrays
green,andblue.

R_color (color) select color
int color ;

Selects theolor to be used in subsequent\@reommands.

815 Raster Graphics Library

- 186 - - 186 -

R_standard_color(color) select standat color

int color ;

Selects the standarmblor to be used in subsequent Wwraommands. Thecolor
value is best retried using D_translate colofp. 207). See816 Display Gaphics
Library [p. 195.

R_RGB_color(red,green,blue) select color
int red, green, blue ;

When in float mode (seR_color_table_flogp. 189), this call selects the color most
closely matched to theed, green, and blue intensities requested. Thesalues
must be in the range of 0-255.

15.4. BasidGraphics

Several calls are common to nearly all graphics systems. Routines exist to determine

screen dimensions, as well as routines for moving, drawing, and erasing.

R_screen_bot() bottom of screen
Returns the pixel m number of the bottom of the screen.

R_screen_top() top of screen
Returns the pixel @ number of the top of the screen.

R_screen_left() screen left edge
Returns the pixel column number of the left edge of the screen.

R_screen_rite() screen right edge
Returns the pixel column number of the right edge of the screen.

R_move_abs(x,y) move current location

int x,y;

Move the current location to the absolute screen coordixgteNothing is dravn
on the screen.

815 Raster Graphics Library

-187 - - 187 -

R_move_rel (dx,dy) move current location
int dx, dy;

Shift the current screen location by the valuedxmanddy:

Newx = Oldx + dx;
Newy = Oldy + dy;

Nothing is drawn on the screen.

R_cont_abs(x,y) draw line

int x,y;

Draw a line using the current coloselected viaR_cololp. 189, from the current
location to the location specified kyy. The current location is updatedxgy.

R_cont_rel (dx,dy) draw line
int dx, dy;
Draw a line using the current coloselected viaR_cololp. 189, from the current

location to the relate location specified bylx and dy. The current location is
updated:

Newx = Oldx + dx;
Newy = Oldy + dy;

R_box_abs(x1,y1,x2,y2) fill a box
int x1,y1;
int x2,y2;

A box is drawn in the current color using the coordinatég/l and x2,y2 as
opposite corners of the box. The current location is update2iya.

R_box_rel(dx,dy) fill a box
int dx, dy;
A box is dravn in the current color using the current location as one corner and the

current location plugix and dy as the opposite corner of the box. The current
location is updated:

Newx = Oldx + dx;
Newy = Oldy + dy;

815 Raster Graphics Library

- 188 - - 188 -

R_erase() erase screen
Erases the entire screen to black.

R_flush () flush graphics

Send all pending graphics commands to the graphicgerdriThis is done
automatically when graphics input requests are made.

R_stabilize() synchronize graphics

Send all pending graphics commands to the graphigerdmd cause all pending
graphics to be drawn (provided thewdriis written to comply). This routine does
more thanR_fluslip. 189 and in mary instances is the more appropriate routine fo
the two to wse.

15.5. Ply Calls

In mary cases strings of points are used to describe a carlipts a series of dots, or a
solid polygon. Absolute and rele#i calls are provided for each of these operations.

R_polydots_abg(x,y,num) draw a series of dots
int *x, *y;
int num;

Pixels at thenum absolute positions in theandy arrays are turned to the current
color. The current position is left updated to the position of the last dot.

R_polydots_rel(x,y,num) draw a series of dots

int *x, *y;

int num;
Pixels at thenum relative positions in thex andy arrays are turned to the current
color. The first position is relate o the starting current location; the succeeding

positions are then relag o the previous position. The current position is updated to
the position of the last dot.

815 Raster Graphics Library

-189 - - 189 -

R_polygon_abg(x,y,num) draw a closed polygon
int *x, *y;
int num;

The num absolute positions in theandy arrays outline a closed polygon which is
filled with the current color The current position is left updated to the position of
the last point.

R_polygon_rel(x,y,num) draw a closed polygon
int *x, *y;
int num;

The num relative positions in thex andy arrays outline a closed polygon which is
filled with the current color The first position is relate o the starting current
location; the succeeding positions are then redah the previous position.The
current position is updated to the position of the last point.

R_polyline_abs(x,y,num) draw an open polygon
int *x, *y;
int num;

The num absolute positions in the and y arrays are used to generate a
multisggment line (often cued). Thisline is dravn with the current color The
current position is left updated to the position of the last point.

Note. It is not assumed that the line is closed, i.e., no line rdfeom the last
point to the first point.

R_polyline_rel (x,y,num) draw an open polygon
int *x, *y;
int num;
Thenum relatve positions in thex andy arrays are used to generate a mudtisent
line (often cured). Thefirst position is relatie © the starting current location; the

succeeding positions are then refatio the previous position. The current position
is updated to the position of the last point. This line isvdravith the current color

Note. No line is drawn between the last point and the first point.

15.6. RasterCalls

GRASS, being principally a raster-based data system, requires efficient drawing of raster
information to the display dé&ce. Thesealls provide that capability.

815 Raster Graphics Library

-190 - -190 -

R_raster (num,nrows,withzero,raster) draw a raster

int num, nrows, withzero ;
int *raster ;

Starting at the current position, them colors represented in thiaster array are
dravn for nrows consecutie pgxel ronvs. Thewithzero flag is used to indicate
whether 0 values are to be treated as a color (1) or should be ignoréddfred,
those screen pixels in these locations are not modifiés option is useful for
graphic werlays.

R_set RGB_color(red,green,blue) initialize graphics
unsigned char red[256], green[256], blue[256] ;

The three 256 member arraysgd, green,andblue, establish look-up tables which
translate the & image values supplied R_RGB_rastdp. 190 to color intensity
values which are then displayed on the video scréHmese tvo commands are
tailor-made for imagery data comingf aensors which ge values in the range of
0-255.

R_RGB_raster (num,nrows,red,green,blue,withzero) draw a raster

int num, nrows, withzero ;
unsigned char *red, *green, *blue ;

This is useful only in figd color mode (sele_color_table fixe@. 189). Startingat

the current position, theum colors represented by the intensities described in the
red, green,andblue arrays are drawn famrows consecutie pxel rows. The r&

values in these arrays are in the range of 0-255y Ehe used to map into the
intensity maps which were prieusly set with R_set RGB_col@s. 199. The
withzero flag is used to indicate whether O values are to be treated as a color (1) or
should be ignored (0). If ignored, those screerelpixn these locations are not
modified. Thisoption is useful for graphicverlays.

15.7. Text

These calls provide access to built-in vector fonts which may be sized and clipped to the
programmers Pecifications.

815 Raster Graphics Library

-191 - -191 -

R_set_window(top,bottom,left,right) set text clipping frame
int top, bottom, left, right ;

Subsequent calls tB_tex{p. 199 will have text strings clipped to the screen frame
defined bytop, bottom, left, right.

R_font (font) choose font
char *font ;

Set current font téont. Available fonts are:

Font Name Description

cyrilc cyrillic

gothgbt GothidGreat Britain triplex

gothgrt GothidGerman triplex

gothitt Gothicltalian triplex

greekc Greekomplex

greekcs Greekomple script

greekp Greeplain

greeks Greekimplex

italicc Italiancomplex

italiccs Italiancomplex small

italict Italiantriplex

romanc Romaeomplex

romancs Romanomple small

romand Romauruplex

romanp Romaplain

romans Romasimplex

romant Romatriplex

scriptc Scriptomplex

scripts Scripsimplex
R_text_size(width, height) set text size

int width, height ;

Sets text pixel width and heightwadth andheight.

815 Raster Graphics Library

-192 - -192 -

R_text (text) write text
char *text ;

Writes text in the current color and font, at the current text width and height,
starting at the current screen location.

R_get_text_box(text, top, bottom, left, right) get text extents

char *text ;
int *top, *bottom, *left, *right ;

The extent of the area enclosing tiegt is returned in the intger pointerstop,

bottom, left, andright. No text is actually dran. Thisis useful for capturing the
text extent so that the text location can be prepared with proper background or
border.

15.8. Usernput

The raster library provides mouse (or other pointingad® input from the userThis can
be accomplished with a pointer ubberband line or a rubber-band boklpon pressing

one of three mouse buttons, the current mouse location and the button pressed are

returned.

R_get_location_with_pointer(nx,ny,button) get mouse location using pointer
int *nx, *ny, *button ;

A cursor is put on the screen at the location specified by the coordinate found at the

nx,ny pointers. Thisursor tracks the mouse (or other pointing device) until one of
three mouse buttons are presséthon pressing, the cursor is reved from the
screen, the current mouse coordinates are returned bk thed ny pointers, and
the mouse wtton (1 for left, 2 for middle, and 3 for right) is returned in boéton
pointer.

R_get_location_with_line(x,y,nx,ny,button) get mouse location using a line

int x,y;
int *nx, *ny, *button ;

Similar to R_get_location_with_pointgr. 199 except the pointer is replaced by a
line which has one end fixed at the coordinate identified by theaues. The
other end of the line is initialized at the coordinate identified byithey pointers.
This end then tracks the mouse untilwatén is pressed. The mouse button (1 for
left, 2 for middle, and 3 for right) is returned in thgton pointer.

815 Raster Graphics Library

-193 - -193 -

R_get_location_with_box(x,y,nx,ny,button) get mouse location using a box
int x, vy,
int *nx, *ny, *button ;

Identical to R_get location_with_lin. 199 except a rubbeband box is used
instead of a rubber-band line.

15.9. Loadingthe Raster Graphics Library

The library is loaded by specifying $(RASTERLIB) in the Gefdk. Thefollowing
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for §(RASTERLIB)
OBJ = main.o subl.o sub2.0

pgm: $(OBJ) $(RASTERLIB) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(RASTERLIB) $(GISLIB

~

$(RASTERLIB): #in case the library changes
$(GISLIB): #in case the library changes

Note. This library must be loaded with $(GISLIB) since it uses routines from that
library. See812 GIS Library[p. 69 for details on that library.

This library is usually loaded with the $(DISPYRIB). See 816 Display Gaphics
Library [p. 195 for details on that library.

See811 Compiling and Installing GRASSograms [p.57 for a complete discussion of
Gmakefiles.

815 Raster Graphics Library

-194 - -194 -

-195 - -195 -

Chapter 16

Display Graphics Library

16.1. Introduction

This library provides a wide assortment of highgellgraphics commands which in turn

use the graphics raster library primés. Itis highly recommended that this section be
used to understand Wwosome of the GRASS graphics commands opergech
programs lile d.vect, d.gaph, andd.rastdemonstrate o these routines work together

The routines fall into four basic sets: 1) frdnoeeation and management, 2) coordinate
corversion routines, 3) specialized efficient raster display routines, and 4) assorted
miscellaneous routines &kpop-up menus and line clipping.

Note. All routines and global variables in this libraocumented or undocumented,
start with the prefixD_. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic indeis provided in825.4 Appendix.Hndex to Display Graphics Libary
[p.303.

16.2. Library Initialization

The following routine performs a required setup procedure. Its use is encouraged and
simplifies the use of this library.

1 In previous ersions of GRASS, these were called graphic windowseduce ambiguity for
users, these are wocalled graphicframes. However, for backward compatiblity (and general
programmer confusion) the routines described here still retain their original names erthe w
"window" is still used in the naming of these routines.

§16 Display Graphics Library

- 196 - - 196 -

D_setup(clear) initialize/create a frame

int clear

This routine performs a series of initialization steps for the current frdimedso
creates a full screen frame if there is no current frame.cleze flag, if set to 1,
tells this routine to clear gnnformation associated with the frame: graphics as well
as region information.

This routine religes the programmer of ang to perform the following idiomatic
function call sequence:

struct Cell_head region;
char name[128];
int T,B,L,R;

/* get current frame, create full_screen frame if no current frame */
if (D_get_cur_windname)) {

T =R_screen_tof);

B = R_screen_bof);

L = R_screen_left);

R =R_screen_ritd);

strcpy (name, "full_screen");

D_new_window(name, TB, L, R);

}

if (D_set_cur_windname)) G_fatal_error("Current graphics frame natlable") ;
if (D_get_screen_windo&T, &B, &L, &R)) G_fatal_error("Getting graphics coordinates") ;

/* clear the frame, if requested to do so */

if (clear) {
D_clear_window();
R_standard_coloD_translate_color("black™));
R_box_abs(L, T, R, B);

}

/* Set the map region associated with graphics frame */

G_get_set_windw (®ion);

if (D_check_map_window®ion)) G_fatal_error("Setting graphics coordinates") ;
if(G_set_windav (®ion) < 0) G_fatal_error ("Nalid graphics region coordinates");

/* Determine cowersion factors */
if (D_do_corversions(®ion, T, B, L, R)) G_fatal_error("Error calculating graphics-regionwagions") ;

/* set text clipping, for good measure, and set a starting location */
R_set window(T, B, L, R);

R_move _abg0,0);

D_move_abg0,0);

816 Display Graphics Library

-197 - -197 -

16.3. FrameManagement
The following set of routines create, degtrand otherwise manage graphic frames.

D_new_window(name, top, bottom, left, right) create nev graphics frame

char *name ;
int top, bottom, left, right ;

Creates a e framename with coordinategop, bottom, left, andright. If name
is the empty string ™ (i.e., Chame == (), the routine returns a unique string in
name.

D_set_cur_wind(name) set current graphics frame
char *name ;

Selects the frameameto be the current framelhe previous current frame (if there
was ane) is outlined in gne The selected current frame is outlined in white.

D_get_cur_wind(name) identify current graphics frame
char *name ;

Captures the name of the current frame in singuge.

D_show_window(color) outlines current frame

int color ;

Outlines current frame incolor. Appropriate colors are found in
$GISBASE/src/D/libes/colors?and are spelled with lowercase letters.

D_get_screen_windowtop, bottom, left, right) retrieve current frame coordinates
int *top, *bottom, *left, *right ;

Returns current framg@ordinates in the pointetsp, bottom, left, andright.

2 $GISBASE is the directory where GRASS s installé®ee§10.1 UNIX Ewmironment[p. 53
for detalils.

8§16 Display Graphics Library

- 198 - - 198 -

D_check_map_window(region) assign/retrieve current maggon

struct Cell_head *region ;
Graphics frames can Y& GRASS map regions associated with thefis routine
passes the maggion to the current graphics framéf. a GRASS region is already
associated with the graphics frame, its information is copiedrégfion for use by

the calling program.Otherwiseregion is associated with the current graphics
frame.

Note this routine is called Hy_setugp. 199.

D_reset_screen_windowtop, bottom, left, right) resets current frame position
int top, bottom, left, right ;

Re-establishes the screen position of a frame at the location specifitp,by
bottom, left, andright.

D_timestamp() give current time to frame

Timestamp the current fram@his is used primarily to identify which frames are on
top of othey specified frames.

D_erase_window() erase current frame
Erases the frame on the screen using the currently selected color.

D_remove_window () remove a frame
Remares any trace of the current frame.

D_clear_window() clears information about current frame

Remaes dl information about the current frame. This includes the map region and
the frame content lists.

16.4. FrameContents Management
This special set of graphics frame management routines maintains lists of frame contents.

8§16 Display Graphics Library

-199 - -199 -

D_add_to_list(string) add command to frame display list
char *string ;

Adds string to list of screen contentBy corvention, string is a command string

which could be used to recreate a part of the graphics contents. This should be done
for all screen graphics except for the display of raster mapbe
D_set_cell_nam(. 199 routine is used for this special case.

D_set_cell_ nhamdgname) add raster map name to display list

char *name ;

Stores the rasttmapnamein the information associated with the current frame.

D_get_cell_namgname) retrieve raster map name
char *name ;

Returns thename of the raster map associated with the current frame.

D_clear_window() clear frame display lists
Remawes dl display information lists associated with the current frame.

16.5. CoordinateTr ansformation Routines

These routines pwide coordinate transformation information. GRASS graphics
programs typically work with the following three coordinate systems:

Coordinate system Origin

Array uppereft (NW)
Display screen upper left (NW)
Earth lawer left (SW)

Display screen coordinates are the physical coordinates of the display screen and are
referred to ax andy. Earth region coordinates are from the GRASS databasense

and are referred to asast and north. Array coordinates are the columns anavso
relatve © the GRASS region and are referred t@alsimn androw.

The routineD_do_conversior(g. 200 is called to establish the relationships between
these different systems. Then a wide variety of accompanying calls provide access to
corversion factors as well as ceasion routines.

3 As with the change frorwindow to frame, GRASS 4.0 changed word usage frogll to
raster. For compatibility with existing code, the routinesveant changed their names.

8§16 Display Graphics Library

- 200 - - 200 -

D_do_corversions (region, top, bottom, left, right) initialize conversions
struct Cell_head *region ;
int top, bottom, right, left ;

The relationship between the earftgion and thetop, bottom, left, and right
screen coordinates is established, which then allowgerons between all three
coordinate systems to be performed.

Note this routine is called Hy_setugp. 199.

In the following routines, a value in one of the coordinate systems \&rtech to the
equiaent value in a different coordinate systeifhe routines are named based on the
coordinates systemsviolved. Displayscreen coordinates are representeddpwrray
coordinates by, and earth coordinates liy(which used to stand for UTM).

double
D_u_to_a_1ow (north) earth to array (north)

double north ;

Returns arow vaue in the array coordinate system when provided the
correspondingporth value in the earth coordinate system.

double
D_u_to_a_col(east) earth to array (east)

double east ;

Returns acolumn vaue in the array coordinate system when vpaied the
correspondingastvalue in the earth coordinate system.

double
D_a to_d_ow (row) array to screen (row)

double reov ;

Returns & value in the screen coordinate system when provided the corresponding
row value in the array coordinate system.

8§16 Display Graphics Library

-201 - -201 -

double
D_a_to_d_col(column) array to screen (column)

double column ;

Returns anx vaue in the screen coordinate system when provided the
correspondingolumn value in the array coordinate system.

double
D_u_to_d_row (north) earth to screen (north)

double north ;

Returns & value in the screen coordinate system when provided the corresponding
north value in the earth coordinate system.

double
D_u_to_d_col(east) earth to screen (east)

double east ;

Returns anx vaue in the screen coordinate system when provided the
correspondingastvalue in the earth coordinate system.

double
D_d_to_u_row (y) screen to earth (y)

double y ;

Returns anorth vaue in the earth coordinate system when vigted the
corresponding value in the screen coordinate system.

double
D_d_to_u_col(x) screen to earth (x)

double x ;

Returns aneast value in the earth coordinate system when provided the
corresponding value in the screen coordinate system.

8§16 Display Graphics Library

-202 - -202 -

double
D_d_to_a_now (y) screen to array (y)

double y ;

Returns arow vaue in the array coordinate system when provided the
corresponding value in the screen coordinate system.

double
D_d_to_a_col(x) screen to array (x)

double x ;

Returns acolumn vaue in the array coordinate system when vated the
corresponding value in the screen coordinate system.

int
D_reset_color(data, rg, b reset raster color value

CELL data ;
intr,g, b;

Modifies the hardware colormap, provided that the graphics are not ugidgrfore
colors. Thehardware color register corresponding to the raster data value is set to
the combined alues ofr,g,b. This routine may only be called after a call to
D_set_color§.203. D_reset_colofp. 209 is for use by programs such as d.colors.

Returns 1 if the hardave colormap was updated, O if n@.0 value will result if
either a fixed color table transition is in effect, or because the data is not in the color
range set by the cdll_set_colorép. 203.

int
D_check_colormap_sizémin,max,ncolors) verify a rang of olors

CELL min, max ;
int *ncolors ;

This routine determines if the range of colors fits into the harelwolormap. If it

does, then the colors can be loaded directly into the laedeolormap and color
toggling will be possible. Otherwise a fixed lookup scheme must be used, and color
toggling will not be possible.

If the colors will fit, ncolors is set to the required number of colors (computed as

max-min+2) and 1 is returnedtherwisencolorsis set to the number of hardve
colors and O is returned.

8§16 Display Graphics Library

- 203 - - 203 -

void

D_lookup_colors(data, n, colors) change to hardware wlor
CELL *data ;
intn;

struct Colors *colors ;

The n data values are changed to their corresponding laaedeolor numberThe
colors structure must be the same one that was pasBeddb color§. 203.

void
D_color (cat, colors) select raster color for line

CELL cat ;
struct Colors #colors ;

D_color specifies a raster color to use for lineming. SeeR_cololp. 189 for a
related routine.

16.6. RasterGraphics

The display of raster graphics is very different from the display of vector grajWiaie

vector graphics routines canfiefently male use of world coordinates, thefiefent
rendering of raster images requires the programmer to work within the coordinate system
of the graphics dece. Theseaoutines mak it easy to do just that. The application of
these routines may be inspected in such commandbsras; r.combineand r.weight

which display graphics results to the screen.

D_set_colorgcolors) establish raster colarfor graphics
struct Colors *colors;

This routine sets the colors to be used for raster graphicsoltms structure must
be either be read usinG_read_colorép. 11) or otherwise prepared using the
routines described i812.10.3 Raster Color Tabje. 111.

Return values are 1 if the colors will fit into the hardware color map; O otherwise (in
which case a fixed color approximation based on these colors will be applied).
These return codes are not error codes, just information.

Note. Due to the way this routine beles, it isnot correct to assume that a raster

catgory walue can be wused to indethe color registers. The routines
D_lookup_colorép. 203 or D_color(p. 203 must be used for that purpose.

8§16 Display Graphics Library

- 204 - - 204 -

D_cell_draw_setup(top, bottom, left, right) prepae for raster graphics
int top, bottom, left, right ;

The raster display subsystem establishesasion parameters based on the screen
extent defined bytop, bottom, left, and right, all of which are obtainable from
D_get_screen_winddy 197 for the current frame.

D_draw_cell (row, raster colors) render a raster row

int row ;
CELL *raster ;
struct Colors *colors;

Therow gives the map array e Theraster array proides the categories for each
raster value in that va The colors structure must be the same as the one passed to
D_set _color§. 203.

This routine is called consecudly with the information necessary to dra raster
image from north to southNo rows can be skipped. All screen pixel rows which
represent the current map arrawrare rendered. The routine returns the map array
row which is needed to dnathe next screen pixelwo

D_set_werlay_mode (flag) configue raster overlay mode
int flag ;

This routine determines iD_draw_cel(p.204 draws in overlay mode (locations
with cateyory O are left untouched) or not (colored with the color for category 0).
Setflag to 1 (TRUE) for @erlay mode; O (FALSE) otherwise.

D_raster (raster n, repeat, colors) low level raster plotting

CELL *raster;
int n, repeat;
struct Colors *colors;

This low-level routine plots raster data. Thaster array has values. The raster is
plotted repeat times, one rev below the other The colors structure must be the
same one passedlo set_coloré. 203.

Note. This routine does not perform resampling or placemBntdraw_cel(p. 209
does resampling and placement and then calls this routine to do the actual plotting.

Here is an example of hothese routines are used to plot a raster map. The input
parameters are the raster map name and mapset anetlay tag.

#include "gis.h"
plot_raster_map(name,mapseéitay)
char *name, *mapset;

816 Display Graphics Library

- 205 - - 205 -

int overlay;

struct Colors colors;
CELL *raster;
int row, fd, top, bottom, left, right;

[* perform plotting setup */
D_setuf!overlay);
D_get _screen_windo{&top, &bottom, &left, &right);
if (D_cell_draw_setug&top, &bottom, &left, &right)) {ERROR
raster = G_allocate_celluff);

/* open raster map, read and set the colors */
if((fd = G_open_cell (name, mapset)) < ®BRROR
if(G_read_colors (name, mapset), &colors) < BRROR
D_set_colorg&colors);

/* plot */
D_set_werlay _mode(overlay);
for(row=0; rov >=0;) {
if (G_get_map_row(fd, rasteiow) < 0) {ERROR
row = D_draw_cellrow, raster &colors);

}

G_close_cell(fd);
G_free_colors(&colors);
free(raster);

16.7. Window Clipping

This section describes a routine which is quite useful inyreettings. Whdow clipping
is used for graphics display and digitizing.

D clip(s,n,we, X,y,CX, C_Y) clip coordinates to window

double s, n, we
double *x1, *y1, *x2, *y2 ;

A line represented by the coordinatesyl and x2,y2 is clipped to the winde
defined bys (south),n (north), w (west), ande (east). Notethat the follaving
constraints must be true:

w<e
S <n

Thex1 andx2 are values to be comparedwande. Theyl andy?2 are values to be
compared t@andn.

The x1 andx2 values returned lie betweem ande. Theyl andy?2 values returned
lie betweers andn.

§16 Display Graphics Library

- 206 - - 206 -

16.8. Fop-up Menus
D_popup (bcolor, tcolor, dcolor, top, left, size, options) pop-up menu

int bcolor ;

int tcolor ;

int dcolor ;

int left, top ;

int size ;

char *options]| ;

This routine preides a pop-up type menu on the graphics scréére bcolor
specifies the background calofhe tcolor is the tet color. The dcolor specifies

the color of the line used to divide the menu iterike top and left specify the
placement of the top left corner of the menu on the scr@gnis at the bottom left

of the screen, and 100,100 is at the top righe size of the text is gien as a
percentage of the vertical size of the scredime options array is a NULL
terminated array of character strings. The first is a menu title and the rest are the
menu options (i.e., options[0] is the menu title, and options[1], options[2], etc., are
the menu options). The last option must be the NULL pointer.

The coordinates of the bottom right of the menu are calculated basedtop téf
coordinates, thsize,the number obptions, and the longest option text lengtH.
necessarythe menu coordinates are adjusted to enake the menu is on the
screen.

D_popup()does the following:

1 Current screen contents under the menu aredsa
2 Areais blanked with the background color and fringed with the text color.
3 Menu options are drawn using the current font.
4 User uses the mouse to choose the desired option.
5 Menuis erased and screen is restored with the original contents.
6 Number of the selected option is returned to the calling program.
16.9. Colors
D_reset_colorg(colors) set colos in driver

struct Colors *colors;

Turns color information provided in theplors structure into color requests to the
graphics dwer. These colors are for raster graphics, not linesxr t8ee§812.10.3
Raster Color Tablgp. 111 for GIS Library routines which use this structure.

8§16 Display Graphics Library

- 207 - - 207 -

D_translate_color(name) color name to number

char *name ;

Takes a @lor namein ascii and returns the color number for that coReturns O if
color is not knwn. The color number returned is for lines and text, not raster
graphics.

16.10. DeletedRoutines
The following routines hae een deleted from the DISPIYA. ibrary:

D_parse_command()
D_usaye();
Replaced byc_parse(p. 139 and G_usae(p. 139.

D_reset_colos()
Replaced by _reset_colofp. 209 and D_set_coloré. 203.

D_draw_cell_pow()
D_overlay_cell_ow()

Replaced byp _draw_cel(p. 209 and D_set_overlay _mode 209.

16.11. Loadingthe Display Graphics Library

The library is loaded by specifying $(DISPLAYLIB), $(RASTERLIB) and $(GISLIB) in
the Gmalkfile. Thefollowing example is a complete Gmakefile which compiles code
that uses this library:

Gmakefile for $(DISPLAYLIB)
OBJ = main.o subl.o sub2.0

pgm: $(OBJ) $(DISPLAYLIB) $(RASTERLIB) $(GISLIB
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(DISPLAYLIB) \
$(RASTERLIB) $(GISLIB)

$(DISPLAYLIB): # in case the library changes
$(RASTERLIB): #in case the library changes
$(GISLIB): #in case the library changes

Note. This library uses routines in $(RASTERLIBFee815 Raster Graphics Liary
[p. 183 for details on that libraryAlso $(RASTERLIB) uses routines in $(GISLIBRee
812 GIS Libraryp. 69 for details on that library.

8§16 Display Graphics Library

- 208 - - 208 -

See811 Compiling and Installing GRASSdgrams|[p.57 for a complete discussion of
Gmakefiles.

16.12. \éctor Graphics / Plotting Routines

This section describes routines in GISLIB and the DISALR libraries to support
plotting of vector data. The best source for aaneple of hav they are used is the
GRASSd.vectmodule.

16.12.1. DISPLA/LIB routines

D_setup(clear) graphics frame setup
int clear ;

Performs a full setup for the current graphics framg:Makes sure there is a
current graphics frame (will create a full-screen one, if not); 2) Sets ¢enre
coordinates so that the graphics frame and the@eagtogram region agree (may
change actie pogram region to do this); and 3) performs graphic frargeire
coordinate coversion initialization.

If clear is true, the frame is cleared (same as rundiegase) Otherwisejt is not
cleared.

D_set_clip_window(top, bottom, left, right) set clipping window
int top, bottom, left, right ;
Sets the clipping winde to the pixel windev that corresponds to the current
database ggon. Thisis the default.

D_set_clip_window_to_map_window() set clipping window to map window

Sets the clipping winde to the pixel windev that corresponds to the current
database ggon. Thisis the default.

816 Display Graphics Library

- 209 - - 209 -

D_cont_abs(x, y) line to x,y
intx,y;
Draws a line from the current position to pixel location

Any part of the line that falls outside the clipping wimdis not dravn. Note. The
new position isx,y, even if it falls outside the clipping winado

Returns 0 if the line as contained entirely in the clipping winvdal if the line had
to be clipped to drait.

D_cont_rel(x, y) line to x,y
intx,y;

Equwvaent to D_cont_abé. 209(curx+x, cury+y) wherecurx,cury is the current
pixel location.

D_move_abs(x, y) move to pixel
intx,y;
Move without drawing to pixel locatiorx,y, even if it falls outside the clipping
window.
D_move_rel (X, y) move to pixel
intx,y;

Equivaent to D_move_ab®. 209(curx+x, cury+y) wherecurx,cury is the current
pixel location.

§16 Display Graphics Library

-210 - -210 -

-211 - -211 -

Chapter 17

Lock Library

17.1. Introduction

This library provides an advisory locking mechanism. It is based on the idea that a
process will write a process id into a file to create the lock, and subsequent processes will
obey the lock if the file still exists and the process whose id is written in the file is still
running.

17.2. LockRoutine Synopses

lock_file (file, pid) create a lock

char *file;
int pid;

This routine decides if the lock can be set and, if so, sets the liotile does not

exist, the lock is set by creating the file and writing pire (process id) into théle.

If file exists, the lock may still be agg, or it may hare been abandoned.oT
determine this, an integer is read out of the file. This integer is taken to be the
process id for the process which created the lock. If this process is still running, the
lock is still actve and the lock request is denied. Otherwise the lock is considered to
have keen abandoned, and the lock is set by writingpttiento thefile.

Return codes:

1 ok, lock request was successful

0 sorry, another process already has the file locked
-1 error could not create the file
-2 error could not read the file
-3 error could not write the file

817 Lock Library

-212 - -212 -

unlock _file (file) remove a lock
char *file;

This routine releases the lock by unlinkiiilg. This routine does NDcheck to see
that the process unlocking the file is the one which created the Tdek.file is
simply unlinked. Programsshould of course unlock the lock if thereated it.
(Note, howeer, that the mechanism correctly handles abandoned locks.)

Return codes:

1 ok. lock file was remeed
0 ok. lock file was neer there
-1 errorlock file remained after attempt to revedt.

17.3. Useand Limitations

It is worth noting that the process id used to lock the file does wetihde he process

id of the process which actually creates the lock. It could be the process id of a parent
process. The GRASS start-up shells, for examplekenan auxiliary "locking" program

that is told the file name and the process id to uS®e start-up shells simply use a
hidden file in the uses’home directory as the lock fifeand their own process id as the
locking pid, but let the auxiliary program actually do the locking (since the lock must be
done by a program, not a shell script). The only consideration is that the parent process
not exit and abandon the lock.

Warning. Locking based on process ids requires that all processes which access the lock

file run on the same cpu. It will not work under a networkirenment since a process id
alone (without some kind of host identifier) is not sufficient to identify a process.

17.4. Loadingthe Lock Library

The library is loaded by specifying $(LOCKLIB) in the Greéile. The following
example is a complete Gmakefile which compiles code that uses this library:

1 This file is .gislock.

817 Lock Library

-213 - -213 -

Gmakefile for $(LOCKLIB)
OBJ = main.o subl.o sub2.o0

pgm: $(OBJ) $(LOCKLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(LOCKLIB

$(LOCKLIB): # in case the library changes

See811 Compiling and Installing GRASSdgrams|[p.57 for a complete discussion of
Gmakefiles.

817 Lock Library

- 214 - - 214 -

-215- -215-

Chapter 18

Rowio Library

18.1. Introduction

Sometimes it is necessary to procesgddiles which contain data in a matrix format and
keep more than one woof the data in memory at a timézor example, suppose a
program were required to look atdivows of data of input to produce onewaf output
(neighborhood function). It would be necessary to allocatenfemory luffers, read fie

rows of data into them, and process the data in tleddfifers. Therthe next rav of data

would be read into the firstuffer, overwriting the first rav, and the five kuffers would

acpin be processed, etc. This memory management complicates the programming
somewhat and is peripheral to the function beingldeed.

The Rowio Libmary routines handle this memory management. These routines need to
know the number of rows of data that are to be held in memory amdraoy bytes are

in each rav. They must be gien a fie descriptor open for reading. In order to abstract the
file i/o from the memory management, the programmer also supplies a subroutine which
will be called to do the actual reading of the file. The library routines efficiently see to it
that the rows requested by the program are in memory.

Also, if the rav buffers are to be written back to the file, there is a mechanism for
handling this management as well.

Note. All routines and global ariables in this librarydocumented or undocumented,

start with the prefixowio . To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

§18 Rowio Library

-216 - -216 -

An alphabetic indeis provided in§25.4 Appendix H. Inadgio Rowio Library[p. 307.

18.2. Ravio Routine Synopses

The routines in th&®owio Library are described belo They use a data structure called
ROWO which is defined in the header file Wio.h" that must be included in yamrode
using these routine's:

#include "rowio.h"

rowio_setup(r, fd, nrows, len, getsm, putrow) configue rowio structure

ROWO *r;

int fd, nrows, len;
int (*getrow)();
int (*putrow)();

Rowio_setup()initializes the RWIO structurer and allocates the required memory
buffers. Thefile descriptorfd must be open for reading. The number of rows to be
held in memory isarows. The length in bytes of eachwais len. The routine
which will be called to read data from the filegistrow() and must be provided by
the programmerIf the application requires that them® be written back into the
file if changed, the file descriptdd must be open for write as well, and the
programmer must provide @utr ow() routine to write the data into the file. If no
writing of the file is to occuyispecify NULL for putrow().

Return codes:
1 ok

-1 thereis not enough memory for buffer allocation

Thegetrow() routine will be called as follows:

getrav (fd, buf, n, len)

int fd;
char *buf;
intn, len;

When calledgetrow() should read data forwon from file descriptorfd into buf
for len bytes. It should return 1 if the data is read ok, O if not.

1 The GRASS compilation process, described 8l Compiling and Installing GRASS
Programsip. 57, automatically tells the C compiler twato find this and other GRASS header files.

§18 Rowio Library

-217 - -217 -
Theputrow() routine will be called as follows:

putrow (fd, buf, n, len)

int fd;
char *buf;
int n, len;

When calledputr ow() should write data for m@ n to file descriptofd from buf for
len bytes. Itshould return 1 if the data is written ok, O if not.

char *
rowio_get(r, n) read a row

ROWO *r;
int n;

Rowio_get()returns a bffer which holds the data forwon from the file associated
with ROWIO structurer. If the ronv requested is not in memorthe getrow()
routine specified imowio_setufp. 219 is called to read i@ n into memory and a
pointer to the memoryuffer containing the no is returned. Ifthe data currently in
the luffer had been changed bywio_pu{p. 218, theputrow() routine specified in
rowio_setufp. 219 is called first to write the changedwoto disk. If row n is
already in memoryno dsk read is done. The pointer to the data is simply returned.

Return codes:

NULL nis neyaive, or
getrow() returned O (indicating an error condition).
INULL pointerto buffer containing rown.

rowio_forget (r, n) forget a row
ROWO *r;
intn;

Rowio_fomget()tells the routines that the next request fav romust be satisfied by
reading the file,\&n if the rav is in memory.

For example, this routine should be called if thdfer returned byowio_ge{p. 217
is later modified directly without also writing it to the fil&sSee 818.3 Rowio
Programming Consideration. 213.

§18 Rowio Library

-218 - -218 -

rowio_fileno(r) ge file descriptor
ROWO *r;

Rowio_fileno()returns the file descriptor associated with t@NRO structure.

rowio_release(r) free allocated memory
ROWO *r;

Rowio_release(jrees all the memory allocated foOR/IO structurer. It does not
close the file descriptor associated with the structure.

rowio_put (r, buf, n) write a row

ROWO *r;
char *buf;
int n;

Rowio_put()writes the lffer buf, which holds the data for won, into the FOWIO
structurer. If the row requested is currently in memotgie tuffer is simply copied

into the structure and marked as having been changed. It will be written out later
Otherwise it is written immediatelyNote that when the wo is finally written to

disk, theputr ow() routine specified imowio_setugp. 219 is called to write rav n to

the file.

rowio_flush (r) force pending updates to disk
ROWO *r;

Rowio_flush()forces all rows modified bsowio_pufp. 219 to be written to the file.
This routine must be called before closing the file or releasing wie structure if
rowio_put()has been called.

18.3. Ravio Programming Considerations

If the contents of the vo buffer returned by neio_get()are modified, the programmer
must either write the modifieduffer back into the file or call vao_forget(). If this is

not done, the data for thewawill not be correct if requested again. The reason is that if
the rav is dill in memory when it is requested a second time, the data will be
returned. If it is not in memoyshe file will be read to get thewoand the old data will be
returned. If the modified vo data is written back into the file, these routines will lveha
correctly and can be used to edit files. If it is not written back into the fike rforget()
must be called to force thewdo be ead from the file when it is next requested.

Rowio_get()returns NULL if getrav() returns O (indicating an error reading the file), or
if the rav requested is less than The calling sequence forwio_get()does not permit
error codes to be returned. If error codes are needsgdcahébe recorded by gewg) in
global variables for the rest of the program to check.

§18 Rowio Library

-219 - -219 -

18.4. Loadingthe Rowio Library

The library is loaded by specifying ${RVIOLIB)? in the Gmakfile. Thefollowing
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(RWIOLIB)
OBJ = main.o subl.o sub2.o

pgm: $(OBJ) $(RWIOLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $EWIOLIB)

$(ROWIOLIB): # in case the library changes

See811 Compiling and Installing GRASSograms[p.57 for a complete discussion of
Gmakefiles.

2 This variable was NO defined in releases 3.0 and 3.0AEdit the file
$GISBASE/src/CMD/malmid and add the linROWIOLIB=$(LIBDIR)/r owio.a at the bottom
of the file.

§18 Rowio Library

- 220 - - 220 -

-221 - -221 -

Chapter 19

Segment Library

19.1. Introduction

Large data files which contain data in a matrix format often need to be accessed in a
nonsequential or random mannerhis requirement complicates the programming.
Methods for accessing the data are to:

(1) readthe entire data file into memory and process the data as-dirtvensional
matrix,

(2) performdirect access i/o to the data file forery data value to be accessed, or
(3) readonly portions of the data file into memory as needed.

Method (1) greatly simplifies the programming effort since i/o is done once and data
access is simple array referencingowever, it has the disadvantage that large amounts
of memory may be required to hold the data. The memory may netitabke, or if it is,
system paging of the program maweely degrade performance. Method (2) is not
much more complicated to code and requires no significant amount of memory to hold
the data. But the i/o wolved will certainly degrade performance. Method (3) is a
mixture of (1) and (2). Memory requirements arediband data is read from the data file
only when not already in memomjoweve the programming is more complex.

The routines pnaded in this library are an implementation of method (3).yTdne based
on the idea that if the original matrix weregyseented or partitioned into smaller matrices
these sgments could be managed to reduce both the memory required and thatdo.
access along connected paths through the matrix, (i.e., moving up or dowrwaoarel ro
left or right one column) should benefit.

In most applications, the original data is not in thgnsented format. The data must be
transformed from the nonsegmented format to tigens@ted format. This means reading
the original data matrix @ by row and writing each rev to a rew fie with the
segmentation genization. This step corresponds to the i/o step of method (1).

Then data can be retvied from the sgment file through routines by specifying thevro

8§19 Segment Library

-222 - -222 -

and column of the original matrix. Behind the scenes, the data is paged into memory as
needed and the requested data is returned to the caller.

Note. All routines and global variables in this libraocumented or undocumented,
start with the prefissegment. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic indeis provided in825.4 Appendix I. Indeto Segment Library[p. 309.

19.2. SegmenRoutines

The routines in th&aement Libary are described belg more or less in the order the
would logically be used in a program. fhese a data structure called SEGMENT which
is defined in the header file "segment.h" that must be includedyinoale using these
routines?

#include "segment.h"

The first step is to create a file which is properly formatted for use bgdgment
Library routines:

segment_format(fd, nrows, ncols, srows, scols, len) format a segment file

int fd, nrows, ncols, srows, scols, len;

The segmentation routines require a disk file to be used for pagneesss in and

out of memory This routine formats the file open for write on file descrijidofor

use as a segment fil& segnent file must be formatted before it can be processed
by other segment routines. The configuration parametess/s, ncols, sows,
scols,andlen are written to the lggnning of the segment file which is then filled
with zeros.

The corresponding nonsegmented data matrix, which is to be transferred to the
sgment file, isnrows by ncols. The segment file is to be formed ofgseents
which aresrows by scols. The data items va lengthlen bytes. For example, if the

data type isnt, lenis sizeof(int).

Return codes are: 1 if ok; else -1 could not seek or wdteor -3 ilegd
configuration parameter(s).

The net step is to initialize a SEGMENT structure to be associated with a segment file
formatted bysegment_forméi. 222.

1 The GRASS compilation process, described 8l Compiling and Installing GRASS
Programsip. 57, automatically tells the C compiler tato find this and other GRASS header files.

819 Segment Library

- 223 - - 223 -

segment_init(seg, fd, nsegs) initialize segment structure

SEGMENT *seg;
int fd, nsegs;

Initializes the seg structure. Thefile on fd is a segment file created by
segment_formé§t. 229 and must be open for reading and writinghe segment file
configuration parametersows, ncols, ©ws, scols,andlen, as written to the file
by segment_forméi. 229, are read from the file and stored in #weyg structure.
Nsegsspecifies the number of segments that will be retained in menidrg
minimum value allowed is 1.

Note. The size of a segmentssols*srows*lenplus a fev bytes for managing each
segment.

Return codes are: 1 if ok; else -1 could not seek or read segment file, or -2 out of
memory.

Then data can be written from another file to the segmentfléyaow:

segment_put_ow (seg, buf, row) write row to segment file

SEGMENT *seg;
char *buf;
int row;

Transfers nonsegmented matrix datay twy row, into a segment fileSegis the
segment structure that was configured from a callségment_in{p.223. Buf
should contaimcols*len bytes of data to be transferred to thgmsent file. Row
specifies the o from the data matrix being transferred.

Return codes are: 1 if ok; else -1 could not seek or write segment file.
Then data can be read or written to the segment file randomly:

segment_gefseg, value, W, col) get value from segment file

SEGMENT *seg;
char *value;
int row, col;

Provides random read access to thgnsented data. It geten bytes of data into
value from the segment filsegfor the correspondingow and col in the original
data matrix.

Return codes are: 1 if ok; else -1 could not seek or read segment file.

819 Segment Library

- 224 - - 224 -

segment_put(seg, value, i@, col) put value to segment file

SEGMENT *seg;
char *value;
int row, col;

Provides random write access to the segmented data. It clepidsytes of data
from value into the segment structusegfor the correspondingow andcol in the
original data matrix.

The data is not written to disk immediately is Sored in a memory ggnent until
the segment routines decide to page the segment to disk.

Return codes are: 1 if ok; else -1 could not seek or write segment file.

After random reading and writing is finished, the pending updates must be flushed to
disk:

segment_flush(segq) flush pending updates to disk
SEGMENT *seg;
Forces all pending updates generatedskegment_p(p. 224 to be written to the

segment fileseg. Must be called after the finalgment_put(xo force all pending
updates to disk. Must also be called before the first cakgonent_get_rofy. 224.

Now the data in segment file can be read foy row and transferred to a normal
sequential data file:

segment_get ow (seg, buf, row) read row from segment file

SEGMENT *seg;
char *buf;
int row;

Transfers data from a segment filewrby row, into memory (which can then be
written to a rgular matrix file). Segis the segment structure that was configured
from a call tosegment_in{p.223. Buf will be filled with ncols*len bytes of data
corresponding to thew in the data matrix.

Return codes are: 1 if ok; else -1 could not seek or read segment file.

Finally, memory allocated in the SEGMENT structure is freed:

8§19 Segment Library

-225 - -225 -

segment_releaséseq) free allocated memory
SEGMENT *seg;

Releases the allocated memory associated with gmest fileseg. Does not close
the file. Does not flush the data which may be pending fronvioue
segment_p@. 2249 calls.

19.3. Haw to Use the Library Routines

The following should provide the programmer with a good idea @f tw use the
Se@ment Libary routines. The xamples assume that the data isgete The first step is
the creation and formatting of agseent file. A file is created, formatted and then closed:

fd = creat (file,0666);
segment_format (fd, nrows, ncols, srows, scols, sizeof(int));
close(fd)

The next step is the cagrsion of the nonsegmented matrix data into segment file format.
The segment file is reopened for read and write, initialized, and then datawdadroov
from the original data file and put into the segment file:

int bufNCOLS];
SEGMENT seg;

fd = open (file, 2);
segment_init (&seg, fd, nseq)

for (row = 0; row < rrows; row++)
{

<code to get original matrix data faw into buf>

segment_put_m (&seg, buf, row);

Of course if the intention is only to addwealues rather than update existing values, the
step which transfers data from the original matrix to the segment file, using
segment_put_kg(), could be omitted, sinceegment_forméi. 2229 will fill the segment

file with zeros.

The data can mobe accessed directly usirgegment_géi. 223. For example, to get the
value at a gren row and column:

819 Segment Library

- 226 - - 226 -

int value;
SEGMENT seg;

segment_get (&seg, &value,wpool);

Similarly segment_p(b. 229 can be used to change data values in the segment file:

int value;
SEGMENT seg;

value = 10;

segment_put (&seg, &value,wpcol);

Warning. It is an easy mistakto pass a value directly to gment_put().The following
should be woided:

segment_put (&seg, 10,wocol); /* this will not work*/

Once the random access processing is complete, the data would be extracted from the
segment file and written to a nonsegmented matrix data file as follows:

segment_flush (&seg);

for (row = 0; row < rrows; row++)
{

segment_get_wo (&seg, buf, row);

<code to pubuf into a matrix data file forow>

Finally, the memory allocated for use by the segment routines would be released and the
file closed:

segment_release (&seqQ);
close (fd);

Note. The Sgment Libary does not kne the name of the segment file. It does not
attempt to remee the file. If the file is only temporarshe programmer should ren®
the file after closing it.

819 Segment Library

- 227 - - 227 -

19.4. Loadingthe Segment Library

The library is loaded by specifying $(SEGMENTLIB) in the Gmakefile. The atig
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(SEGMENTLIB)
OBJ = main.o subl.o sub2.0

pgm: $(OBJ) $(SEGMENTLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(SEGMENTLIB)

$(SEGMENTLIB): # in case the library changes

See811 Compiling and Installing GRASSograms[p.57 for a complete discussion of
Gmakefiles.

819 Segment Library

- 228 - - 228 -

- 229 - - 229 -

Chapter 20

Vask Library

20.1. Introduction

The Vask Library (visual-ask) preides an easy means to communicate with a user one
page at a timeThat is, a page of text can be provided to the user with information and
question prompts. The user is allowed tovendhe cursot from prompt to prompt
answering questions in yndesired order Users’ answers are confined to the
programmer-specified screen locations.

This interface is used in mgprinteractve GRASS program$. For the user the Vask
Library provides a very consistent and simple irded. Itis also fairly simple and easy
for the programmer to use.

Note. All routines and global variables in this libragocumented or undocumented,
start with the prefixV_. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic indeis provided in825.4 Appendix.Jndex to \ask Library[p. 311.

20.2. \ask Routine Synopses

The routines in thé/ask Library are described bel more or less in the order the
would logically be used in a progranihe Vask Library maintains a pviate data space
for recording the screen descriptiowith the exception of V_call(), which does all the
screen painting and user interactigask routines only modify the screen description and
do not update the screen itself.

1 The functions in this library makuse of the curses library and termcap descriptioks.
when using vi, the user mustveathe TERM variable set.
2 The GRASSy.regioncommand is a good example, as reeelassandr.mask.

§20 Vask Library

- 230 - - 230 -

V_clear () initialize screen description

This routine initializes the screen description information, and must be called before
each ne screen layout description.

V_line (num, text) add line of text to screen

int num;
char *text;

This routine is used to place lines of text on the scr&aw is an integer value of
0-22 specifying the m on the screen where thext is placed. The top w on the
screen is n 0.

Warning. V_line() does not copthe text to the screen description. It onlyesa
the text address. This implies that each call to V_J)imagst use a different xé
buffer.

V_const(value, type, rav, col, len) define screen constant
V_ques(value, type, v, col, len) define screen question
Ctype*value; Ctypeis one of int, long, float, double, or char)
char type;

int row, col, len;

These tw calls use the same syntaX/_const()and V_ques) specify that the
contents of memory at the addressvalue are to be displayed on the screen at
location row, col for len characters. V_que}(further specifies that this screen
location is a prompt field. The user will be allowed to change the field on the screen
and thus change thalue itself. V_const(does not define a prompt field, and thus
the user will not be able to change these values.

Value is a pointer to an int, long, float, double, or char strifigpe specifies what

type value points to: i’ (int),I" (long), 'f’ (float), 'd’ (double), or ’s’ (character
string). Row is an integer value of 0-22 specifying th&vron the screen where the
value is placed. The topwoon the screen is ® 0. Col is an integer value of 0-79
specifying the column on the screen where the value is placed. The leftmost column
on the screen is column Qen specifies the number of columns that the value will
use.

Note that the size of a character array passed to V_Jyoesst be at least one byte
longer than the length of the prompt field to wlf@r NULL termination.

Currently you are limited to 20 constants and 80 variables.
Warning. These routines store the addresvaltie and not the alue itself. This

implies that different variables must be used for different célmgrammers will
instinctively use different variables with V_ques(), but it is a stumbling block for

§20 Vask Library

-231- -231-

V_const(). Also, the programmer must initializealue prior to calling these
routines?

V_float_accuracy(num) set number of decimal places

int num;

V_float_accurag() defines the number of decimal places in which floats and
doubles are displayed or acceptétlim is an integer value defining the number of
decimal places to be used. This routine affects subsequent calls to V) @ist(
V_ques(). Various inputs or displayed constants can be represented withedif
numbers of decimal places within the same screen display by making different calls
to V_float_accurad) before calls to V_que$(or V_const(). V_clear(Jesets the
number of decimal places to the default (which is unlimited).

V_call () interact with the user

V_call() clears the screen and writes thet tend data values specified by V_lige(
V_ques()and V_const] to the screen. It interfaces with the ysallecting user
responses in the V_qugs(ields until the user is satisfiedA message is
automatically supplied on line number 23pkining to the user to enter an ESC
when all inputs hae keen supplied as desired/_call() ends when the user hits
ESC and returns a value of 1 (but see V_intrpt) blke{ow).

No error checking is done by V_cdll(Insteadall variables used in V_ques¢alls

must be checked upon return from V_call(f the user has supplied inappropriate
information, the user can be informed, and the input prompted for again by further
calls to V_call().

V_intrpt_ok () allow ctrl-c

V_call() normally only allows the ESC character to end the inteactiput
session. Sometimei$ is desirable to allw the user to cancel the sessiono
provide this alternate means ofie the programmer can call V_intrpt_oklefore
V_call(). This allows the user to enter Ctrl-C, which causes V_kx&di(return a
value of O instead of 1.

A message is automatically supplied to the user on line 23 saying to use Ctrl-C to
cancel the input session. The normal message accompanying VY isatifved up
to line 22.

Note. When V_intrpt_ok{ is called, the programmer must limit the use of
V_line(), V_ques()and V_constj to lines 0-21.

3 Technically value needs to be initialized before the call to V_ca{nce V_const} and

V_ques()only store the address wélue. V_call() looks up the values and places them on the
screen.

§20 Vask Library

-232 - -232 -

V_intrpt_msg (text) change drl-c messge
char *text;

A call to V_intrpt_msg) changes the default V_intrpt_ok(message from
(OR <Ctrl-C> TO CANCEL) to (OR<Ctrl-C> TOmsgQ. Themessage is (re)set to
the default by V_clear().

20.3. AnExample Program

Fdlowing is the code for a simple program which will prompt the user to enter geiinte
a floating point numbelnd a character string.

#define LEN 15

main()
{
inti; /* the variables */
float f;
char s[LEN] ;
i=0; [* initialize the variables */
f=0.0;
*$=0;
V_clear(); /* clear vask info */
V_line(5," Enter an Integer ") ; [* the text */

V_line(7," Enter a Decimal ") ;
V_line(9," Enter a character string ") ;

V_ques (&i, ", 5,30, 5); [* the prompt fields */
V_ques (&f,'f", 7, 30, 5);
V_ques(s,s, 9,30,LEN-1);

V_intrpt_ok(); /* allow ctrl-c */

if ("V_call()) [* display and get user input */
exit(1); [* exit if ctrl-c */

printf ("%d %f %s\n", i, f, s) ; [* ESC, so print results */

exit(0);

}

The user is presented with the following screen:

§20 Vask Library

- 233 - -233 -

Enter an Intger 0

Enter a Decimal 0.00 _
Enter a character string

AFTER COMPLETING ALL ANSWERS, HIT <ESC>® CONTINUE
(OR <Ctrl-C> TO CANCEL)

The user has seral options.

<CR> maves the cursor to the next prompt field.

CTRL-K moves the cursor to the previous prompt field.

CTRL-H moves the cursor backward nondestrwety within the field.
CTRL-L moves the cursor forward nondestruadly within the field.

CTRL-A writes a mpy of the screen to a file namedsual_askin the uses
home directory.

ESC returngontrol to the calling program with a return value of 1.
CTRL-C returngontrol to the calling program with a return value of O.

Displayable ascii characters typed by the user are accepted and disjlayihl
characters (other than those with special meaning listactsdre ignored.

20.4. Loadingthe Vask Library

Compilations must specify the vask, curses, and termcap libraries. The library is loaded
by specifying $(VASK) and $(VASKLIB) in the Gmefile. Thefollowing example is a
complete Gmakefile which compiles code that uses this library:

§20 Vask Library

- 234 - - 234 -

Gmakefile for $(VASK)
OBJ = main.o subl.o sub2.0

pgm: $(OBJ) $(VASKLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(VASK)

$(VASKLIB): # in case the library changes

Note. The taget pgm depends on the object files $(OBJ) and Wask Library
$(VASKLIB). This is done so that modifications toyaof the $(OBJ) files or to the
$(VASKLIB) itself will force program reloadingHowever, the compile rule specifies
$(OBJ) and $(XSK), rather than $(OBJ) and $BKLIB). This is because $ASK)
specifies both the UNIX curses and termcap libraries as well as $(VASKLIB).

See811 Compiling and Installing GRASSdgrams|[p.57 for a complete discussion of
Gmakefiles.

20.5. Pogramming Considerations

The order of meement from prompt field to prompt field is dependent on the ordering of
calls to V_ques(), not on the line numbers used within each call.

Information cannot be entered beyond the edges of the prompt fiBhds, the user
response is limited by the number of spaces in the prompt field provided in the call to
V_ques(). Some interpretation of input occurs during the intevactinformation
gahering session. When the user enters <CR> tgemwo the next prompt field, the
contents of the current field are read and rewritten according t@line type associated

with the field. For example, nonnumeric responses (e.g., "abc") in an integer field will
get turned to a 0, and floating point numbers will be truncated (e.g., 54.87 will become
54).

No error checking (other than matching input witlrigble type for that input field) is
done by V_callj. Thismust be done, by the programmgon return from V_call().

Calls to V_line(), V_ques(), and V_congttore only pointers, not contents of memory

At the time of the call to V_call(), the contents of memory at these addresses are copied
into the appropriate places of the screen description. Care shoulcebhedakse distinct
pointers for different fields and lines okte For example, the following mistak$hould

be aoided:

§20 Vask Library

-235- -235-

char text[100];

V_clear();

sprintf(text," Welcome to GRASS ");
V_line(3,text);

sprintf(text,” whichis a product of the US Army CERL ");
V_line(5,text);

V_call();

since this results in the following (unintended) screen:

which is a product of the US Army CERL

which is a product of the US Army CERL

AFTER COMPLETING ALL ANSWERS, HIT <ESC>0 CONTINUE
(OR <Ctrl-C> TO CANCEL)

Warning. Due to a problem in a routine within the curses libfahe Vask routines use
the curses library in a somewhat unorthodoxy.wThis aoided the problem within
curses, but means that the programmer cannot mix the use\@stheibrary with direct
calls to curses routinesAny program using the Vask Library should not call curses
library routines directly.

4 Specifically memory allocated by initscy(was not freed by endwin().

§20 Vask Library

- 236 - - 236 -

- 237 - - 237 -

Chapter 21

Digitizer/Mouse/Trackball Files (.dgt)

The following is denred from the manual for Line Trace Plus (LTPlus) by John Dabritz
and the Forest ServicelThe code for the digitizer digrs was taken from LTPlus and
modified. Theadditions’ file describes what has been changed from the origliluk
version. Notethat LTPlus supports mice and trackballs as well as digitizers. These can
be ignored for v.digit, and herein, "digitizer" will be used to correspond to digitizers,
mice, and trackballs.

This chapter is relant for the GRASS v4.1lersion ofv.digit only. The GRASS v4.0
version of v.digit is nav namedv.digit2 and is included in the GRASS v4.1 releaSee
822 Writing a Digitizer Drivelp. 251 for information on writing a digitizer fov.digit2.

21.1. Ruledor Digitizer Configuration Files

The following are rules and restrictions for creating .dgt files.

1. Noline may exceed 95 characters in length.

2. Inaline, all characters following (and including) a pound sign (#) are considered
comments (ignored)To put a pound sign into a string not to be ignored, use a
\035. Ary ascii character can be specified in this way: a backslash followed by a
3-digit (ascii decimal) number specifying the ascii decinadli@ of the character

3. All other non-blank characters must be within begsk{} OR be one of the
following (which are followed by brackets):

setup
startrun
startpoint
startquery
stop

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 238 - - 238 -

query
format

These represent the groups of information used to initiateegand stop input
from a graphics input device (digitizenouse, track-ball ect.). Only one (left or
right) bracket may be on a single line, although text and btaakay share a
line. See #7?7secton|digitizer.file.commands

4. Limits:
a) The file can hae o more than 100 non-blank, non-comment lines.
b) Other limits are listed with their data type, belo

5. The l@d lines within brackets depend on the group to which the btack
belong. ALL DATA LINES ARE DEPENDENT ON THE ARTICULAR
DEVICE. YOU MUST REFER © THE TECHNICAL REFERENCE
MANUAL FOR THE FARTICULAR DEVICE (mouse/digitizer/track-ball) in
order to determine which parameters and which values need to be Tused.
groups (setup, startrun, startpoint, startqugop, query , format) may be inyan

order Within the groups: startrun, startpoint, startquegyery and stop the
order of command lines is important. These are thd lene formats for each

grouping:

21.2. Digitizer Configuration File Commands

The following is an in-depth description of each commarailable in the .dgt digitizer
files.

21.2.1. Setup

This data is used to setup the communication link with the digitizer and is used during
interpretation of the digitizer data.

21.2.1.1.Serial Line Characteristics

baud =n This line is optional, default = 9600 if not specified. If

8§21 Digitizer/Mouse/Trackball Files (.dgt)

- 239 -

parity = str

data_bits =n

stop_bits = n

buttons = n

buttonstart = n

buttonoffset = n

footswitch=0o0r 1

digname = string
description = string

button_up_char =c

- 239 -

specified, n must be one of : 300, 600, 1200, 1800,
2400, 4800 9600, or 19200.

str must be "odd", %en", or "none". This item is
optional, and defaults to none if not specified.

The number of data bits used (does IN@clude
parity bits, if aiy). Choices= 5,6,7,8 (default = 8)

The number of stop bits used on the serial line.
Choices are 1, or 2. Optional, default = 1.

Number of buttons on digitizer cursdris entry lets
v.digit know if digitizer keys ae available for input.
Default is 0, so an entry must be made if the digitizer
cursor is to be used for input. If the value of buttons is
less than 5, é&yboard leys will also be used for input.

Number of the first &y o the digitizer cursor
Usually O or 1. Default is 0. This is strictly for
comunicating with the usenf you hare arow keys
on your puck, you can set buttonstart to whertgou
want.

Diference between 1 and thalwe sent by the Veest
digitizer button. In other wrds, if the digitizer &ys
sent the &lues O, 1, ..., n,uttonofset would equal
one, if the kbitton output already starts with one,
buttonoffset would be zero (the defaultalue).
Although these are the bnmost common cases, it is
legd for buttonofset to be ay integer \alue. For
instance if your &ys for some reason output the
values 16-32, it would be ¢l to use the alue -15 as
the buttonoffset.

Does the digitizer hae a botswitch? Zero for no, one
for yes.

Name of the digitizer.
One line description of digitiZ@rmat, etc.
Character that indicates that naiton is pressed.

Only appropriate if format is ascii and includes a
button press byte.

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 240 -

- 240 -

21.2.1.2. Data Interpretation Characteristics

debounce =d [r]

units_per_inch =n

coordinates = str

sign_type = aaa

X_positve = dd

These values control the delay and repeat rate for a digitizer
or mouse button that is heldwlio (who says you canhold
a good button dwn!) Thefirst value (delay) specifies the
number of continuous reports with the same button press
which may be receed before it is takn as a secondition
press. Theecond alue, separated by a space, is the repeat
rate, which specifies the number of continuous reports
between further reports reeed which will be taken as
subsequent button presselhe second value (repeat rate)
is optional (default is 1/3 of the firsale). AO for the
first value indicates an infinite delayFor this \alue
indicates an indefinite delayFor this \alue, only 1 ky
press will be taken no matter wmdong a button is held
down. If no debounce values are listed, the default of Os
will be used.

Helps to set sensiity (on absolute type devices seexine
item below) & map-inch sizedflt=1000. Notused for
relative type devices (mice), see belo

str must be ’absolute’ orrelative’, dflt=absolute. In
general, mouse/trackball devices are redéatnd digitizers
coordinates are absolute.

This indicates the sign type for binary formats: none (all +)
(default for absolute crds).Ongydive (0=ney, used for
some abs coords)lngyaive (1=ney, used for some abs
coords). 2s-complemefdefault for relatre words).

Note: for binary formats the sign bit should be coded as
highest bit number for a coordinate.

Note: for ascii formats, minus (-) sign igspected from the
raw device to indicate a rggtive rumber.

This indicates the direction of x-pos#i wordinates. dds
a ging which may hee the value right or left. The defult
is right. All digitizers and mice & x-positve 1 the right
as of this writing.

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 241 - - 241 -

y_positve = di This indicates the direction of y-posii cordinates. dds
a dring which may hee the value up or den. Thedefault
is up. The microsoft mouse is a digitizing device which
has y-positte @ordinates to indicate a woward
movement.

digcursor = fname Specifies the cursor file to be used while this digitizer is in
use with OTPlus program. The digcursor file defines which
command each digitizer button generates. v.digit does not
need a cursor file, and ignores this line.

Note: Theorder of items is unimportant within the setup group.

21.2.1.3.Example of a Setup

setup

{

digname = Calcomp
description = Calcomp digitizeascii format 12

buttons = 16 # number of buttons on digitizer
buttonstart = 0 # number buttons start with
buttonoffset = 1 # off set to get buttons 1-15
baud = 9600

units_per_inch = 1000

21.2.2. Startrun,Startpoint, Startquery, Stop, Query

All of these allov the same operations,ut are used at different times when
communicating with the digitizer/mouse. TheARIT groupings are used to initialize the
digitizer each time communication is switched to that mode. THERY grouping is

used when (and if) the digitizer is queried/prompted to send data information. Ofe ST
grouping is used to stop digitizer outp#ll of these groupings are optional but at least
one start group must be included (to use the file witigit, the startquery group must be
included). If the digitizer is configured by default or switch settings to output data in the
desired form of a certain mode, it is desirable to include that start grgu@yamwith

some innocuous action (such as sending a carriage return) as the only action. If a start
group is not included for a\g@n mode, the program assumes that the digitizer is unable
to operate in that mode.

8§21 Digitizer/Mouse/Trackball Files (.dgt)

- 242 - - 242 -

There may be no more than 40 operations within each start group or the stop group.
There may be no more than 10 operations in the query group.

21.2.2.1.0Operations

send =aaaa This allows the sending of @stii string to the digitizer (at the
current baud rate and parity).

read =n This tells the program to read n bytes from the digitizer before
trying to read again (ges up tying to read after 1 second).
This is for reading digitizer prompts during start & stop groups
and is NO used for querying the digitizeunless a non-data
string is to be read (l&ka pompt character).

wait = n wait n seconds (decimal seconds waka) before ne
communication with the digitizetMary computers are quiek
than digitizers and need to alldime for the digitizer to change
baud rate before resuming communicatiorMaximum
resolution for wait is 0.001 second.

baud =n This allows changing of baud rate whiclasvset during setup
and is normally not used otherwise. If only 1 baud rate is used,
then it is put in the setup group onlyhis is the normal case
for most digitizers.

21.2.2.2.Notes.

Control, extention, space, and all other characters can be specified in sent strings by using
the backslash followed by the ascii decimal value to be sent (up to 3 digxaple:
send=/027 (indicates the escape character).

The lines/commands communicating with the digitizer will Beceted in the SAME
ORDER as thg are in the start/stop/query grouping. Order is very importaiit
commands may be necessary teeghe digitizer time to xecute the command sent.

Wait commands may need to be added/changed when the main programs is run on a
faster cpu (in order to ge the digitizer enough time to keep up).

A maximum of 40 non-comment lines can be in a start, stop, or query group.
All characters to be sent must be specified, including carriage return (\013) and linefeed

(\010).

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 243 - - 243 -

Each time a QERY group is &ecuted, a 0.001 secondaw is done automatically after
all query group commands. This allows time for the graphics input device to send a
packet of information before the serail line is read by the program.

v.digit requires that a STARTQUERyroup exists.

21.2.2.3.Example of Start Groupings

startrun

{
send =\027%R
baud = 2400
wait = 0.6
read = 3
wait = 0.1
send =\027%S

startpoint

{
send =\027%"12\013 set output format to format 12

send =\027%P\013 # st to run mode
}

startquery

{
send =\027%"12\013 set output format to format 12

send =\027%R\013 # et to run mode
send =\027%QN013 # st prompt character to '’ and
put in prompt mode

21.2.2.4.Example of a Query Grouping

query

{
send =N\013 # snd prompt

}

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 244 - - 244 -

21.2.2.5.Example of a Stop Grouping

stop
{ send =\027%K
wait = 0.1
send =\027%*
}
21.2.3. Frmat

This data is used each time a packet of information from the digitizer is interpidtisd.
group must be one of 2 types; ascii or binafpe digitizer file MUST contain a format
group (either ascii or binary).

Ascii format groups hae aly 1 line:

ascii = format_string

Binary format groups e me line for each byte in the form:
byteN = format_string Where N is the byte numlfgror geater) or
byte No = format_string (similar to ab® for
OPTIONAL bytes). Note. The program
assumes the optional bytes containing @NL

button press information (no x or vy
information).

The leggd format strings depend on the type (ascii or byteN).

21.2.3.1. ASCII format strings

ASCII format strings hee these characteristics:

1. Thereare no imbedded blanks.
2. Legd characters are:

X denotes 1 character of the x-coordinate value (sign included).
y denotes 1 character of the y-coordinate value (sign included).

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 245 - - 245 -

denotes 1 character of button information.

denotes 1 character of button press information (up or down).
denotes the comma character (used to sync data if present).
denotes a carriage return (optionally specified)

denotes a line-feed (optionally specified)

denotes ayother character of information (including blanks).

N T O T T

21.2.3.2.Notes

The sign (+ or -) should be coded as part of the x or y value.

The specifications of the carriage-return and linefeed are totally optidhay. will be
ignored whether the are specified or not.Their only use is to separate one ascii
grouping of incoming data from anotheAny combination of carriage-returns and/or
linefeeds will sere this purpose in gncase os ascii format use.

21.2.3.3.Example of ASCII Format Grouping

format

{

ascii =?xxxxx,yyyyy,??bcl

}

21.2.3.4.Binary Format String

Binary format strings hee these characteristics.

0. byteNoform is used only for bytes which are sometimes, but neiyal
sent by the digitizing deéces. Thesdyte(s) must be at the end of the
grouping/packt. For example, the Logitech Mouseman sends an
optional 4th bytes only when the middlation is pressedVery few
digitizing devices use optional bytes.

1. 8 hits are specified with at least 1 blank between bit groupings, fe
fewer bits are used. Fill the left (high) bits with ? if necessary.

8§21 Digitizer/Mouse/Trackball Files (.dgt)

- 246 - - 246 -

2. Legd characters are:

XN denotesit N of the x-coordinate value (low-order bit is 0, maximum bit
allowed is 30) (include sign bit as highest bit used)

yN denotes bit N of the y-coordinate value (low-order bit is 0, maximum bit
allowed is 30) (include sign bit as highest bit used)

bN denotes bit N of button press value (low-order bit is 0, maximum bit
allowed is 7).

p denotes button press bit (will be 1 if button is pressed, 0 otherwise).
0 denotes bit is alays zero (used for sync bit).
1 denotes bit is alays one (used for sync bit).

? denoted another information (bit not used).

21.2.3.5.Notes

There cannot be more than 100 lines of byten = in the format group.

Sign bits (if any) should be coded as the highest bit number feemaiordinate.

Paity bits (if in the lowest 8 bits), and fill bits (if fewer than 8 bits used) should be coded
as ?. No bits abhe the lowest 8 should be specified ar all (sometimes there is a 9th parity
bit).

Os and 1s are used for syncing the input, and should all occur in the same bit column.

21.2.3.6.Examples of a Binary Format Grouping
Example with odd orwen parity and 7 data bits.

format
{
bytel= ? 1 ? ? ? ? ? ?
byte2= ? 0 ? b4 b3 b2 bl o]0]
byte3= ? 0 x4 x3 X2 X2 x0

8§21 Digitizer/Mouse/Trackball Files (.dgt)

- 247 - - 247 -

byted= ? 0 x11 x10 x9 x8 X7 X6
byte5= ? 0 x6 x17 x15 x14 x13 x12
bytet6= ? 0 y4 y3 y2 yl y0
byte7r= ? 0 yi1 y10 VY9 y8 y7 y6
byte8= ? 0 yv16 yl7 yl15 vyl4 y13 yl12
}
or

Example with 8 data bits (with or without parity.)

format

{
bytel= 1 p o8] b2 b1l b0 x15 x14
byte2= 0 x13 x12 x11 x10 x9 x8 X7
byte3= 0 x6 x5 x4 x3 X2 x1 x0
byte4d= 0 ? ? ? 16 yl16 y15 yl4
byte5= 0 y13 y12 yl11 y10 y9 y8 y7

}byteG = 0 y6 y5 y4 y3 y2 yl O

21.3. Examplef Complete Files

The following are complete examples of digitizer files.

21.3.1. Examplel

setup
{
digname = Calcomp
description = Calcomp digitizesscii format 5
buttonoffset = 1
buttons = 16
buttonstart = 0
baud = 9600
units_per_inch = 1000

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 248 - - 248 -

startrun

{
send =\027%"5\013# st to format 5

send =\027%R\013
}

startpoint

{
send =\027%"5\013# st to format 5

send =\027%P\013
}

startquery

{
send =\027%"5\013# st to format 5

send =\027%R\013
send =\027%QN\013

}

query

{
send = N013

}

stop

{
send =\027%H\013

}

format

{

ascii = XXxXxx,yyyyy,??b

}

21.3.2. Example

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 249 - - 249 -

setup

{

digname = Altek

description = altek digitizemodel AC30, binary output format 8
buttonoffset = 1 # button output starts at 0, we want 1
buttonstart = 0 # first button is numbered 0

buttons = 16 # number of buttons is 16

baud = 9600

parity = none

stop_bits =1

sign_type = none

units_per_inch = 1000

coordinates = absolute

sign_type = none

}

startrun

{
send=S2\13 #et to run mode
send=F8\13 #et output format to 8
send=R6\13 #nter rate mode 6

}

startpoint

{

send = P\013 # st to point mode
send = F8\013# st output format to 8

}

startquery
{
send = S2\013# dtek has no specific prompt mode, but may be
queried at aptime, so set to run mode
send = F8\013# st output format to 8

}

query
{
send = V\013 # request data

}

8§21 Digitizer/Mouse/Trackball Files (.dgt)

- 250 - - 250 -

stop

{

send =\027\018reset

}

format

{

bytel= 1 p 13 b2 bl b0 x15 x14
byte2= 0 x13 x12 x11 x10 x9 x8 X7
byte3= 0 x6 x5 x4 x3 X2 x1 x0
byted= 0 ? ? ? 16 yl16 y15 yl4
byte5= 0 y13 yl2 y11 yi10 y9 y8 y7
bytet6= 0 V6 y5 y4 y3 y2 yl yo
}

21.4. Digitizer File Naming Corventions

The naming coventions for digitizers dxier files is:

manufacturer name or abbreviation + model number of digitizer +
output format the digitizer is using + _ + number eykon pck

For example, an Altek model 30 digitizer using format 8 with a 16 button puck would be:
al+ 30 + f8 + + 16

Put it together and you va-> al30f8_16
You can optionally stick a .dgt extention on the end of the file name, e.g., al30f8_16.dgt

This is by no means required, but its a clear indicator as to the use of the digitizer file
which helps eeryone in the long run.

Test your files thoroughlyWhen it works, tell other users about your fil€his helps
evayone by reducing duplication of effort.

§21 Digitizer/Mouse/Trackball Files (.dgt)

-251 - -251 -

Chapter 22

Writing a Digitizer Dri ver

22.1. Introduction

This chapter is rel@nt only forv.digit2. For more information on configuration files for
the GRASS v4.1 vdigit, and an explanation wfligit and v.digit2, see 8§21
Digitizer/Mouse/Tackball Files (.dgt)[p. 237.

A digitizer device dner consists of a library of device-dependent functions that are
linked into digitizer programs. This chapter describes those functions that are needed to
create a digitizer device #@ar compatible with GRASS map deopment software.

Section§22.2 Writing the Digitizer Device Drivep. 253 explains hov digitizer drivers
are written, while sectio822.3 Discussion of the Finer Points (Hintg)259 describes
problems and pitfalls encountered during theelitgpment of the Altek dvier.

22.2. Writing the Digitizer Device Driver
Source code for the digitizer ders is kept in
$GISBASE/src/mapdev/digitizers
Separate subdirectories contain the individualetdsi Whena rew diver is written, it
should be placed here in amsubdirectory.

It is helpful to examine the source code friseng drivers located here, and to attend a
demonstration of the GRASS digitizing prograutigit, before deeloping a n&v driver.

1 $GISBASE is the directory where GRASS is installé8ee§10.1 UNIX Emironment[p. 53
for detalils.

§22 Writing a Digitizer Dri ver

-252 - -252 -

22.2.1. Functionghat must be Written

This section describes theuvitge-dependent library functions that must be writt&ach
of these functions must be present in the libr&mynction descriptions are ganized by
file name. (The file names are those used by current GRASS digitizersdriFile
names are printed in bold, along the left-hand margin of the padeeye files and
functions can be copied from one of theséng digitizer drver libraries and altered to
suit the needs of a particular\di.

Note. Although it is strongly recommended that the programmer use the file names listed
belowv (for reasons set forth i22.2.3 Compiling the Device Drivgs. 259), other files
names may be used instead.

dig_menu.h
This file contains the menu that is displayed while digitizifigne menu should
indicate the purpose of thaitions on the cursor for the particular digitiz8he
menu is stored idig_menu

char *dig_menu];

An example of her the Altek drver uses this function to create a menu igegi
below:

define dig_menu_lines 16

char *dig_menu] ={

GRASS-DIGIT Version 3.0 Digitizing menu "
ALTEK digitizer AMOUNT DIGITIZED

Cursor keys: # Lines:

<0> digitize point # Area edges:

<1> quit digitizing
<2> updatemonitor
<3> togglepoint/stream mode Total points:

CURRENT DIGITIZER FARAMS.

MODE TYPE
point line
stream areadge

Note. The menu must be exactly as it appears heoept that the text ibold may
be replaced by the appropriate text for the digitizer.

dig_curses.c
This file only contains #cludes. Itis used to set up the digitizing menu in the
"dig_menu.h" file. This file must look léthis:

§22 Writing a Digitizer Dri ver

- 253 - - 253 -

#include <curses.h>

#include "dig_menu.h"
#include "../../digit/digit.h"
#include "../../digit/menu.h"
#include "../../libes/head.h"

#include "../../digit/curses.c"

setup_driver.c
D_setup_dner (device)
char *device ;

This function opens the device (which igyaport) and initializes the digitizer.

Note. This function should not set the origiithe origin is set later by the function
D_setup_origilfp. 259.

dig_dev.c
D_get_scale(scale)
float *scale;

This function setscaleto the digitizer resolution in units of lines per irfckor
example, on a digitizer having a resolution of 1000 lines per sudiewould be set
to .001.

coll_pts.c
#include "digit.h"
#include "globals.h"

collect_points (mode, type, np, X, Y)
int mode, type
int *np ;
double **x, **y ;

This routine is called to collect points that represent a single vector (or arc) from the

digitizer.

The points should be collected into static arrays or dynamically allocated arrays,
transformed from digitizer coordinates to database coordinates using

transform_a_into_{p.257%, and plotted on the graphics monitor using
plot_pointgp.257. Thenx andy are set to point to these arrays, apdset to the
number of points collected.

2 Almost all digitizers describe their resolution in lines per inch (Ipi). This is essentially
equialent to pixels per inch, or dots per inch.

§22 Writing a Digitizer Dri ver

- 254 - - 254 -

The digitizingmode may be either STREAM or POIN'STREAM indicates that

the digitizer should collect a continuous stream of points; POINT indicates that the
digitizer should collect points under user control (i.e., each time the user presses a
button, the foot-switch, or ady o the keyboard). Thecollect pointg) function

can be written to alle interactve toggling between the twwmodes during a single

call.

The type is set to AREA when the vector to be collected is an area edge, and to
LINE when it is is a linear featureThe type is of no interest t@ollect_pointg)

itself, but is passed to the functigmot pointgp. 257, which draws lines on the
graphics monitor.

This function should return 1 if digitizing in STREAM mode occurred (i.e., either
becausemode was initially STREAM, or because the user changed to STREAM
mode), and 0 otherwise.

Note. This routine is responsible for plotting thector on the graphics monitdaut

it should do it responsiblyThis means that while digitizing in POINT mode, the
line-sgments should be plotted immediately; while digitizing in STREAM mode,
the points should be plotted only when the digitizing is finished, or when the user
toggles to POINT mode.

Note. If the cursor has buttons, thean be used to change the digitizimgpde as

well as end the digitizing. If the digitizer has a foot-switch instead of buttons, the
foot-switch should be used to end the digitizing (toggling modesldvnot be
supported in this case). If the digitizer has neithetdns nor a foot-switch, then the
keyboard must be usedven in STREAM mode. (See GeoGraphics\dri for code

that polls the kyboard.)

interface.c
This file contains a number of functionsThe following functions return
information about digitizer capabilities:

D_cursor_huttons()
If the digitizer cursor bttons are to be used by the digitizing programs, there
must be at least fevkuttons. Thisfunction returns 1 if the cursor hasdiar
more buttons; otherwise, it returns 0.

D_foot_switch()
This function returns 1 if there is a usable foot-switch. It returns O if the
digitizer has no foot-switch.

Note. If there are fie or nore buttons on the cursahe \alue returned by

3 STREAM mode indicates tdigit that the resulting vector should be pruned.

§22 Writing a Digitizer Dri ver

- 255 - - 255 -

D_foot_switch) is ignored (i.e., it is assumed that there is no foot-switch).
SeeD_cursor_button. 259.

D_start_button()
This function tells the dver how the cursor buttons are labeled (i.e., the labels
that the user sees on thattbns). Ifthe first button is labeled 1, then this
routine returns 1. If the first button is labeled 0, then this routine returns 0.

It should return -1 if the digitizer cursoutbons are not being used by the
driver. SeeD_cursor_buttong. 259.

For example, if the digitizer bttons are labeled 0-9, then this routineud
return 0. If the digitizer bttons are labeled 1-16, then this routineuld
return 1.

The following routines perform digitizer configuration:
D_setup_origin()

This routine sets the digitizertrigin (0,0). This routine should only return if
successful, and should return a value oif(t fails, an error message should
be sent to the terminal screen wiWrite_infdp.257), and the program
terminated with a call tolose_dow(p. 259.

Note. Frequently the location of the digitizes’ arigin can be set to some
default value, without aninput from the userOtherwise, this routine must
ask the user to set the origin. The routWete_infqp. 257 should be used to
print instructions for the user(Refer to the GeoGraphics digitizer \ai,
which filnstructs users to set the origin in thedo left corner of the digitizing
tablet.

D_clear_driver()
This function clears anbutton presses on the digitizer thavédeen queued.
(Refer t0822.3 Discussion of tharter Points (Hints)p. 259 for an eplanation
of why this is necessary This routine should only return if successful, and
should return a value of 0. If ikils, an error message should be sent to the
user with Write_infdp. 2579, and the program terminated with a call to
close_dow(p. 259.

The following two routines read the current digitizer coordinates:

4 Due to the design of the GeoGraphics digititeis not possible to detect whether or not the
user properly sets the origin. If the origin is improperly set, the map will be impropgidiered.

§22 Writing a Digitizer Dri ver

- 256 - - 256 -

D_read_raw (X, y)
double *x,*y ;

Gets the current location of the digitizer cursand places the digitizer
coordinates in the variablesandy.

If a digitizer button vas pressed, this routine returns thetdn's value. The
return \alue must be in the range of 1 through 16. This means that if the first
button is labeled O this routine must add 1 to the button number that is
returned.

If no button was pressed, this routine returns 0.

Foot-switch. If the digitizer has a foot-switch, instead of cursor buttons, then
the foot-switch must be treated as if it were button 1. If the digitizer has
neither a foot-switch nor cursor buttons, then this routine should return 0.

D_ask_driver_raw (X, y)
double *x,*y ;

Waits for a hutton to be pressed and then gets the current location of the
digitizer cursorand places the digitizer coordinates in the variaklasdy.

This routine returns theutton’s value. Thereturn value must be in the range
of 1 through 16. This means that if the firgttbn is labeled 0 this routine must
add 1 to the button number that is returned.

Foot-switch. If the digitizer has a foot-switch, instead of cursor buttons, then
the foot-switch must be treated as if it werdtbn 1, and this routine should
wait for the foot-switch to be pressetf.the digitizer has neither a foot-switch
nor cursor buttons, then this routine should retuwitBout waiting.

22.2.2. FunctionsAvailable For Use

There are functions which ¥&a dready been written that can be called by the digitizer
driver. These are described belo

Note. These functions exist in libraries. The libraries that contain these functions are
described ir§22.2.3 Compiling the Device Drivgr. 25§.

close_down (status)
int status ;

This function gracefullyxdts the calling program. Call this function wistatus set

to -1 when an irrecerable error has occurred (e.g., when the digitizer does not
respond, or returns an error). Otherwise, call this routinestattus set to O.

§22 Writing a Digitizer Dri ver

- 257 - - 257 -

plot_points (type, np, X, yline_color, point_color)
int type, np;
double *x, *y ;
int line_color point_color ;

This function is to be called byollect_point$p. 253. It draws the vector defined by
the points in the andy arrays on the graphics monitofFhe number of points in the
vector isnp.

The plot_pointy) function expects to reca points fromcollect_pointgp. 253 in
the coordinate system of the database. Digitizer coordinates can be translated to
database coordinates usingnsform_a_into_{p. 257.

Thetype indicates whether theeetor is an AREA or a LINE. AREA and LINE are
defined in the include file "dig_defines.h".

The line_color and point_color indicate whether the lines and points are to be
highlighted or erasedThe constant CLR_HIGHLIGHT indicates highlighting, and
the constant CLR_ERASE indicates erase (CLR_HIGHLIGHT and CRL_ERASE
are defined in "globals.n")The colors actually used to highlight or to erase lines
and points are specified by the usedigit.

transform_a_into_b (Xraw, Yraw, X, Y)
double Xrav, Yraw ;
double *X, *Y ;

This function cowerts the digitizer coordinateXraw,Yraw into the database
coordinates<,Y. This function is used by the der functioncollect_pointgp. 253.

Note. The transformation rule used by this routine is generatedidiywhen the
user rgisters the map to the database. The rule is already in place by the time
collect_point¢p. 253 callstransform_a_into_§).

Write_info (line, message)
int line ;
char *message ;

This function prints anessagan the four line windw at the bottom of the usey’
terminal indigit. The \ariableline must be a number 1 through 4, which represents
the line number inside the windo The messaganust not exceed 76 characters and
should not contain \n.

§22 Writing a Digitizer Dri ver

- 258 - - 258 -

22.2.3. Compilingthe Device Drver

Programs (e.gdigit) that use the digitizer drer functions are stored in librarie$Vhen

the digitizer diver is compiled, it links with those different libraries and creates the
programs. EacHriver should contain a&smakefilethat contains compilation instructions
for gmale® The Gmakefilefor the digitizer dwver is complex. Ratherthan attempting to
construct a completely ne Gmakefile, it is generally simpler to cgpan «isting
Gmakefilefrom another dxier and modify it to meet the needs of thenndigitizer driver.

The following libraries are needed by the digitizewerivhen it is compiled:

$GISBASE/src/mapdev/digit/libdigit.a
$GISBASE/src/mapdev/libes/libtrans.a
$GISBASE/src/mapdev/lib/libdig.a
$LIBDIR/libdig_atts.a

Some include files[{h) must also be compiled into thewdri These files are located in
the following directories:

$GISBASE/src/mapdev/libes
$GISBASE/src/mapdev/lib

Compile the deice drver by executing gmale. This will create thedigit program and
ary other programs dependent on the digitizevatrcode.

22.2.4. Bsting the Device Drver

There are three crucial points at which thgit program calls the digitizer cner. The
first occurs just aftedigit has prompted the user for a file nanigit will try to open
the driver and initialize the digitizer; if this fails, it is becauBe setup_drivefp. 253 has
failed. Thesecond occurs when the user registers the map to the digifidee program
fails at this point, there is a problem with theread_rawp. 259 function. Afinal test of
the driver is performed when theollect_pointép. 253 function is called, which occurs
when vectors are being digitized.

Before testing an programs, reiew the Grass Installation Guideto ensure that the

digitizer is set up correctly If more information is needed, read the file
$GISBASE/src/mapdev/README.

5 See§11 Compiling and Installing GRASSograms [p.57 for a discussion ofjmakeand
Gmakefiles.

8§22 Writing a Digitizer Dri ver

- 259 - - 259 -

22.3. Discussiormf the Finer Points (Hints)

This section ders seeral hints and pitfalls toveid when writing the digitizer dver. It
has three subsections: Setting up the Digitergram Logic, and Specific er Issues.

22.3.1. Settingup the Digitizer
The process of setting up a computer system and digitizer can be divided into three steps:

(1) Settingthe internal switches on the digitizer (hardware)
(2) Runninga cable between the digitizer and the computer (hardware)
(3) Settingup the serial port on the computer (software)

22.3.1.1. Setting the internal switches

The switches on the digitizer must be set so that the digitizer will run vetlerst

or prompt mode, which means that the digitizer will only send output when it is
requested or prompted by the program. Thus, the program controls the timing of the
output from the digitizer and will only res® information when it is ready to
process it.Refer to the manual included with the digitizer for specific information
on its set-up.

Note. The digitizer must be able to use an RS232 serial interface and transmit
information only when prompted by the prograth.the digitizer cannot transmit
information on command, then it cannot be used as a GRASS digitizer.

22.3.1.2.Running a cable between the digitizer and computer

A cable must be made to connect the digitizer to a RS232 serial port on the
computer Different model computers,ven when from the same mak may
require different cable configurationg=or example, one computer may need a
straight-through cable, while another computer may need pins 6, 8, and 20 looped
back on the computer sidé& break-out box can be used to deduce digitizer cable
requirements and ensure that the digitizer is actually talking to the computer.

22.3.1.3.Configuring the serial port

The digitizer is plugged into a serial paftig¢v tty??) on the computerwhich must
be configured for a digitizer to run on ifo st up thety for the digitizer turn that
tty’s getty off, and mak& thetty readable and writable by anyone.

A final suggestion: document the information that has been learned. The file

$GISBASE/ src/ mapdev/ digitizers/ altek/ INGT.ALTEK can be used as an
example. Itcontains the switch settings for the Altek, cable configurations, and

§22 Writing a Digitizer Dri ver

- 260 - - 260 -

other useful information. Such documentation iglmable when another digitizer
is added, problems arise, or if the digitizer switch setting®e & be danged
because other software is using the digitizer.

22.3.2. Pogram Logic

All digitizing programs follev the same basic steps, whetherythest the digitizeror
appear in a comptedigitizing program lile digit. The following sequence s the
programmer a feel for kothe digitizer dwer is used by the calling programs.

(1) Linkthe program to the digitizer (open tttg)

(2) Setthetty to the appropriate state (ioctl calls)

(3) Initializethe digitizer (setting resolution, setting origin, ...)
(4) Askthe digitizer for data containing a set of coordinates
(5) Readhe data from the digitizer

(6) Interpretthe data into usable coordinates (X, y)

(7) Displaythe coordinates (X, y)

(8) Loopback for more data or until user wants to quit

In order to become familiar with the architecture of a digitizeredrit is useful to write
a smple program to test the digitizedf a digitizing problem arises, the diagnostic
program can help isolate the cause of the problem (hardware, software, cable, etc.).

22.3.3. SpecifiOriver | ssues

The writing of digitizer deice drivers can be comple Thissection explores four issues
in greater depth:

(1) Connectingo the digitizer

(2) Initializing and reading the digitizer

(3) Synchronizinghe digitizer and computer
(4) Digitizercursors with buttons

Connecting to the digitizer:
In GRASS, the computer communicates directly with the digitizer to which (through
the serial portity) the digitizer is connectedThe tty to which the digitizer is
connected is opened, read, and written to justdikie.

D_setup_drivelp. 253 will open thetty, set file permissions to read and write, and
set the running state of thity. Some experimenting with the different line
disciplines (CBREAK, RAV) may be necessary to determine the best state for the
tty, but RAW seems to be the norm. Changing the running statettgf @nsists of
changing the structures associated with that partitiylaand reflecting the changes

to the operating system by usimgrtl (). Unfortunately the information is stored
differently under different operating systems.

§22 Writing a Digitizer Dri ver

- 261 - - 261 -

GRASS digitizer duers hare been written under the System V (AT&T) and
Berkelgy (UCB) UNIX operating systemsA major difference between theseaw
operating systems is the way yhbéandle terminal integices (ttys). Terminal
information is contained in structures in <termio.h> under Systenan¥ in
<sgttyh> under Ber&ley. In other words, the structures, and the names used in the
structures, will differ depending on the operating systéit. tty related system-
dependent code has C preprocegsitaef SYSY statments around it in theisting
drivers. System-dependeabde is defined as either being under System V (SYSV)
or Berleley. This issue will only arise when thity to which the digitizer is
connected is being opened, usihgsetup_drivefp. 253.

Initializing and reading the digitizer:
The driver and the digitizer communicate by using the UN#ad() and write ()
functions. D_setup_drivefp. 253 sets up the digitizer softave by writing command
strings to thetty. Since each digitizer is different, the digitizeri'ser manual
frequently proes to be he only source of information onWwdo initialize and read
the digitizer.

Setting up a consistently good function to read the digitizer is the most difficult part
of writing the digitizer dwer. Theread() function, when reading fromty, may

not read as mancharacters as requesteBor example, if six bytes are requested,
read() can return anywhere from zero to six bytes.

One approach is to request six bytes, and then, if the number of bytes actually read
is not six, issue anotheead(), this time asking only for the number of bytes
remaining. Inother words, if six bytes were requested bnly two were recaied,

then another read for four bytes is issued. If that read returned one byte, then another
read is requested for three bytes, efbis would continue until either all six bytes

were read, or a timeout occurred. This approach worked well in the Altek dri

Another approach that was triecasvto request six bytes, and then, if less than six
bytes were receed, the bytes were thmn awvay, and another six bytes were
requested. This a&s repeated until the read returned six bytes. This approach
worked some of the time,ub sometimes ave unreliable coordinates, andaw
abandoned. Otheligitizer drvers hare been written that read ascii characters from
the digitizer and ussscan{) to grip out the needed information.

The number of characters actually read to get one set of coordinates will depend on
the digitizer and on the information stated in the digitizeser manual.

Another problem, in the case of the Altek, is that the cursor is onlyeaetoertain
portions of the tabletThis means that either there will be no output, or a specific
flag will be on/of, until the cursor is within the aug aea of the tablet. Because no
external markings on the tablet delineate thevactea, individuals commonly

6 SYSV is defined bgmale. See§11 Compiling and Installing GRASSogramsip. 57.

§22 Writing a Digitizer Dri ver

- 262 - - 262 -

attempt to digitize within the tablet'inactve aea, leading them to thealée
assumption that the digitizer is acting strangdbepending on the digitizethis
will have b be landled by fine tuning the reads and/or checking the status byte(s).

A word of warning - if thetty is not set up properly iD_setup_drivefp. 253, the
read() function can return confusing information (i.e., it may include garbage with
the data or be unable to read the number of characters specified).

Synchronizing the digitizer and computer :
Driver checking has been added to post-3.9disi, to warn the user when thewdri
is out of sync with the digitizerFor example, the Altek has the high bit turreed
in the first byte of the six bytes that are read. Theeddhecks to ma& aure that
the high byte is turnedn; if it is not, the digitizer and dver are out of sync.The
driver warns the useresets the digitizer and then reinitializes the digitizer.

Digitizer cursors with buttons:
Drivers can be written to use the digitizartions or the &yboard for input while
digitizing. Wheredrivers use the digitizer itons, some digitizers will queue up
ary button hits. (This may depend on what running state the digitiasrset up
with when it was initialized.) This means that if a person pushes the digitizer cursor
buttons a number of times and then begins to digitize, the program must clear the
gueue of button hits beforedianing to digitize. Other digitizers will only say that
a hutton has been hit if theution has been hénd the digitizer has been prompted
for a coordinate.

§22 Writing a Digitizer Dri ver

- 263 - - 263 -

Chapter 23

Writing a Graphics Dri ver

23.1. Introduction

GRASS application programs which use graphics are written witliR#iséer Gaphics
Library . At compilation time, no actual graphics devicevdricode is loadedlt is only
at run-time that the graphics requests enileir way to device-specific code. At run-
time, an application program connects with a running grapglease driver typically
via system leel first-in-first-out (fifo) files. Each GRASS site may Y& ane or more of
these programs to choose from. ¥laee managed by the progradrmon.

Porting GRASS graphics programs from device to device simply requires the creation of
a rew gaphics dmwer program. Oncecompleted and working, all GRASS graphics
programs will work exactly as thiewere designed without modification (or
recompilation). Thisection is concerned with the creation of @ geaphics dver.

23.2. Basics

The various driers hae urce code contained under the directory
$GISBASE/src/D/device$.This directory contains a separate directory for eaokerri
e.g., SUNVIEW and MASSIn addition, the directoryib contains files of code which
are shared by the dars. Thedirectory GENERIC contains the beginnings of the
required subroutines and sam@makefile.

A new diver must provide code for this basic set of routines. Once working, the
programmer can choose tour#e some of the generic code to increase the performance
of the nev driver. Presented first belo are the required routinesSuggested options for
driver enhancement are then described.

1 $GISBASE is the directory where GRASS is installé8ee§10.1 UNIX Emironment[p. 53
for detalils.

8§23 Writing a Graphics Driver

- 264 - - 264 -

23.3. BasidRoutines

Described here are the basic routines required for constructingg &RASS graphics

driver. These routines are all found in the GENERIC directdtys suggested that the
programmer create awedirectory (e.g., MYDRIVER) into which all of the GENERIC
files are copied (i.eco GENERICII MYDRIVER).

23.3.1. Open/Clos®evice

Graph_Set() initialize graphics

This routine is called at the start-up of averi Any code necessary to establish the
desired graphics environment is included he€ften this means clearing the
graphics screen, establishing connection with a mouse or paetigng draving
parameters, and establishing the dimensions of the drawing screen. In addition, the
global integer variables SCREEN_LEFTISCREEN_RIGHT SCREEN_TOP,

SCREEN_BOTDM, and NCOLORS must be set. Note that the GRASS aoftw
presumes the origin to be in the upper left-hand corner of the screen, meaning:

SCREEN_LEFT < SCREEN_RIGHT
SCREEN_DP < SCREEN_BOTTOM

You may need to flip the coordinate system in yowickespecific code to support a
device which uses the lower left corner as the origin. These values must map
precisely to the screen rows and columf®r example, if the device prades
graphics access to gikcolumns 2 through 1023, then these values are assigned to
SCREEN_LEFT and SCREEN_RIGHEspectiely.

NCOLORS is set to the total number of colovsilable on the déce. Thismost
certainly needs to be more than 100 (or so).

Graph_Close() shut down device
Close down the graphics processinbhis gets called only at arr termination
time.

23.3.2. Retun Edge and Color Values

The four raster edge values set in @@ph_Set()routine abge ae retriecved with the
following routines.

§23 Writing a Graphics Driver

- 265 - - 265 -

Screen_left(index) return left pixel column value

Screen_rite(index) return right pixel column value

Screen_top(index) return top pixel row value

Screen_bot(index) return bottom pixel row value
int *index ;

The requested pixel value is returnednidex.

These next te routines return the number of color§here is no good reason for both
routines to exist; chalk it up to the power of anachronism.

Get_num_colors(index) return number of colors
int *index ;

The number of colors is returnedinmuex.

get_num_colors() return number of colors
The number of colors is returned directly.

23.3.3. DrawingRoutines

The lowest lgel drawing routines are dva line(), which draws a line between dw
screen coordinates, and Polygon_alvd{ich fills a polygon.

draw_line (x1,y1,x2,y2) draw a line
int x1, y1, x2,y2;

This routine will drav a line in the current color froml,y1to x2,y2.

Pdygon_abs(x,y,n) draw filled polygon
int *x, *y ;
intn;

Using then screen coordinate pairs represented by the values inahdy arrays,
this routine draws a polygon filled with the currently selected color.

23.3.4. Colors

This first routine identifies whether the device allows the run-time settingviciedsolor
look-up tables. If it can (and it should), the nexb twutines set and select colors.

§23 Writing a Graphics Driver

- 266 - - 266 -

Can_do() signals run-time color look-up table access

If color look-up table modification is alied, then this routine must return 1,
otherwise it returns 0. If your device hasefikcolors, you must modify the routines
in thelib directory which set and select colors. Mostides nav allow the setting
of the color look-up table.

reset_color(numberred, green, blue) set a color

int number ;
unsigned char red, green, blue ;

The systens wmlor represented bywmber is set using the color component
intensities found in thead, green,andblue variables. Avalue of O represents 0%
intensity; a value of 255 represents 100% intensity.

color (number) select a color
int number ;

The current color is set taumber. This number points to the color combination
defined in the last call t@set_color()that referenced this number.

23.3.5. Mousdnput
The user provides input through the three following routines.

Get_location_with_box(cx,cy,wx,wy,button) get location with rubber box

intcx, o/ ;
int *wx, *wy ;
int *button ;

Using mouse device, get awescreen coordinate and button numbd3utton
numbers must be the followinghes which correspond to the following saiter
meanings:

1 - left button
2 - middle button
3 - right button

A rubberband box is used. One corner is fixed at thecy coordinate. The
opposite coordinate starts outvax,wy and then tracks the mousé&pon hutton
depression, the current coordinate is returnedxiwy and the button pressed is
returned inbutton.

§23 Writing a Graphics Driver

- 267 - - 267 -

Get_location_with_line (cx,cy,wx,wy,button) get location with rubber line

intcx, o/ ;
int *wx, *wy ;
int *button ;

Using mouse device, get awescreen coordinate and button numbdutton
numbers must be the folling values which correspond to the following safte
meanings:

1 - left button
2 - middle button
3 - right button

A rubberband line is used. One end is fixed at ¢kegey coordinate. Thepposite
coordinate starts out atx,wy and then tracks the mouse. Upon button depression,
the current coordinate is returnedvix,wy and the button pressed is returned in
button.

Get_location_with_pointer (wx,wy,button) get location with pointer

int *wx, *wy ;
int *button ;
Using mouse device, get awescreen coordinate and button numbdutton

numbers must be the following@les which correspond to the following scite
meanings:

1 - left button
2 - middle button
3 - right button

A cursor is used which starts outvax,wy and then tracks the mouse. Uparitbn
depression, the current coordinate is returnedxiwy and the button pressed is
returned inbutton.

23.3.6. Rnels
The following routines cooperate toveaend restore sections of the display screen.

§23 Writing a Graphics Driver

- 268 - - 268 -

Panel_save (name, top, bottom, left, right) save a panel

char *name ;
int top, bottom, left, right ;

The bit display between thews and cols represented bgp, bottom, left, and
right are saed. Thestring pointed to bypnameis a file name which may be used to
save the image.

Panel_restore(name) restore a panel
char *name ;

Place a panel sed in name (which is often a file) back on the screen asasw
when it was sz&ed. Thememory or file associated wittameis remaed.

23.4. OptionalRoutines

All of the abwe nmust be created for gmew diver. The GRASSRasterlib, which
provides the application program routines which are passed to ttee vla the fifo files,
contains may more graphics options. There are actually about Adove, we have
described 19 routines, some of which do noteha ounterpart in theRasterlib. For
GRASS 3.0, the basic #gr library was expanded to accommodate all of the graphics
subroutines which could be accomplished at gicdedependent el using the 19
routines described abe This makes duer writing quite easy and straightfoand. A
price that is paid is that the resultingweriis probably slower and less efficient than it
might be if more of the routines were written in aide-dependent ay. This section
presents a fe of the primary taget routines that you would most likely consider
rewriting for a nev driver.

It is suggested that the der writer copy entire files from the lib area that contain code
which shall be replaced. In the loading of libraries during the compilation process, the
entire file containing an as yet undefined routine will be load®d.example, say a file
"ab.c' contains subroutines aénd b(). Ewven if the programmer has provided subroutine
a()elsavhere, at load time, the entire fileld'.c' will be loaded to get subroutine Jo(The
compiler will likely complain about a multiply definedternal. avoid this situation,

do not break routines out of their files for modification; modify the entire file.

§23 Writing a Graphics Driver

- 269 - - 269 -

Raster_int (n, nrows, arraywithzeros, type) raster display
intn;
int nrows ;
unsigned int *array ;
int withzeros ;
int type ;

This is the basic routine for rendering raster images on the schggglication
programs construct imagesandy row, sending the completed rasters to theide
driver. The de#ult Raster_int()in lib draws the raster through repettialls to
color() anddraw_line(). Often a 20x increase in rendering speed is accomplished
through lav-level raster calls. The raster is found in treay pointer It contains
color information forn colors and should be repeated forows rows. Each
successie ow falls under the previouswo (Depending on the complexity of the
raster and the number ofws, it is sometimes advantageous to render the raster
through lav-level box commands.)The withzeros flag indicates whether the zero
values should be treated as color 0 (withzeros==1) or as invisible (withzedps=
Finally, type indicates that the raster values are alreadyxettiéo the hardvare
color look-up table (type=0), or that the raster values are ixatbto GRASS colors
(which must be translated through a look-up table) to harellook-up table colors

(type==1).

Further details on this routine and related routiRaster_br(), andRaster_def()
are, of course, found in the defirgicdbcumentation: the source code.

§23 Writing a Graphics Driver

-270 - -270 -

-271 - -271 -

Chapter 24

Writing a Paint Dri ver

24.1. Introduction

The paint system, which produces hardgomaps for GRASS, is able to support man
different types of color printers. This is aclaé by gacing all device-dependent code in
a eparate program called a devicevdri Application programs, written using a library
of device-independent routines, communicate with the devieerdising the UNIX pipe
mechanism. Thelevice driver translates the d&e-independent requests into graphics
for the device.

A paint driver has two parts: a shell script and axeeutable program. Thexecutable
program is responsible for translatingvide-independent requests into graphics on the
printer The shell script is responsible for setting some UNIX environment variables that
are required by the interface, and then running teeutable program.

The user first selects a printer using pheeleciprogram. Theselected printer is stored in
the GRASS environment variabl&IRTER.! Then the user runs one of the application
programs. Theprincipal paint applications that produce color output @cenapwhich
generates scaled maps, apghart which produces a chart of printer color§he
application looks up theAMNTER and runs the related shell script as a child process.
The shell script sets the required environment variables and runsethdable. The
application then communicates with thevdrivia pipes.

24.2. Creating a Source Directory for the Drver Code
The source code fgraintdrivers lives in

$GISBASE/src/paint/Dviers?
Each drver has its own subdirectory containing the source code for xeeutable
1 See§10.2 GRASS Environmepts4.

2 $GISBASE is the directory where GRASS is installé8ee§10.1 UNIX Emironment[p.53
for detalils.

§24 Writing a Paint Driver

-272 - -272 -

program, the shell script, and @Gmakefile with rules that tell the GRAS$make
command he to compile the drer.3

24.3. ThePaint Dri ver E xecutable Program

A paint device driver program consists of a set of routines (defined below) that perform
the device-dependent functions. These routines must be written for each device to be
supported.

24.3.1. Printerl/O Routines
The following routines open the printer port and perform lowetli¢o to the printer.

Popen (port) open the printer port
char *port;

Open the printeport for output. If theport is a tty,perform ag necessarytty
settings (baud rate, xon/xoff, etc.) required. No data should be writtengorthe

The port will be the value of the UNIX afironment variable MAPLP if set, and
NULL otherwise. It is recommended that devicevels use thgort that is passed
to them so thgpainthas a consistent logic.

The baud rate should not be hardcoded kgoen(). It should be set in the cer
shell as the UNIX enronment variable BUD. Popen() should determine the
baud rate from this environment variable.

Pout (buf, n) write to printer

unsigned char *buf;
int n;

Output the data irbuf. The number of bytes to sendns This is a lev-level
request. Ng@rocessing of the data is to be done. Output is simply to be sent as is to
the printer.

It is not required that data passed to this routine go immediately to the.pfihter
routine can buffer the output, if desired.

It is recommended that this routine be used to send all output to the printer.

3 See §11 Compiling and Installing GRASS ograms [p.57 for details on the GRASS
compilation process.

4 This, and otherenvironment variables are set in thewarishell script which is described in
8§24.4 The Device Driver Shell Script277.

§24 Writing a Paint Driver

-273 - -273 -

Poutc (c) write a character to printer
unsigned char c;

Sends the characteto the printer This routine can be implemented as follows:

Poutc(c) unsigned char c;

{
Pout(c, 1);

}

Pouts (s) write a string to printer
unsigned char *s;

Sends the character strirggto the printer This routine can be implemented as

follows:
Pouts(s) unsigned char *s;
{
Poult(s, strlen(s));
}
Pflush () flush pending output

Flush ay pending output to the printeDoes not close the port.

Pclose() close the printer port
Flushes ayppending output to the printer and closes the port.

Note. The abee mutines are usually not device dependent. In most cases the printer is
connected either to a seritiy port or to a parallel portThe paint driver library?
contains versions of these routines which can be used for output to either serial or parallel
ports. Exceptiongo this are therevew driver, which sends its output to the graphics
monitor, and theNULL driver which sends debug output to stderr.

24.3.2. Initialization
The following routine will be called aftétopen(p. 272 to initialize the printer :

5 See§24.6 Paint Driver Libraryp. 28q.

§24 Writing a Paint Driver

- 274 - - 274 -

Pinit () initialize the printer
Initializes the printerSends whateer codes are necessary to get the printer ready
for printing.

24.3.3. Alpha-NumericMode
The following two routines allav the printer to be used for normal text printing:

Palpha () place printer in text mode

Places the printer in alpha-numeric moda. this mode, the dver should only
honorPtex{p. 279 calls.

Ptext (text) print text

char *text;

Prints thetext string on the printer.

The text will not normally hae ronprinting characters (i.e., control codes, tabs,
linefeeds, returns, etc.) in it. Such characters intéx¢ should be ignored or
suppressed if tlyedo occur. If the printer requires grinefeeds or carriage returns,
this routine should supply them.

Note. If the printer does not lva support for text in the hardware, it must be simulated.
Theshinko635printer does not he text, and the code from that der can be used.

24.3.4. GraphicsMode
The following routines perform raster color graphics:

Praster () place printer in graphics mode

Places the printer in raster graphics mode. This implies that subsequent requests will
be related to generating color images on the printer.

§24 Writing a Paint Driver

-275 - -275 -

Pnpixels(nrows, ncols) report printer dimensions

int *nrows;
int *ncols;

The \ariablencols should be set to the number of pixels across the printer page.
the drver is combining physical pixels into lger groupings (e.g.,X2 pixels) to
create more colors, therolsshould be set to the number of these larger pixels.

The \ariable nrows should be set to OA non-zero value means that the output
media does not support arbitrarily long output prdapwill scale the output to fit
into a windav nrows x ncols. The only drver which should set this to a non-zero
value is theprevew driver, which sends its output to the graphics screen.

Ppictsize(nrows, ncols) defined pictue sze

int nrows;
int ncols;

Prepare the printer for a picture withows and ncols. The number of columns
ncolswill not exceed the number of columns returnedbpixelgp. 275.

There is no limit on the number ofwe nrows that will be requestedp.map
assumes that the printer paper is essentially infinite in length. Some printers (e.g.,
thermal printers like the shinko635 only allow a limited number of rows, after
which the/ leave a @p before the output can begin again. It is up to therdio
handle this. The output will simply @ gaps in it. The user will cut out theags

and tape the pieces back together.

Pdata (buf, n) send raster data to printer

unsigned char *buf;
int n;

Output the raster data buf. The number of bytes to sendrniswhich will be the
ncols as specified in the pr@us call toPpictsizép. 2795. Thevalues inbuf will be
printer color numbers, one per pixel.

Note that the color numbers buf have full color information encoded into them

(i.e., red, green, and blue). Some printers (e.g., inkjet) can output all the colors on a
row by row basis. Otherge.g., thermal) must lay down a full page of one golor
then repeat with another colatc. Drivers for these printers will va o capture

the raster data into temporary files and thenarialee passes through the captured
data, one for each color.

6 The programmer should, of course, code defelysilf the number of columns is too ¢ar,
the driver should exit with an error message.

§24 Writing a Paint Driver

- 276 - - 276 -

Prle (buf, n) send rle raster data to printer

unsigned char *buf;
int n;

Output the run-length encoded raster datbufh The data is in pairgolor, count,
wherecolor is the raster color to be sent, anount is the number of times the
color is to be repeated (witha@unt of 0 meaning 256). The number of pairsis

Of course, all the counts should add umd¢ols as specified in the prous call to
Ppictsizép. 279. If the printer can handle run-length encoded data, then the data can
be sent either directly or with minimal manipulation. Otherwise, it must be
corverted into standard raster form before sending it to the printer.

24.3.5. ColorInformation

The paint system gpects that the printer has a predefined color table. No attempt is made
by paint to download a specific color table. Rathtdre drver is queried about its
available colors.The following routines return information about the coloralable on

the printer These routines may be calledee if Popen(p. 279 has not been called.

Pncolors() number of printer colors

This routine returns the number of colowsitable. Currentlythis routine must not
return a number lger than 255. If the printer is able to generate more than 255
colors, the duer must find a way to select a subset of these colatso, thepaint
system works well with printers thatyeaaound 125 different colors. If the printer
only has three colors (e.g., cyan, yelloand magenta), then 125 colors can be
created using a2 pixel.’

Pcolorlevels (red, green, blue) get color levels
int *red, *green, *blue;

Returns the number of colors/és. This means, for example, if the printer has 125
colors, the color kel would be 5 for each color; if the printer has 216 colors, the
color levels would be 6 for each colaatc.

7 See§24.8 Creating 125 ColsrFrom 3 (lors[p. 283.

§24 Writing a Paint Driver

- 277 - - 277 -

Pcolornum (red, green, blue) get color number

float red, green, blue;

This routine returns the color number for the printer which most closely
approximates the color specified by tiesl, green, and blue intensities. These
intensities will be in the range 0.0 to £.0.

The printer color numbers must be in the range ©9-ig wheren is the number of
colors returned b¥?ncolorgp. 279.

For printers that hee cyan, yellav, and magenta instead of red, green and blue, the
conversion formulas are:

cyan = 1.0-red
yellow = 1.0-blue
magenta = 1.0green
Pcolorvalue (n, red, green, blue) gét color intensities
int n;

float *red, *green, *blue;

This routine computes theed, green, and blue intensities for the printer color
numbem. These intensities must be in the range 0.0 to [f.0.is not a valid color
number set the intensities to 1.0 (white).

24.4. TheDevice Driver Shell Script

The drver shell is a small shell script which sets somgimment variables, and then
executes the dvier. The following variables must be s&t:

MAPLP
This variable should be set to tity port that the printer is on. They named by
this variable is passed Roper(p.279. Onlyin very special cases can\ais justify
either ignoring this value or allowing it not to be set.

The drvers distributed by USACERL a MAPLP set to /d@${PAINTER}. Thus
each dwer must hae a orresponding /deport. These are normally created as links
to real /dev/tty ports.

8 Just to be safe, those akdl0 can be changed to 1.0, and thosevo@® can be changed to
0.0.

9 The driver shell script may set gnother variables that the programmer has determined the
driver needs.

§24 Writing a Paint Driver

-278 - -278 -

BAUD
This specifies the baud rate of the outpytport. This variable is only needed if the
output port is a serial RS-232 tty port. The value of the variable should begar inte
(e.g., 1200, 9600, etc.), and should be use@dpen(p. 279 to st the baud rate of
thetty port.

HRES
This specifies the horizontal resolution of the printer in pixels per inch. This is a
positive floating point number.

VRES
This specifies the vertical resolution of the printer in pixels per inch. This is a
positive floating point number.

NCHARS
This specifies the maximum number of characters that can be printed on one line in
alpha-numeric mode.

Note. The application programs do not try to deduce the width in pixelsxof te
characters.

TEXTSCALE
This positve floating point number is used Ipymapto set the size of the numbers
placed on the grid when maps arevdra The normal \alue is 1.0, but if the
numbers should appear toodar a smaller value (0.75) will shrink these numbers.
If they appear too small, a larger value (1.25) will enlarge th&ims value must be
determined by trial and error.

The next fie variables are used to control the color boxes drawn in the map legend for
p.mapas well as the boxes for the printer color chart creatqudhart. They haveto be
determined by trial and error in order to get the numbering to appear under the correct
box10

NBLOCKS
This positve integer specifies the maximum number of blocks that are to lvendra
per line.

BLOCKSIZE
This positve integer specifies the number of plg across the top of an indiual
box.

BLOCKSPACE
This positve integer specifies the number of pixels between boxes.

TEXTSPACE
This positve integer specifies the number of space characters to output after each
number (printed under the boxes).

10 Apologies are offered for this admittedly awkward design.

§24 Writing a Paint Driver

-279 - -279 -

TEXTFUDGE
This nonngative integer provides a &y of inserting extra pixels betweenesy
other box, or eery third box, etc. On some printers, this will not be necessary
which case TEXTFUDGE should be set to 0. If you find that the numbers under the
boxes are drifting way from the intended box, the solution may be tovenevery
other box, or eery third box wer 1 pixel. For example, to mee esery other box,
set TEXTFUDGE to 2.

The following is a samplpaintdriver shell script:

. ${PAINTER?} ${PAINT_DRIVER?}

MAPLP=/dev/$PAINTER
BAUD=9600

HRES=85.8
VRES=87.0
NCHARS=132

TEXTSCALE=1.0

NBLOCKS=25
BLOCKSIZE=23
BLOCKSFACE=13
TEXTSRACE=1
TEXTFUDGE=3

export MAPLP BAUD HRES VRES NCHARS
export TEXTSCALE TEXTSRCE TEXTFUDGE
export NBLOCKS BLOCKSIZE BLOCKSRCE

exec $PAINT_DRIVER

24.5. Pogramming Considerations

The paint driver uses its standard input and standard output to communicate with the
paint application program. It is very important that neither theedishell nor the dnrer
program write to stdout or read from stdin.

Diagnostics, error messages, etc., should be written to.sfeere is an error routine
which driver programs can use for fatal error messages. It is defined as follows:

error (message, perror)

char *message;
int perror;

§24 Writing a Paint Driver

- 280 - - 280 -

This routine prints thenessageon stderr If perror is true (i.e., non-zero), the
UNIX routine perror () will be also called to print a system error messédgaally,
ext () is alled to terminate the aher.

24.6. Raint Driver L ibrary

The paint system comes with some code that has already been written. This code is in
object files under theaintdriver library directory*! These object files are:

main.o
This file contains thenain() routinewhich must be loaded by eery dri ver, since
it contains the code that interfaces with the application programs.

i0.0
This file contains versions &fopen(p. 279, Pout(p. 279, Poutd(p. 273, Poutqp. 273,
Pflusi{p. 273, andPclos€p. 273 which can be used with printers that are connected
to serial or parallel ports. These routines handle theyttigk interfaces for both
System V and Beidey UNIX, allowing full 8-bit data output to the printewith
xon/xoff control enabled, as well as baud rate selection.

colors125.0
This file contains versions of Pncolorgp.279, Pcolorlevelgp. 279,
Pcolornungp. 277, andPcolorvaludp. 277 for the 125 color logic described $24.8
Creating 125 Colas From 3 Qolors|[p. 283.

24.7. Compilingthe Driver

Paint drivers are compiled using the GRAS$@akeutility which requires a&Gmakefile
containing compilation ruleX? The following is a sampl&makefile

11 see§24.7 Compiling the Drivep. 28q for an example of he to load this library code.

12 See 8§11 Compiling and Installing GRASS dgrams [p.57 for details on the GRASS
compilation process.

§24 Writing a Paint Driver

- 281 - - 281 -

NAME = sample
DRIVERLIB = $(SRC)/paint/Interface/drérlib
INTERFACE = HDRIVERLIB)/main.o \

$(DRIVERLIB)/i0.0 \
$(DRIVERLIB)/colors125.0

DRIVER_SHELL = $(ETC)/paint/dvier.sh/$(NAME)
DRIVER_EXEC = $(ETC)/paint/dvier/$(NAME)

OBJ = alpha.o text.o raster.o ngis.o\
pictsize.o data.o rle.o

all: $(DRIVER_EXEC) $(DRIVER_SHELL)

$(DRIVER_EXEC): $(OBJ) $(LOCKLIB)
$(CC) $(LDFLAGS) $(INTERACE) $(OBJ) $(LOCKLIB) -0 $@

$(DRIVER_SHELL): DRIVER.sh

rm -f $@
cp $? $@
chmod +x $@
$(0BJ): Ph
$(LOCKLIB): #in case library changes

There are some features about thimakefilethat should be noted:

printer name (NAME)
The printer namesampleis assigned to the NAME variable, which is then used
evaywhere else.

paint driver library (DRIVERLIB)
This driver loads code from the commaguaint driver library13 It loads main.o
containing themain() routine for the drier. All dri vers must load main.o. It
loads i0.0 which contains versions oPopen(p.272, Pout(p.279, Poutd(p. 273,
Poutg(p. 273, Pflushp. 273, and Pclosdp. 273 for serial and parallel ports. It also
loadscolors125.owhich contains versions d¢tncolorgp. 279, Pcolorlevelgp. 279,
Pcolornungp. 277, andPcolorvaludp. 277 for 125 colors.

lock library (LOCKLIB)
The drver loads the lock libraryThis is a GRASS library which must be loaded if
the Popen(p. 279 from the dwer library is used.

homes for duer shell and &ecutable
The drver executable is compiled into theriver directory and the dnver shell is
copied into thariver.sh directory This means that the dar executable is placed

13 See als®24.6 Paint Driver Libraryp. 28q).

§24 Writing a Paint Driver

-282 - -282 -

$GISBASE/etc/paint/dvierl4
and the dwer shell in
$GISBASE/etc/paint/dvier.sh.

24.8. Creating 125 Colors From 3 Colors

The paint system expects that the printer willvieaa easonably large number of colors.
Some printers support a ¢@r color table in the hardware. But others only support three
primary colors: red, green, and blue (or cyan, yellaad magenta).lf the printer only

has three colors, the der must simulate more.

If the printer pixels are grouped intaZ2combinations of pixels, then 125 colors can be
simulated. Br example, a color with 20% red, 100% green, and 0% blue wourkel dmee

of the four pixels painted red, all four pig painted green, and none of the pixels painted
blue.

The following code corerts a color intensity in the range 0.0 to 1.0 into a number from
0-4 (i.e., the number of pixels to "turn on" for that color):

npixels = (intensity15) ;

if (npixels > 4)

npixels = 4 ;

This logic will agree with the 125 color logic used by faént driver library!® routines
Pncolorgp. 279, Pcolorlevel$p. 279, Pcolornungp. 277, andPcolorvaludp. 277, provided
that the colonumbersare assigned as follows:

color_number = red_pixels25 + green_pixel8]5 + blue_pixels ;

14 $GISBASE is the directory where GRASS is installé®ee§10.1 UNIX Emironment[p. 53
for detalils.

15 Seeg§24.6 Paint Driver Libraryp. 28q.

§24 Writing a Paint Driver

- 283 - - 283 -

Chapter 25

Writing GRASS Shell Scripts

This section describes some of the things a programmer should consider when writing a
shell script that will become a GRASS command.

25.1. Usdhe Bourne Shell

The Bourne Shell (/bin/sh) is the original UNIX command interprdteis available on

most (if not all) versions of UNIX. Other command interpreters, such as the C-Shell
(/bin/csh), are not as widelyalable. Therefore, programmers are strongly encouraged
to write Bourne Shell scripts for maximum portability.

The discussion that follows is for the Bourne Shell orlyis dso assumed that the
reader knows (or can learn)iado write Bourne Shell scripts. This chapter is intended to
provide guidelines for making them work properly as GRASS commands.

25.2. Haw a Script Should Start
There are some things that should be done at the beginning GRASS shell script:
(1) \erify that the user is running GRASS, and

(2) Castthe GRASS evironment variables into the UNIX emonment! and
verify that the variables needed by the shell script are set.

#l/bin/sh
if test "$GISRC =""
then
echo "Sorryyou are not running GRASS &2
ext 1
fi
evd "g.gisen"
: ${GISBASE?} ${GISDBASE?} ${LOCATION_NAME?} ${MASPET?}

1 See§10 Environment Variablgg. 53

§25 Writing GRASS Shell Scripts

- 284 - - 284 -

Note the use of the command. This command simplyaliates its ajuments. The
syntax ${GISBASE?} means that if GI®BE is not set, issue an error message to
standard error and exit the shell script.

25.3. gask

The GRASS command).ask emulates the prompting found in all other GRASS
commands, and should be used in shell scripts to ask the user for files from the GRASS
database. Thesers response can be cast into shell variables. The followxagnple

asks the user to select an existing raster file:

g.ask type=old prompt="Select a raster file" element=cell desc=raster unixfile=/tmp/$$
. tmp/$$
rm -f Amp/$$
if test "$name" =""
then

exit 0
fi

Theg.askmanual entry in th&RASS Uses’ Refelence Manualdescribes this command
in detail. Here, the reader should note the following:

(1) Thetemporary file used to hold the usesponse i€mp/$$. The Bourne
Shell will substitute its process id for ti§$ thus creating a unique file
name;

(2) Thenext line, which bgins with a dot, sources the commands contained in
the temporary file. These commands are:

name=something
mapsetsomething
file=something

Therefore, the ariables $name, $mapset, and $file will contain the name,
mapset and full UNIX file name of the raster file selected by the user;
(3) Thetemporary file is remaed; and

(4) If $name is empipthis means that the user changed his or her mind and did
not select ay raster fileZ In this case, something reasonable is done, lik
exiting.

25.4. dfindfile

The gfindfile command can be used to locate GRASS files that were specified as
arguments to the shell script (instead of prompted for gi#sk. Assumingthat the

variable $request contains the name of a raster file, the following checks to see if the file
exists. Ifit does, the &riables $name, $mapset and $file will be set to the name, mapset

2 The other variables will be empty as well.

§25 Writing GRASS Shell Scripts

- 285 - - 285 -

and full UNIX file name for the raster file:

evd "g.findfile element=cell file="$requée'st

if test "$mapset=""

then
echo ERROR: raster file "$requéabt found >&2
exit 1

fi

Note. The programmer should use quotes with $request, since it may contain spaces.
(quotes will presemr the full request). If foundy.findfile outputs $name as the name part
and $mapset as the mapset p&ee thegfindfile manual entry in th&sRASS Uses’
Reference Manuadior more details.

§25 Writing GRASS Shell Scripts

- 286 - - 286 -

- 287 -

Appendix A

- 287 -

Annotated Gmakefile Predefined Variables

The predefined Gmakile variables are defined in the fileead and male mid.

These files can be found under $GISBASE/src/CMD.

Note: Some of the variables sho here are described in more detail §hl

Compiling and Installing GRASS &ramsip. 57.

head

The head file contains machine dependent and installation dependent
information. Itis created by system personnel when GRASS is installed on a
system prior to compilation. This file varies from system to sysfEne. name

of this file may also ary, depending on the machine or architecture for which

GRASS is compiled.

Here is a sampleeadfile:

#USE_TERMIO
USE_MTIO

=DUSE_TERMIO
=-DUSE_MTIO

Variable \alue Description

ARCH =sun3 Architecturéo compile on
GISBASE =/usr/grass4.1 Locatioof GRASS program
UNIX_BIN = /usr/local/bin MiscellaneouSRASS command
DEFAULT _DATABASE =/usr/grass/data Locatiaf default database
DEFAULT_LOCATION =spearfish Namef defaut database
COMPILE_FLAGS =-0 Compilerflags

LDFLAGS =-s Loaderflags

DIGIT_FLAGS =

MATHLIB =-lm Mathlibraries

TERMLIB = -ltermlib Terminal emulation libraries
CURSES =lcurses $(TERMLIB) Curses libraries

LIBRULE =ar ruv $@ $7?; ranlib $@ Library areler

#LIBRULE =arrc $@ ‘lorder $(OBJ) | tsort! Alternate form of library archir

command
UsélERMIO or not?
UseMTIO?

(2]

1 $GISBASE is the directory where GRASS is installé8ee§10.1 UNIX Emironment[p. 53

for details.

Annotated Gmakefile Predefined Variables

- 288 -

- 288 -

Variable

\alue

Description

DIGITFLAGS

make.mid

The malemid file uses the ariables inmakeheado construct otherariables
that are useful for compilation rulesthe contents of this file are usually
unchanged from system to system.

Here is a samplmale midfile:

Variable \alue Description

SHELL =/bin/sh

BIN = $(GISBASE)/bin GRASSommand links
ETC =3$(GISBASE)/etc MainGRASS commands
GARDEN_BIN =$(GISBASE)/@rden/bin Gardenommands
GARDEN_ETC =$(GISBASE)/garden/etc

BIN_MAIN_INTER
BIN_MAIN_CMD
BIN_ALPHA_INTER
BIN_ALPHA_CMD
BIN_CONTRIB_INTER
BIN_CONTRIB_CMD
TXT

MAN1

MANZ2

MAN3

MAN4

MANS5

MANG

HELP

CFLAGS

AR

= $(ETC)/bin/main/inter
= $(ETC)/bin/main/cmd
=$(ETC)/bin/alpha/inter
=$(ETC)/bin/alpha/cmd

=$(ETC)/bin/contrib/inter
=$(ETC)/bin/contrib/cmd

= $(GISBASE)/txt

= $(GISBASE)/man/1

= $(GISBASE)/man/2

= $(GISBASE)/man/3

= $(GISBASE)/man/4

= $(GISBASE)/man/5

= $(GISBASE)/man/6
=$(GISBASE)/man/help

= $(GMAKE) -makeparentdir $@;

$(LIBRULE)

Mainnteractve cmommands

Mairrommand-line command
Alphanteractve

Alphaommand-line
Contrilted interactie
Contrited command-line
Text directory

Manugbage directories

$(COMPILE_FLAGS)
$(EXTRA_CFLAGS)
-I$(LIBDIR)
$(USE_TERMIO)

All library archver flags

Annotated Gmakefile Predefined Variables

- 289 -

- 289 -

Variable \alue Description

MANROFF = tbl -TX Manual formatter comman
$(SRC)/man.help/man.version and options
$(SRC)/man.help/man.header $? ||
nroff -Tlp | col -b > $@

MAKEALL = $(GMAKE) -all Command to makGRASS

LIBDIR = $(SRC)/libes GRAS8braries

DIG_LIBDIR = $(SRC)/mapdev/libes

DIG_INCLUDE =$(SRC)/mapdev/lib

VECT_INCLUDE = -I$(SRC)/mapdev/Vlib
-I$(SRC)/mapdev/diglib

VASKLIB = $(LIBDIR)/libvask.a \ask libraries

VA SK =$(VASKLIB) $(CURSES) Vask and flags

GISLIB = $(LIBDIR)/libgis.a GlSlibraries

ICONLIB = $(LIBDIR)/libicon.a

LOCKLIB = $(LIBDIR)/liblock.a

IMAGERYLIB = $(LIBDIR)/libl.a

ROWOLIB = $(LIBDIR)/librowio.a

COORCNVLIB =$(LIBDIR)/libcoorcrv.a

SEGMENTLIB =$(LIBDIR)/libsegment.a

BTREELIB =$(LIBDIR)/libbtree.a

DLGLIB = $(LIBDIR)/libdlg.a

RASTERLIB =$(LIBDIR)/libraster.a

DISPLAYLIB = $(LIBDIR)/libdisplay.a

D LIB = $(LIBDIR)/libD.a

DRIVERLIB =
$(SRC)/display/devices/lib/drérlib.a

LINKMLIB = $(LIBDIR)/liblinkm.a

DIGLIB = $(LIBDIR)/libdig.a

DIG2LIB = $(LIBDIR)/libdig2.a

VECTLIB_REAL = $(LIBDIR)/libvect.a

VECTLIB = $(VECTLIB_REAL) $(DIG2LIB)

DIG_ATTLIB = $(LIBDIR)/libdig_atts.a

XDISPLAYLIB = $(LIBDIR)/libXdisplay.a

Annotated Gmakefile Predefined Variables

- 290 - - 290 -

-291 - -291 -

Appendix B
The CELL Data Type

GRASS cell file data is defined to be of type CELL. This data type is defined in the
"gis.h" header file. Programmers must declare all variables affetwhich will hold
raster data or category codes as type CELL.

Under GRASS the CELL data type is declared tanbebut the programmer should not
assume this. What should be assumed is that CELL is a signed integer type. It may be
changed sometime thort or long. This implies that use of CELL data with routines
which do not knas about this data type (e.g., printf(), sscanf(), etc.) must use an
intermediate variable of tydeng.

To print a CELL value, it must be castling. For example:
CELL c; [* raster value to be printed */
/* some code to get a value for ¢ */

printf ("%Id\n", (long) ¢); /* cast c to long to print */

To read a CELL value, for example from user typed input, it is necessary to read into a
long variable, and then assign it to the CELariable. Br examplet

char userbuf[128];
CELL c;
long Xx;

printf ("Which category? "); /* prompt user */

gets(usert); /* get user response */
sscanf (userbuf,"%ld", &x); /* scan category into long variable */
¢ = (CELL) x; /* assign long value to CELL value */

Of course, with GRASS library routines that are designed to handle the CELL type, this
problem does not arisdt is only when CELL data must be used in routines which do not
know about the CELL type, that the values must be cast to or livom

1 This example does not check for valid inputs, E€d:, which good code must do.

The CELL Data Type

-292 - -292 -

- 293 -

Index to GIS Library

Appendix C

- 293 -

Here is an inde of GIS Library routines, with calling sequences and short function

descriptions.

GIS Library
routine parameters description page
G_add_color_rule (cattl, g1, b1, cat2, r2, g2, b2, colors)set colors 113
G_adjust_Cell_head (cellhdlag, cflag) adjust cell header 107
G_adjust_easting (eastgion) returnseast larger than west 96
G_adjust_east_longitude (eastst) adjuseast longitude 96
G_align_windov (region, ref) align tw regons 86
G_allocate_cell_tf 0 allocate a raster bfdr 103
G_area_for_zone_on_ellipsoid (norsiouth) aredetween latitudes 92
G_area_for_zone_on_sphere (nosthiith) aredetween latitudes 92
G_area_of_cell_at_vo (row) cell area in specified vo 91
G_area_of_polygon % n) area in square meters of polygon 93
G_ask_an (prompt, name, element, labelam) |prompfor ary valid file name 76
G_ask_cell_in_mapset (prompame) promptor existing raster file 99
G_ask_cell_ne (prompt, name) prompt for meraster file 99
G_ask_cell_old (promphame) prompfor existing raster file 99
G_ask_in_mapset (prompiame, element, label) prompt for existing database file 75
G_ask_ne (prompt, name, element, label) prompt fonrgatabase file 75
G_ask_old (prompname, element, label) prompt for existing database file 75
G_ask_sites_in_mapset (prompayme) promptor existing site list file 127
G_ask_sites_ne (prompt, name) prompt for mesite list file 127
G_ask_sites_old (promptame) prompfor existing site list file 127
G_ask_ector_in_mapset (promptame) prompfor an existing vector file 122
G_ask_vector_me (prompt, name) prompt for awevector file 122
G_ask_ector_old (promptname) promptor an existing vector file 122
G_bain_cell_area_calculations) (begn cell area calculations 91
G_bain_distance_calculations) (begn distance calculations 94
G_bain_ellipsoid_polygon_area (@2) bein area calculations 93
G_bain_geodesic_distance eR) bein geodesic distance 94
G_bain_polygon_area_calculations) (begn polygon area calculations 93
G_bain_zone_area_on_ellipsoid €2, s) begin area calculations for ellipsoid 92
G_bain_zone_area_on_sphere . gr initialize calculations for sphere 92
G_bresenham_line (x¥1, x2, y2, point) Bresenham line algorithm 129
G_calloc (nsize) memonallocation 83
G_close_cell (fd) close a raster file 106
G_col_to_easting (cotegion) columnto easting 86
G_database_projection_name (proj) query cartographic projection 88
G_database_unit_name (plural) database units 88
G_database_units_to_meteectbr () corversion to meters 88
G_date] current date and time 151
G_define_flag X return Flag structure 134
G_define_option X returns Option structure 134

Index to GIS Library

-294 - -294 -

GIS Library
routine parameters description page
G_disable_interacte 0 turns of interactve apability 135
G_distance (xly1, x2, y2) distance in meters 94
G_easting_to_col (eastgion) eastingo column 87
G_ellipsoid_name (n) return ellopsoid name 96
G_ellipsoid_polygon_area (lofat, n) area of lat-long polygon 94
G_fatal_error (message) print error message andie 70
G_find_cell (namemapset) finch raster file 100
G_find_cell_stat (catount, s) random query of cell stats 120
G_find_file (elementhame, mapset) find a database file 77
G_find_\ector2 (namemapset) finda vector file 123
G_find_\ector (namemapset) finda vector file 123
G_fopen_append (elemengme) opema database file for update 80
G_fopen_ne (element, name) open ameatabase file 81
G_fopen_old (elemenhame, mapset) open a database file for reading 79
G_fopen_sites_me (name) opem rew gte list file 128
G_fopen_sites_old (nammapset) opean existing site list file 128
G_fopen_vector_ve (name) opem rew \ector file 125
G_fopen_ector_old (namemapset) opean existing vector file 124
G_fork 0 create a protected child process 150
G_format_easting (eadiuf, projection) easting to ASCII 90
G_format_northing (northyuf, projection) northing to ASCII 90
G_format_resolution (resolutiobuf, projection) resolution to ASCII 90
G_free_cats (cats) free category structure memory 111
G_free_cell_stats (s) free cell stats 119
G_free_colors (colors) free color structure memory 114
G_fully_qualified_name (nameapset) fullygualified file name 77
G_geodesic_distance (lonatl, lon2, lat2) geodesic distance 95
G_geodesic_distance_lon_to_lon (lolth2) geodesidistance 95
G_get_ask_return_msg) (get Hit RETURN msg 76
G_get_cat (ncats) geh category label 110
G_get_cats_title (cats) get title from category structure 110
G_get_cellhd (namenapset, cellhd) read the raster header 107
G_get_cell_title (namemapset) getaster map title 109
G_get_color (cated, green, blue, colors) get a category color 113
G_get_color_range (mimax, colors) get color range 114
G_get_default_winde (region) readthe default rgion 84
G_get_ellipsoid_by name (nanze,e2) get ellipsoid by name 97
G_get_ellipsoid_parameters &2) getellipsoid parameters 97
G__geten (name) quenGRASS environmentariable 73
G_getem (name) quenGRASS environmentariable 73
G_get_map_m (fd, cell, raw) reada raster file 104
G_get_map_m_nomask (fdeell, row) reada raster file (without masking) 104
G_get_range_min_max (rangein, max) get range min and max 119
G_gets (lof) geta line of input (detect ctrl-z) 151
G_get_set_windo (region) getthe actve regon 86
G_get_site (fdeast, north, desc) read site list file 128
G_get_windav (region) readthe database geon 83
G_gisbase X top level program directory 72
G_gisdbase X top level database directory 73
G_gisinit (program_name) initialize gis library 70

Index to GIS Library

- 295 - - 295 -

GIS Library
routine parameters description page
G_home] users home directory 152
G_init_cats (ntitle, cats) initialize category structure 110
G_init_cell_stats (s) initialize cell stats 119
G_init_colors (colors) initialize color structure 113
G_init_range (range) initialize range structure 118
G_intr_char] return interrupt char 152
G_is_reclass (nam@apset, r_name, r_mapset) reclass file? 108
G_legd_filename (name) check for lgd database file names 78
G_location 0 current location name 72
G_location_path X current location directory 73
G_lookup_colors (rastered, green, blue, set, n, colorg) lookup an array of colors 112
G_male_aspect_colors (colongiin, max) mak aspect colors 115
G_make_grg scale_colors (colorgin, max) mak linear grg scale 115
G_male_gyr_colors (colorsnin, max) mak geen,yellav,red colors 116
G_male_histogram_eq_colors (colosy, male histogram-stretched gyecolors 116
G_make_rainbe_colors (colorsmin, max) mak rainbav colors 115
G_male_ramp_colors (colorgin, max) mak mlor ramp 115
G_male_random_colors (colorgin, max) mak random colors 116
G_male_ryg_colors (colorsnin, max) mak red,yellav,green colors 116
G_make_wave colors (colorsmin, max) mak olor wave 115
G_malloc (size) memory allocation 82
G_mapset X current mapset name 72
G_meridional_radius_of_cuature (longa, e2) meridional radius of cuature 97
G_myname | location title 72
G_net_cell_stat (catcount, s) retrige orted cell stats 120
G_northing_to_ro (north, rgion) northingto rowv 87
G_open_cell_neg (name) oper rew raster file (sequential) 102
G_open_cell_ng_random (name) open a ne raster file (random) 102
G_open_cell_ne_uncompressed (name) open a ne raster file (uncompressed) 102
G_open_cell_old (namenapset) opean existing raster file 101
G_open_ne (element, name) open ameélatabase file 81
G_open_old (elememame, mapset) open a database file for reading 79
G_open_update (elemengme) opem database file for update 80
G_parser (ayc, agv) parsecommand line 134
G_percent (ntotal, incr) print percent complete messages 152
G_planimetric_polygon_area (V)] area in coordinate units 93
G_plot_fx (f,eastl, east2) plot f(eastl) to f(east2) 131
G_plot_line (eastlnorthl, east2, north2) plot line between latlon coordinates 130

G_plot_polygon
G_plot_where_en

G_plot_where_xy
G_pole_in_polygon
G_program_name
G_projection
G_put_cellhd

G_put_cell_title
G_put_map_mnw
G_put_map_ne_random
G_put_site
G_put_windev

(eashorth, n)
(%, east, north)

(eastorth, x, y)
(. n)
)

]
(namesellihd)

(namditle)
(fd, buf)

(fdpuf, row, col, ncells)
(fdeast, north, desc)
(region)

Index to GIS Library

plot filled polygon with nertices 130

X,y to east,north 130
east,north to x,y 130
pole in polygon 98
return program name 152
query cartographic projection 88
writethe raster header 108
changeaster map title 109
write a raster file (sequential) 105
write a raster file (random) 105
write site list file 129
writethe database geon 84

- 296 - - 296 -

GIS Library
routine parameters description page
G_radius_of_conformal_tangent_sphere(lon, a, e2) radius of conformal tangent sphere
G_read_cats (nammapset, cats) read raster category file 109
G_read_colors (namajapset, colors) read map layer color table 111
G_read_history (namenapset, history) read raster history file 117
G_read_range (nammapset, range) read raster range 118
G_read_ector_cats (namenapset, cats) read vector category file 126
G_realloc (ptrsize) memoryallocation 82
G_remae element, name) reme a ctabase file 82
G_rename (elemer|d, nav) renamea database file 81
G_rewind_cell_stats (s) reset/rewind cell stats 120
G_row_to_northing (rav, regon) row to northing 87
G_rowv_update_range (celh, range) update range structure 119
G_scan_easting ({th, easting, projection) ASCII easting to double 90
G_scan_northing (I, northing, projection) ASCII northing to double 90
G_scan_resolution (b, resolution, projection) ASCII resolution to double 91
G_set_ask_return_msg (msg) set Hit RETURN msg 76
G_set_cat (nabel, cats) set a category label 111
G_set_cats_title (titlezats) setitle in category structure 111
G_set_color (cated, green, blue, colors) set a category color 114
G__seten (name, alue) SeGRASS environmentariable 73
G_seten (name, alue) selGRASS environmentariable 73
G_set_error_routine (handler) change error handling 71
G_set_geodesic_distance_latl (latl) set geodesic distance latl 95
G_set_geodesic_distance_lat2 (lat2) set geodesic distance lat2 95
G_setup_plot (th, I, , Move, Cont) initializeplotting routines 129
G_set_windw (region) setthe actve regon 85
G_shortest_ay (eastleast?) shortestay between eastings 96
G_short_history (nameype, history) initialize history structure 117
G_sleep_on_error (flag) sleep on error? 71
G_squeeze (s) remov/e nnecessary white space 148
G_store (s) copy string to allocated memory 148
G_strcat (dstsrc) concatenatgtrings 148
G_strcyy (dst, src) cop strings 147
G_strip (s) remove leading/training white space 148
G_strncy (dst, src, n) copstrings 147
G_suppress_arnings (flag) suppress arnings? 71
G_system (command) run a shell leel command 151
G_tempfile 0 returns a temporary file name 131
G_tolcase (s) corvert string to lower case 148
G_toucase (s) corvert string to upper case 149
G_transverse_radius_of_cature (longa, e2) transverse radius of catre 97
G_unctrl (c) printable version of control character 149
G_unopen_cell (fd) unopen a raster file 106
G_unset_error_routine)(reset normal error handling 71
G_update_cell_stats (data,s) add data to cell stats 120
G_update_range (cagnge) updateange structure 118
G_usage X command line help/usage message 134
G_warning (message) print warning message and continue 70
G_whoami 0 users rame 153
G_windov_cols 0 number of columns in ast regon 85

Index to GIS Library

97

- 297 -

- 297 -

GIS Library
routine parameters description page
G_window_ravs 0 number of rows in acte regon 85
G_write_cats (nameats) writeraster category file 109
G_write_colors (namemapset, colors) write map layer color table 112
G_write_history (namdhistory) writeraster history file 117
G_write_range (nameange) writeraster range file 118
G_write_\ector_cats (nameats) writevector category file 126
G_yes (questiorgefault) aska yes/no question 153
G_zero_cell_bf (buf) zeroa raster bufer 103
G_zone] query cartographic zone 88

Index to GIS Library

- 298 - - 298 -

- 299 -

- 299 -

Appendix D

Index to Vector Library

Here is an inde of vector Library routines, with calling sequences and short function

descriptions.

vector Library

routine parameters description page
dig_check_dist (Mam, x, y; d) find distance of point to line 170
dig_point_in_area (Map, v, pa) ispoint in area? 169
dig_point_to_area (Map, y) find which area point is in 169
dig_point_to_line (Mapx, Y, type) findwhich arc point is closest to 170
V1_read_line (MapPoints, ofset) readvector arc by specifying ffet 164
V2_area_att (Maparea) geattribute number of area 167
V2_get_area_bbox (Maprea, n, s, e, w) get bounding box of area 168
V2_get_area (Mam, pa) get area info from id 168
V2_get_line_bbox (Magine, n, s, e, w) get bounding box of arc 168
V2_line_att (Mapline) getattribute number of arc 167
V2_num_areas (Map) get number of areas in vector map 167
V2_num_lines (Map) get number of arcs in vector map 167
V2_read_line (MapPoints, line) read vector arc by specifying line id 164
Vect_close (Map) close a vector map 162
Vect_copy_head_data (fromip) copy vector header struct data 166
Vect_copy_pnts_to_xy (Points, v, n) corvert line_pnts structure to xy arrays 166
Vect_copy_xy_to_pnts (Point, vy, n) corvert xy arrays to line_pnts structure 165
Vect_destry_line_struct (Points) deallocate line points structure space 165
Vect_get_area_points (Magrea, Points) get defining points for area polygon 166
Vect_level (Map) getopen leel of vector map 169
Vect_nev_line_struct] create ne initialized line points structure 165
Vect_open_ne (Map, name) open mevector map 161
Vect_open_old (Mappame, mapset) open existing vector map 161
Vect_print_header (Map) print header info to stdout 169
Vect_read_nkt_line (Map,Points) reachext vector line 162
Vect_remae_constraints (Map) unset ag vector read constraints 164
Vect_rewind (Map) rewind vector map for re-reading 163
Vect_set_constraint_géon (Map,n, s, e, w) set restricted region to read vector arcs from 163
Vect_set_constraint_type (Matype) specifitypes of arcs to read 163
Vect_set_open_lel (level) specifylevel for opening map 162
Vect_write_line (Maptype, Points) write out arc to vector map 164

Index to Vector Library

- 300 - - 300 -

-301 -

Appendix E

Index to Imagery Library

-301 -

Here is an indeof Imagery Library routines, with calling sequences and short function

descriptions.

routine

Imagery Library

parameters

description

page

|_add_file_to_group_ref
|_ask_group_an
|_ask_group_n&
|_ask_group_old
I_find_group

|_free_group_ref
|_get_control_points
I_get_group_ref
|_get_subgroup_ref
I_get_taget

|_init_group_ref
I_new_control_point
|_put_control_points
|_put_group_ref
|_put_subgroup_ref

I_put_taget
|_transfer_group_ref_file

(nammapset, ref)
(prompt, group)
(prompt, group)

(prompgroup)

(group)

(ref)

(groupp)

(groupef)

(groupubgroup, ref)
(grouplocation, mapset)

(ref)

(cpel, n1, e2, n2, status)
(grougp)

(groupef)
(groupubgroup, ref)

(groupJocation, mapset)
(sro, dst)

Index to Imagery Library

add file name to Ref structure
prompt for grvalid group name
prompt for megroup
prompfor an existing group
does groupxst?

free Ref structure
readgroup control points
readgroup REF file
read subgroup REF file
read target information

initialize Ref structure
addaneontrol point
writegroup control points
write group REF file
write subgroup REF file

write target information
copy Ref lists

177
175
174
174
175

178
179
176
176
178

177
179
179
176
176

178
177

- 302 - - 302 -

- 303 -

Appendix F

- 303 -

Index to Display Graphics Library

Here is an indeof Display Graphics Library routines, with calling sequences and short

function descriptions.

Display Graphics Library

routine parameters description page
D_add_to_list (string) add command to frame display list 199
D_a to_d_caol (column) array to screen (column) 201
D _a to d rw (row) arrayto screen (no) 200
D_cell_drav_setup (topbottom, left, right) prepare for raster graphics 204
D_check_colormap_size (min,max,ncolors) verify a range of colors 202
D_check_map_winde (region) assign/retriee aurrent map rgion 198
D_clear_windar 0 clear frame display lists 198
D_clear_windov 0O clears information about current frame 198
D_clip (s,n,w e, Xx,¥,CX, C_Y) clip coordinates to windo 205
D_color (catcolors) selectaster color for line 203
D_cont_abs (xy) lineto x,y 209
D_cont_rel (xy) lineto x,y 209
D_do_conersions (rgion, top, bottom, left, right) initialize cwarsions 200
D_drav_cell (row, raster colors) renden raster rov 204
D_d_to_a col x) screen to array (x) 202
D _d to_a rw) screerto array (Yy) 202
D_d_to_u_col x) screen to earth (x) 201
D _d_to_u_rov) screerto earth (y) 201
D_erase_winde 0O erase current frame 198
D_get_cell_name (name) retrieve raster map name 199
D_get_cur_wind (name) identify current graphics frame 197
D_get_screen_windo (top, bottom, left, right) retriee aurrent frame coordinates 197
D_lookup_colors (datay, colors) change to hardware color 203
D_move_abs (xy) move o pixel 209
D_move_rel (x,y) move o pixel 209
D_new_windev (name, top, bottom, left, right) createangraphics frame 197
D_popup (bcolartcolor, deolor, top, left, size, options)pop-up menu 206
D_raster (rasten, repeat, colors) lv levd raster plotting 204
D_remae_windov 0 remove a fame 198
D_reset_color (data, g, b) reset raster coloralue 202
D_reset_colors (colors) set colors in dvier 206
D_reset_screen_windo (top, bottom, left, right) resets current frame position 198
D_set_cell_name (name) add raster map name to display list 199
D_set_clip_window_to_map_windd) set clipping windw to map windav 208
D_set_clip_windw (top, bottom, left, right) set clipping windo 208
D_set_colors (colors) establish raster colors for graphics 203
D_set_cur_wind (name) set current graphics frame 197
D_set_woerlay_mode (flag) configure rasterverlay mode 204
D_setup (clear) graphics frame setup 196
D_setup (clear) initialize/create a frame 196

Index to Display Graphics Library

- 304 -

Display Graphics Library

- 304 -

routine parameters description page
D_show_windev (color) outlinescurrent frame 197
D_timestamp | give current time to frame 198
D_translate_color (name) color name to humber 207
D_u_to_a_ col (east) earth to array (east) 200
D u to a rw (north) eartho array (north) 200
D_u_to_d_col (east) earth to screen (east) 201
D_u_to d_rov (north) earthto screen (north) 201

Index to Display Graphics Library

- 305 -

Appendix G

Index to Raster Graphics Library

- 305 -

Here is an inde of Raster Graphics Library routines, with calling sequences and short

function descriptions.

Raster Graphics Library

routine parameters description page
R_box_abs (x1,y1,x2,y2) fill a box 187
R_box_rel (dx,dy) fill a box 187
R_close_dner O terminate graphics 184
R_color (color) select color 185
R_color_table_figd 0 select fixed color table 185
R_color_table_float X select floating color table 185
R_cont_abs (x,y) draw line 187
R_cont_rel (dx,dy) draw line 187
R_erase X erase screen 188
R_flush 0 flush graphics 188
R_font (font) choose font 191
R_get_location_with_box (9%, ny,button) getmouse location using a box 193
R_get_location_with_line (.51, ny,button) getmouse location using a line 192
R_get_location_with_pointer (nxfutton) getmouse location using pointer 192
R_get_ta&t _box (text, top, bottom, left, right) get texkents 192
R_move_abs x,y) move arrent location 186
R_move rel (dx,dy) move aurrent location 187
R_open_drier O initialize graphics 184
R_polydots_abs (x,yum) drav a ries of dots 188
R_polydots_rel (X,youm) drav a eries of dots 188
R_polygon_abs (x,um) drav a dosed polygon 189
R_polygon_rel (x,ynum) drav a dosed polygon 189
R_polyline_abs (X, ypum) drav an qen polygon 189
R_polyline_rel (x,ynum) drav an gen polygon 189
R_raster (num,nres,withzero,raster) dvaa raster 190
R_reset_color (redyreen, blu, num) define single color 185
R_reset_colors (min,max,red,green,blue) define multiple colors 185
R_RGB_color (red,green,blue) select color 186
R_RGB_raster (num,nwes,red,green,blue,withzero) dva raster 190
R_screen_bot X bottom of screen 186
R_screen_left X screen left edge 186
R_screen_rite X screen right edge 186
R_screen_top X top of screen 186
R_set_ RGB_color (red,green,blue) initialize graphics 190
R_set_windar (top,bottom, left,right) sdext clipping frame 191
R_stabilize] synchronize graphics 188
R_standard_color (color) select standard color 186
R_text_size (width height) setext size 191
R_text (text) write text 192

Index to Raster Graphics Library

- 306 - - 306 -

- 307 - - 307 -

Appendix H

Index to Rowio Library

Here is an inde of Rowio Library routines, with calling sequences and short function
descriptions.

Rowio Library

routine parameters description page
rowio_fileno n get file descriptor 218
rowio_flush n force pending updates to disk 218
rowio_forget (r n) forget a rav 217
rowio_get (rn) read a rov 217
rowio_put (r buf, n) write a rav 218
rowio_release n free allocated memory 218
rowio_setup (rfd, nrows, len, getrg, putrow) configurerowio structure 216

Index to Rowio Library

- 308 - - 308 -

- 309 - - 309 -

Appendix |

Index to Segment Library

Here is an inde of Segment Library routines, with calling sequences and short function
descriptions.

Segment Library

routine parameters description page
segment_flush (B flushpending updates to disk 224
segment_format (fdnrows, ncols, srows, scols, len) format a segment file 222
segment_get_m (seg, buf, rav) readrow from segment file 224
segment_get (s value, rav, col) getvalue from segment file 223
segment_init (sg, fd, ns@s) initializesegment structure 223
segment_put_re (segq, buf, rav) write row to segment file 223
segment_put (sm, value, rav, col) putvalue to segment file 224
segment_release (5] freeallocated memory 225

Index to Segment Library

-310 - -310 -

-311- -311-

Appendix J
Index to Vask Library

Here is an inde of Vask Library routines, with calling sequences and short function
descriptions.

Vask Library

routine parameters description page
V_call 0 interact with the user 231
V_clear 0 initialize screen description 230
V_const (alue, type, ra, col, len) define screen constant 230
V_float_accurag (num) senumber of decimal places 231
V_intrpt_msg (text) changectrl-c message 232
V_intrpt_ok 0 alow ctrl-c 231
V_line (num,text) addline of text to screen 230
V_ques (alue, type, ro, col, len) define screen question 230

Index to Vask Library

-312 - -312 -

-313 -

Appendix K

Permuted Index for Library Subroutines

get theactie regon

set theactie regon

number of columns inaet regon
number of rows inacte regon

add command to frame display list

add data to cell stats

add file name to Ref structure

add line of text to screen
add nev control point

add raster map name to display list

adjust cell header

adjust east longitude
Bresenham linealgorithm

align two regons

allocate a raster bigr

copy string toallocated memory

freeallocated memory

freeallocated memory
memoryallocation
memoryallocation

memoryallocation
allow ctrl-c
get bounding box ofarc
get attribute number ofarc
read vectorarc by specifying line id

read vectorarc by specifyingfeét
find whicharc point is closest to
write outarc to vector map
set restricted region to read vectorarcs from
get number ofarcs in vector map

specify types ofarcs to read
is point inarea?
get attribute number ofarea
get bounding box ofarea
area between latitudes

area between latitudes
begin cellarea calculations
beginarea calculations
begin polygonarea calculations

beginarea calculations for ellipsoid

area in coordinate units
cellarea in specified vo

area in square meters of polygon

getarea info from id
area of lat-long polygon

find whicharea point is in
get defining points forarea polygon

G_get_set_windu()
G_set_windw()
G_windav_cols()
G_windav_rows()
D_add_to_list()

G_update_cell_stats()
I_add_file_to_group_ref()
V_line()
I_nev_control_point()
D_set_cell_name()

G_adjust_Cell_head()
G_adjust_east_longitude()
G_bresenham_line()
G_align_winde/()
G_allocate_cell_uf()

G_store()
vao_release()
gment_release()
G_callog(
G_mallog(

G_reallog(
V_intrpt_ok()
V2_get_line_bbox()
V2_line_att()
V2_read_line()

V1 _read_line(
dig_point_to_line()
Vect_write_line()
Vect_set_constraint_géon()
V2_num_lines()

Vect_set_constraint_type()
dig_point_in_area()
V2_area_att()
V2_get_area_bbox()

-313 -

G_area_for_zone_on_ellipsoid()

G_area_for_zone_on_sphere()
G die_cell_area_calculations()
G_dia_ellipsoid_polygon_area()
Gglre polygon_area_calculations()
Ggire zone_area_on_ellipsoid()

G_planimetric_polygon_area()

G_area_of _cell_at_m()
G_area_of_polygon()
V2_get_area()
G_ellipsoid_polygon_area()

dig_point_to_area()
Vect_get_area_points()

Permuted Index for Library Subroutines

86
85
85
85
199

120
177
230
179
199

107
96
129
86
103

148
218
225
83
82

82
231
168
167
164

164
170
164
163
167

163
169
167
168

92

92
91
93
93
92

93
91
93
168
94

169
166

-314 -

get number ofareas in vector map
earth toarray (east)
earth toarray (north)

lookup anarray of colors
array to screen (column)
array to screen (1)
screen toarray (x)
screen toarray (y)

corvert line_pnts structure to xyarrays
convert xyarrays to line_pnts structure
easting toASCII
northing toASCII
resolution toASCII

ASCII easting to double
ASCII northing to double
ASCII resolution to double
ask a yes/no question
makeaspect colors

assign/retriee aurrent map rgion
getattribute number of arc
getattribute number of area

begin area calculations

begin area calculations for ellipsoid

begin cell area calculations
begin distance calculations
begin geodesic distance

begin polygon area calculations
bottom of screen

getbounding box of arc
getbounding box of area
fill abox
fill abox
get mouse location using abox

get boundingbox of arc
get boundingbox of area
Bresenham line algorithm
allocate a rasterbiefr
zero a rasterbtdr

begin cell areacalculations

begin distancecalculations

begin areacalculations

begin polygon areacalculations
begin areacalculations for ellipsoid

initializecalculations for sphere
turns of interactvecapability
querycartographic projection
querycartographic projection
querycartographic zone

cornvert string to lavercase
corvert string to uppercase
get acategory color
set acategory color
read rastercategory file

- 314 -

V2_num_areas() 167
D_u_to_a_col() 200

D_u_to_aw() 200
G_lookup_colors() 112
D_a to_d_col() 201
D_a to_d_rw() 200
D_d_to_a_col() 202

D_d_to_aw() 202
Vect_copy_pnts_to_xy() 166
Vect_copy_xy_to_pnts() 165
G_format_easting() 90
G_format_northing() 90
G_format_resolution() 90
G_scan_easting() 90
G_scan_northing() 90
G_scan_resolution() 91
G_yes() 153

G_makaspect_colors() 115
D_check_map_wina¢() 198
V2_line_att() 167
V2_area_att() 167

G_die_ellipsoid_polygon_area() 93
Ggbe zone_area_on_ellipsoid() 92

G die_cell_area_calculations() 91
G die_distance_calculations() 94
G dire_geodesic_distance() 94
Ggbe polygon_area_calculations() 93
R_screen_bot() 186
V2_get_line_bbox() 168
V2_get_area_bbox() 168
R_box_abs() 187
R_box_rel() 187
R_get_location_with_box() 193
V2_get_line_bbox() 168
V2_get_area_bbox() 168
G_bresenham_line() 129
G_allocate_cell_uf() 103
G_zero_cell_tf() 103
G die_cell_area_calculations() 91
G die_distance_calculations() 94

G_dia_ellipsoid_polygon_area() 93
Ggbe polygon_area_calculations() 93
Ggoe zone_area_on_ellipsoid() 92

G_dia_zone_area_on_sphere() 92
G_disable_interae#() 135
G_database_projection_name() 88
G_projection() 88
G_zone() 88
G_tolcasi(148
G_toucase() 149
G_get_color() 113
G_set_color() 114
G_read_cats() 109

Permuted Index for Library Subroutines

-315 -

read vectorcategory file
write rastercategory file
write vectorcategory file
get acategory label
set acategory label

get title fromcategory structure
initializecategory structure
set title incategory structure
freecategory structure memory
begincell area calculations

cell area in specified wo
adjustcell header
random query ofcell stats
freecell stats
initializecell stats

retrieve rtedcell stats
reset/rewindcell stats
add data tocell stats
change ctrl-c message
change error handling

change raster map title
change to hardware color
return interruptchar
printable version of controlcharacter

check for lgd database file names

create a protectedchild process
choose font
clear frame display lists

clears information about current frame

clip coordinates to winde

set textclipping frame
setclipping windw

setclipping winda to map windav

close a raster file
close a vector map

draw aclosed polygon
draw aclosed polygon
find which arc point isclosest to
change to hardarecolor
get a catgorycolor

set a catgorycolor
selectcolor

define singlecolor
selectcolor

select standardcolor

select rastercolor for line
color name to number
makecolor ramp
getcolor range
initializecolor structure

freecolor structure memory
read map layercolor table
write map layercolor table

-315 -

G_reackctor_cats()
G_write_cats()

G_writeeetor_cats()
G_get_cat()
G_set_cat()

G_get_cats_title()
G_init_cats()
G_set_cats _title()
G_free_cats()
G die_cell_area_calculations()

G_area_of _cell_at_my()
G_adjust_Cell_head()
G_find_cell_stat()
G_free_cell_stats()
G_init_cell_stats()

G_mxé¢ _cell_stat()

G wénd_cell_stats()
G_update_cell_stats()
V_intrpt_msg()
G_set_error_routine()

G_put_cell_title()
D_lookup_colors()
G_intr_char()
G_unctrl()

Ggkt filename()

G_fork()
R_font()
D_clear_windf)
D_clear_wingp
D_clip()

R_set_wind()
D_set_clip_windw()
D_set_clip_window_to_map_windd)
G_close_cell()
Vect_close()

R_polygon_abs()
R_polygon_rel()
dig_point_to_line()
D_lookup_colory(
G_get_coloi(

G_set_coloi(
R_coloi

R_reset_color()
R_RGB_colo)(

R_standard_color()

D_color()
D_translate_color()
G_mak ramp_colors()
G_get_color_range()
G_init_colors()

G_free_colors()
G_read_colors()
G_write_colors()

Permuted Index for Library Subroutines

126
109
126
110
111

110
110
111
111

91

91
107
120
119
119

120
120
120
232

71

109
203
152
149

78

150
191
198
198
205

191
208
208
106
162

189
189
170
203
113

114
185
185
186
186

203
207
115
114
113

114
111
112

- 316 -

select fixedcolor table
select floatingcolor table

reset rastercoloralue
makecolor vave
verify a range ofcolors
setcolors
lookup an array ofcolors

male aspectcolors

male geen,yellov,redcolors

male histogram-stretched gyeolors
make rainbavcolors

make randomcolors

male red,yellav,greencolors
define multiplecolors
establish rastercolors for graphics
setcolors in drier
array to screen(column)

easting tocolumn
column to easting
number ofcolumns in asi regon
run a shell leelcommand
parsecommand line

command line help/usage message
addcommand to frame display list
print percentcomplete messages
concatenate strings
configure rasterverlay mode

configure rowio structure
radius ofconformal tangent sphere
define screenconstant
unset ag vector readconstraints
print warning message andcontinue

printable version ofcontrol character
add newcontrol point
read groupcontrol points
write groupcontrol points
corversion to meters

initializecorversions

corvert line_pnts structure to xy arrays

corvert string to lower case
convert string to upper case

convert xy arrays to line_pnts structure

area incoordinate units
retrieve aurrent framecoordinates
plot line between latloncoordinates
clipcoordinates to winde
copy Ref lists

copy string to allocated memory
copy strings

copy strings

copy vector header struct data
create a lock

create a protected child process

- 316 -

R_color_table €K) 185
R_color_table_float() 185
D_reset_coloj(202
G_make_wvave colors() 115
D_check_colormap_size() 202
G_add_color_rule(113
G_lookup_colors() 112
G_mak aspect_colors() 115
G_mad gyr_colors() 116
G_mak_histogram_eq_colors() 116
G_mak_rainbev_colors() 115
G_mak random_colors() 116
G_mak ryg_colors() 116
R_reset_colors() 185
D_set_colors() 203
D_reset_colors() 206
D_a to_d_col() 201
G_easting_to_col() 87
G_col_to_easting() 86
G_windav_cols() 85
G_systen)(151
G_parser() 134
G_usage() 134
D_add_to_list() 199
G_percent() 152
G_strcat() 148
D_set \@rlay_mode() 204
vao_setup() 216
G_radius_of_conformal_tangent_spheré&()
V_const() 230
Vect_remae_constraints() 164
@rming() 70
G_unctrl() 149
|_me_control_point() 179
I_get_control_points() 179
I_put_control_points() 179
G_database_units_to_metacsof() 88
D_do_corersions() 200
Vect_copy_pnts_to_xy() 166
G_tolcase() 148
G_toucase() 149
Vect_copy_xy_to_pnts() 165
G_planimetric_polygon_area() 93
D_get_screen_win(do 197
G_plot_line() 130
D_clip() 205
I_transfer_group_ref_file() 177
G_store() 148
G_strep() 147
G_strnep() 147
Vect_copy_head_data() 166
lock_file() 211
G_fork() 150

Permuted Index for Library Subroutines

- 317 -

create n& graphics frame

D_new_wined)

create ne initialized line points structureVect_nev_line_struct()

allowctrl-c
changectrl-c message

get a line of input (detectctrl-z)
current date and time
clears information aboutcurrent frame
erasecurrent frame
outlinescurrent frame

retrievecurrent frame coordinates
resetscurrent frame position
identifycurrent graphics frame
setcurrent graphics frame
movecurrent location

movecurrent location
current location directory
current location name
assign/retrieecurrent map rgion
current mapset name

givecurrent time to frame
meridional radius ofcuature
transverse radius ofclature
copy vector header structdata
adddata to cell stats

top leveldatabase directory
prompt for existingdatabase file
prompt for newdatabase file
prompt for existingdatabase file
find adatabase file

open a newdatabase file
open a newdatabase file
remove aatabase file
rename adatabase file
open adatabase file for reading

open adatabase file for reading
open adatabase file for update
open adatabase file for update
check for lgddatabase file names
read thedatabasegien

write thedatabase gin
database units
currentdate and time

deallocate line points structure space

set number ofdecimal places

read thedefault ggon
define multiple colors
define screen constant
define screen question
define single color

getdefining points for area polygon

initialize screendescription
get filedescriptor
get a line of input(detect ctrl-z)

V_intrpt_ok()
V_intrpt_msg()

G_gets()

G_date()
D_clear_wim¢lp
D_erase_wing9
D_show_wina)

D_get_screen_windo
D_reset_screen_wijilo
D_get_cur_wind()
D_set_cur_wind()
R_me_abs()

R_me _rel()
G_location_path()
G_location()
D_check_map_wina¢()
G_mapset()

D_timestamp()

- 317 -

G_meridional_radius_of_caiture()
G_transarse_radius_of _cuature()

Vect_copy_head_data()
G_update_cell_stats()

G_gisdbase()
G_ask_in_mapset()
G_askwie
G_ask_old()
G_find_file()

G_foperwfie
G_operw(e
G_reme()
G_rename()
G_fopen_old()

G_open_old()
G_fopen_append()
G_open_update()
Ggi filename()
G_get_winde()

G_put_winda()
G_database_unit_name()
G_date()
Vect_destrg_line_struct()
V_float_accufac

G_get_defult_windav()
R_reset_colors()
V_const()

V_ques()
R_reset_color()

Vect_get_area_points()
V_clear()

nio_fileno()
G_gets()

Permuted Index for Library Subroutines

197
165
231
232

151
151
198
198
197

197
198
197
197
186

187
73
72

198
72

198
97
97

166

120

73
75
75
75
77

81
81
82
81
79

79
80
80
78
83

84
88
151
165
231

84
185
230
230
185

166
230
218
151

- 318 -

top level programdirectory

top level databasedirectory
users homedirectory
current locationdirectory
force pending updates todisk
flush pending updates todisk

add command to framedisplay list
add raster map name todisplay list
clear framedisplay lists
begin geodesicdistance
geodesicdistance

geodesicdistance
begindistance calculations
distance in meters
set geodesicdistance latl
set geodesicdistance lat2

finddistance of point to line
does groupxst?
draw a ries ofdots
draw a sries ofdots
ASCII easting todouble

ASCII northing todouble
ASCII resolution todouble
draw a dosed polygon
draw a dosed polygon
draw a raster

draw a raster

draw a <ries of dots
draw a sries of dots
draw an goen polygon
draw an goen polygon

draw line
draw line
set colors indrier
earth to array (east)
earth to array (north)

earth to screen (east)
earth to screen (north)
screen toearth (x)
screen toearth (y)
earth to array(east)

earth to screen(east)
returnseast larger than west
adjusteast longitude
column toeasting
easting to ASCII

easting to column
ASClleasting to double
shortest way betweeneastings
X,y toeast,north
east,north to x,y

screen leftedge
screen rightedge

- 318 -

G_gisbasg(

G_gisdbajke(
G_homé(
G_location_path()
wio_flush()

gseent_flush()

D_add_to_list()
D_set_cell_name()
D_clear_wingf)
G die_geodesic_distance()
G_geodesic_distahce(

G_geodesic_distance_lon_to) lon(

G die_distance_calculations()
G_distance()
G_set_geodesic_distance_latl()
G_set_geodesic_distance_lat2()

dig_check_dist()
I_find_groupj
R_polydots_abs()
R_polydots_rel()
G_scan_easting()

G_scan_northing()

G_scan_resolution()

R_polygon_abs()

R_polygon_rel()
R_rastej(

R_RGB_rastey(
R_polydots_abs()
R_polydots_rel()
R_polyline_abs()
R_polyline_rel()

R_cont_aby(
R_cont_rel}f
D_reset_colors()
D_u_to_a_col()
D_u_to_aw)

D_u_to_d_col()
D_u_to_dw(@
D_d_to_u_col()
D_d_to_uw()
D_u_to_a col()

D_u_to_d _col()
G_adjust_easting()
G_adjust_east_longitude()
G_col_to_easting()
G_format_easting()

G_easting_to_col()
G_scan_easting()
G_shortesy (W
G_plot_where_en()
G_plot_where_xy()

R_screen_left()
R_screen_rite()

Permuted Index for Library Subroutines

72

73
152
73
218
224

199
199
198
94
95

95
94
94
95
95

170
175
188
188

90

90
91
189
189
190

190
188
188
189
189

187
187
206
200
200

201
201
201
201
200

201
96
96
86
90

87
90
96
130
130

186
186

-319 -

begin area calculations forellipsoid
getellipsoid by name
getellipsoid parameters

returnellopsoid name
query GRASSenvironmentaviable
query GRASSenvironmenaviable
set GRASSenvironmenavable
set GRASSenvironmentaviable

erase current frame
erase screen
sleep onerror?
changeerror handling
reset normalerror handling

printerror message andie

establish raster colors for graphics

does groupdst?
prompt forexisting database file
prompt forexisting database file

prompt for anexisting group
prompt forexisting raster file
prompt forexisting raster file
open anexisting raster file
prompt forexisting site list file

prompt forexisting site list file

open anexisting site list file
prompt for anexisting vector file
prompt for anexisting vector file
open anexisting vector file

openexisting vector map
print error message ande
get textatents
plotf(eastl) to f(east2)
plot f(eastl) tof(east2)

prompt for existing rasterfile
prompt for nev rasterfile

prompt for existing rasterfile

prompt for existing databasefile
prompt for nev databasefile

prompt for existing databasefile
prompt for existing site listfile
prompt for nev site listfile
prompt for existing site listfile
prompt for an existingectorfile

prompt for a ne vectorfile
prompt for an existingectorfile
close a rasterfile
find a rasterfile
find a databasefile

find a \ectorfile
find a \ectorfile
open a ne databasefile
open a ne site listfile
open an existing site listfile

-319 -

Gdoe zone_area_on_ellipsoid()
G_get_ellipsoid_by name()
G_get_ellipsoid_parameters()

G_ellipsoid_name()
G__geten()
G_geten()
G__seten()
G_setert)

D_erase_wingd
R_erase()
G_sleep_on_error()
G_set_error_routine()
G_unset_error_routine()

G_fatal_error()
D_set_colors()
I_find_group}
G_ask_in_mapset()
G_ask_old()

I_ask_group_old()
G_ask_cell_in_mapset()
G_ask_cell_old()
G_open_cell_old()
G_ask_sites_in_mapset()

G_ask_sites_old()

G_fopen_sites_old()
G_asleator_in_mapset()
G_asleator_old()
G_foperector_old()

Vect_open_old()
G_fatal_error()
R_get_te box()
G_plot_fx()
G_plot_fx()

G_ask_cell_in_mapset()
G_ask_cell_ng)

G_ask_cell_old()

G_ask_in_mapset()
G_ask we¢)

G_ask_old()
G_ask_sites_in_mapset()
G_ask_sites_mg)
G_ask_sites_old()
G_ask_ector_in_mapset()

G_ask_ector_nav()
G_ask_ector_old()
G_close_cell()
G_find_cell()
G_find_file()

G_find_ector2()
G_find_ector()
G_fopen_wé)
G_fopen_sites_meg)
G_fopen_sites_old()

Permuted Index for Library Subroutines

92
97
97

96
73
73
73
73

198
188
71
71
71

70
203
175

75

75

174
99
99

101

127

127
128
122
122
124

161

70
192
131
131

99
99
99
75
75

75
127
127
127
122

122
122
106
100

7

123
123

81
128
128

- 320 -

open a n& vectorfile

open an existingectorfile
read a rasterfile

read site listfile
reclassfile?

open an existing rasterfile
open a ne databasefile
write site listfile
read raster cag@ryfile
read raster historyfile

read vector cagoryfile
remove a citabasefile
rename a databasefile
unopen a rasterfile
write raster cagoryfile

write raster historyfile
write raster rangefile
write vector catgoryfile
read group REFfile
read subgroup REFfile

write group REFfile

write subgroup REFfile
format a sgmentfile

get value from sgmentfile
read rov from s@mentfile

put value to sgmentfile
write row to ssgmentfile
getfile descriptor
open a databasefile for reading
open a databasefile for reading

open a databasefile for update
open a databasefile for update
prompt for ay validfile name
fully qualifiedfile name
returns a temporaryfile name

addfile name to Ref structure

check for Igd databasefile names
open a ne rasterfile (random)
write a rasterfile (random)
open a ne rasterfile (sequential)

write a rasterfile (sequential)

open a ne rasterfile (uncompressed)
read a rasterfile (without masking)

fill a box
fill a box

plotfilled polygon with n ertices

find a database file
find a raster file
find a vector file
find a vector file

find distance of point to line
find which arc point is closest to
find which area point is in

- 320 -

G_fopen_ector_nev()
G_fopen_ector_old()
G_get_map_no()
G_get_site()
G_is_reclags(

G_open_cell_old()
G_open_\ng)
G_put_site()
G_read_caty(
G_read_history()

G_read_sctor_cats()
G_reme()
G_rename()
G_unopen_cell()
G_write_cats(

G_write_history()
G_write_range()
G_write_‘ector_cats()
I_get_group_ref()
I_get_subgroup_ref()

|_put_group_ref()
|_put_subgroup_ref()
sgment_format()
sgment_get()
sgment_get_ra()

sgment_put()
sgment_put_rav()
neio_fileno()
G_fopen_old()
G_open_old()

G_fopen_append()
G_open_update()
G_ask_g0)
G_fully_qualified_name()
G_tempfile()

|_add_file_to_group_ref()
Ggkt filename()
G_open_cellwmerandom()
G_put_mapwrgandom()
G_open_cellwié

G_put_mapvfd
G_open_cellvnencompressed()

G_get_mam_nwomask()
R_box_abs()
R_box_rel()

G_plot_polygon(
G_find_file()
G_find_cell()

G_find_ector2()

G_find_ector()

dig_check_dist()
dig_point_to_line()
dig_point_to_area()

Permuted Index for Library Subroutines

125
124
104
128
108

101

81
129
109
117

126
82
81

106

109

117
118
126
176
176

176
176
222
223
224

224
223
218
79
79

80
80
76
77
131

177

78
102
105
102

105
102
104
187
187

130

77
100
123
123

170
170
169

-321 -

selectfixed color table
returnFlag structure

selectfloating color table
flush graphics
flush pending updates to disk
choosefont
force pending updates to disk

forget a rav
format a segment file
clears information about currentframe
erase currentframe
identify current graphicsframe

create ne graphicsframe
remove drame
set current graphicsframe
initialize/create aframe
outlines currentframe

give aurrent time toframe

set text clippingframe
retrieve aurrentframe coordinates
add command toframe display list
clearframe display lists

resets currentframe position
graphicsframe setup
free allocated memory
free allocated memory
free category structure memory

free cell stats

free color structure memory

free Ref structure

fully qualified file name
begingeodesic distance

geodesic distance
geodesic distance
setgeodesic distance latl
setgeodesic distance lat2
initializegis library

give aurrent time to frame
prepare for rastergraphics
establish raster colors forgraphics
terminategraphics
flushgraphics

initializegraphics
initializegraphics
synchronizegraphics
identify currentgraphics frame
create newgraphics frame

set currentgraphics frame
graphics frame setup
queryGRASS environmentviable
queryGRASS environmengviable
SetGRASS environmentviable

setGRASS environmentviable

R_color_table €ik)
G_define_flag()

R_color_table_float()
R_flush()
gseent_flush()
R_foni(
wio_flush()

rowio_forget()
gment_format()
D_clear_wim¢lp
D_erase_wingd
D_get_cur_wind()

D_ne_window()
D_remwe_window()
D_set_cur_wind()
D_setup()

D_show_wind6)

D_timestamp()
R_set_wind()
D_get_screen_wim(do

D_add_to_list()
D_clear_wing)

D_reset_screen_wihilo
D_setup()
vao_release()
gment_release()
G_free_cats()

G_free_cell_stats()
G_free_colors()
I_free_group_ref()
G_fully_qualified_name()

G die_geodesic_distance()

G_geodesic_distance()

-321 -

G_geodesic_distance_lon_to_lon()
G_set_geodesic_distance_lat1()
G_set_geodesic_distance_lat2()

G_gisinit()

D_timestamp()
D_cell_draetup()
D_set_colors()
R_close ()
R_flush(

R_open_dhr()
R_set_RGB_colgr(
R_stabilize(
D_get_cur_wind()
D_new_wind9

D_set_cur_wind()
D_setup()
G_geten()

G_geter()
G__seten()

G_setert)

Permuted Index for Library Subroutines

185
134

185
188
224
101
218

217
222
198
198
197

197
198
197
196
197

198
191
197
199
198

198
196
218
225
111

119
114
178
7
94

95
95
95
95
70

198
204
203
184
188

184
190
188
197
197

197
196
73
73
73

73

-322 -

makegreen,yellw,red colors
male histogram-stretchedgyecolors
male lineargre scale
prompt for ngvgroup

prompt for an gistinggroup
readgroup control points
writegroup control points
doesgroup>dast?
prompt for ag validgroup name

readgroup REF file
writegroup REF file
change errorhandling
reset normal errorhandling
change tohardware color

adjust cellheader
read the rasterheader
write the rasterheader
printheader info to stdout
copy vectorheader struct data

command linehelp/usage message
makehistogram-stretched greolors
read rasterhistory file
write rasterhistory file
initializehistory structure

getHit RETURN msg
setHit RETURN msg
user'shome directory
get area info fromid
read vector arc by specifying lineid

identify current graphics frame
get areainfo from id
print headerinfo to stdout
read tagetinformation
write tagetinformation

clearsinformation about current frame
initialize calculations for sphere
initialize category structure
initialize cell stats
initialize color structure

initialize corversions
initialize gis library
initialize graphics
initialize graphics
initialize history structure

initialize plotting routines
initialize range structure
initialize Ref structure
initialize screen description
initialize segment structure

initialize/create a frame
create newinitialized line points structure
get a line ofinput (detect ctrl-z)
interact with the user

-322 -

G_mak gyr_colors()
G_mak_histogram_eq_colors()
G_mak_greg_scale_colors()

I_ask_group_mn«)

|_ask_group_olji(
|_get_control_points()
|_put_control_points()
I_find_groupj
I_ask_group \dn

|_get_group_ref()
|_put_group_ref()
G_set_error_routine()
G_unset_error_routine()
D_lookup_colors()

G_adjust_Cell_head()
G_get_cellhd()
G_put_cellhd()
Vect_print_header()
Vect_copy_head_data()

G_usage()
G_mak_histogram_eq_colors()
G_read_history()
G_write_history()
G_short_history()

G_get_ask_return_msg()
G_set_ask_return_msg()
G_home()
V2_get_area()
V2_read_line()

D_get_cur_wind()

V2_get_area()

Vect_print_header()
I_get_taet()
|_put_taet()

D_clear_wim¢lp
G_dia_zone_area_on_sphere()
G_init_cats()
G_init_cell_stats()
G_init_colors()

D_do_corersions()
G_gisinit()

R_open_dher()
R_set_ RGB_color()
G_short_history()

G_setup_plot()
G_init_range()
I_init_group_ref()
V_clear()
g@ment_init()

D_setup()
Vect_nev_line_struct()
G_gets()

V_call()

Permuted Index for Library Subroutines

116
116
115
174

174
179
179
175
175

176
176
71
71
203

107
107
108
169
166

134
116
117
117
117

76
76
152
168
164

197
168
169
178
178

198

92
110
119
113

200

70
184
190
117

129
118
177
230
223

196
165
151
231

-323 -

turns offinteractre capability

returninterrupt char
get a catgorylabel
set a catgorylabel
returns eastlarger than west
set geodesic distancelatl

set geodesic distancelat2
area betweenlatitudes
area betweenlatitudes
plot line betweenlatlon coordinates
area oflat-long polygon

read maplayer color table
write maplayer color table
removeleading/training white space
screenleft edge
check forlgd database file names

run a shellleel command
toplevel database directory
specifylevel for opening map
get openleel of vector map
toplevel program directory

lowlevel raster plotting
initialize gislibrary
select raster color forline
find distance of point toline
parse commandline

drawline
drawline
get mouse location using aline
read next gctorline
Bresenhamline algorithm

plotline between latlon coordinates

commandline help/usage message
read vector arc by specifyingline id
get aline of input (detect ctrl-z)
addline of text to screen

create ne initializedline points structure
deallocateline points structure space
line to x,y
line to x,y
makelinear grgscale

corvert xy arrays toline_pnts structure
convertline_pnts structure to xy arrays
add command to frame displaylist
add raster map name to displaylist
prompt for existing sitelist file

prompt for nev sitelist file
prompt for existing sitelist file
open a ne sitelist file
open an existing sitelist file
read sitelist file

write sitelist file
clear frame displaylists

-323 -

G_disable_interagt()

G_intr_char()

G_get_caj(

G_set_ca)(
G_adjust_easting()
G_set_geodesic_distance_lat1()

G_set_geodesic_distance_lat2()
G_area_for_zone_on_ellipsoid()
G_area_for_zone_on_sphere()
G_plot_line()
G_ellipsoid_polygon_area()

G_read_colors()
G_write_colors()
G_strip()
R_screen_left()
Ggi filename()

G_systen)(
G_gisdbase()
Vect_set_open_iel()
Vect_level()
G_gisbase()

D_raster()
G_gisinit()
D_color()
dig_check_dist()
G_parser()

R_cont_abs(

R_cont_relf
R_get_location_with_line()
\éct_read_nd_line()
G_bresenham_line()

G_plot_line()
G_usage()
V2_read_line()
G_gets()
V_line()

Vect_nev_line_struct()
Vect_destrg_line_struct()
D_cont_abs()

D_cont_rel()
G_mak_greg_scale_colors()

Vect_copy_xy_to_pnts()
Vect_copy_pnts_to_xy()
D_add_to_list()
D_set_cell_name()
G_ask_sites_in_mapset()

G_ask_sites_mg)
G_ask_sites_old()
G_fopen_sites_md)
G_fopen_sites_old()
G_get_site()

G_put_site()
D_clear_wingf)

Permuted Index for Library Subroutines

135

152
110
111
96
95

95
92
92
130
94

111
112
148
186

78

151
73
162
169
72

204

70
203
170
134

187
187
192
162
129

130
134
164
151
230

165
165
209
209
115

165
166
199
199
127

127
127
128
128
128

129
198

-324 -

copy Reflists
move airrentlocation
move airrentlocation

currentlocation directory
currentlocation name
location title
get mouselocation using a box
get mouselocation using a line

get mouselocation using pointer
create alock
remove dock
adjust eastlongitude
lookup an array of colors

low levd raster plotting
corvert string tolower case
get number of areas iregtormap
get number of arcs inectormap
close a ectormap

get open leel of vectormap
open ne vectormap

open existing gctormap
specify level for openingmap
write out arc to gctormap

rewind vectormap for re-reading
readmap layer color table
writemap layer color table
retrieve rastermap name
add rastermap name to display list

assign/retriee aurrentmap rgion
get rastermap title
change rastermap title
set clipping windw tomap windev
currentmapset name

read a raster file (withoutmasking)
get range min andmax
free category structurememory
free color structurememory
copy string to allocatedmemory

free allocatedmemory

free allocatedmemory
memory allocation
memory allocation
memory allocation

pop-upmenu
meridional radius of cuature
command line help/usagemessage
change ctrl-cmessage
print warningmessage and continue

print errormessage andie
print percent completemessages
corversion tometers
distance inmeters
area in squaremeters of polygon

-324 -

I_transfer_group_ref_filg(
R_mee_abs()
R_mee_rel()

G_location_path()
G_location()

G_myname()
R_get_location_with_box()
R_get_location_with_line()

R_get_location_with_pointer()
lock_file()

unlock_file()
G_adjust_east_longitude()
G_lookup_colors()

D_raster()

G_tolcase()
V2_num_areds(
V2_num_lineg(
¥ct_close()

¥ct_level()
¥ct_open_n&()
¥ct_open_old()
Vect_set_open_iel()
¥ct_write_line()

Vect_rewind()
G_read_colors()
G_write_colors()
D_get_cell_name()
D_set_cell_name()

D_check_map_wina¢()
G_get_cell_title()

G_put_cell_title()
D_set_clip_window_to_map_windd)
G_mapset()

G_get_map_momask()
G_get_range_min_max()
G_free_cats()
G_free_colors()
G_store()

vao_release()

gment_release()
G_calloc()
G_malloc()
G_realloc()

D_popup(
G_meridional_radius_of_cature()
G_usage()
V_intrpt_msg()
@rming()

G_fatal_error()

G_percent()
G_database_units_to_metarsof()

G_distance()

G_area_of_polygon()

Permuted Index for Library Subroutines

177
186
187

73
72
72
193
192

192
211
212

96
112

204
148
167
167
162

169
161
161
162
164

163
111
112
199
199

198
109
109
208

72

104
119
111
114
148

218
225
83
82
82

206
97
134
232
70

70
152
88
94
93

-325 -

get rangemin and max

configure rasterverlaymode

getmouse location using a box
getmouse location using a line
getmouse location using pointer

move airrent location
move aurrent location
move 1o pixel
move 1o pixel

get Hit RETURNmsg

set Hit RETURNmsg
definemultiple colors

plot filled polygon withn ertices

retrieve raster mapname

prompt for ag valid filename

return ellopsoidname
fully qualified filename
get ellipsoid byname
current locationname
current mapsetname

return programname

returns a temporary filename

usersname

prompt for ag valid groupname

add raster mapname to display list

colorname to number
add filename to Ref structure

check for lgd database filenames

readnext vector line
resetnormal error handling

earth to array(north)
earth to screen(north)
row tonorthing
northing to ASCII
ASClInorthing to double

northing to rov
color name tonumber
get attributenumber of arc
getnumber of arcs in vector map
get attributenumber of area

getnumber of areas in vector map
number of columns in agk regon

setnumber of decimal places
number of rows in actée regon

read vector arc by specifyingsét

open a database file for reading
open a database file for reading
open a database file for update
open a database file for update
open a n& database file

open a n& database file
open a n& raster file (random)
open a ne raster file (sequential)

-325 -

G_get_range_min_max()
D_set w@rlay_mode()
R_get_location_with_box()

R_get_location_with_line()
R_get_location_with_pointer()
R_mee_abs()
R_mee rel()

D_more_abs()
D_more_rel()
G_get_ask_return_msg()

G_set_ask_return_msg()

R_reset_colors()
G_plot_polygon(

D_get_cell_name()
G_ask_gn0)

G_ellipsoid_name()
G_fully_qualified_name()
G_get_ellipsoid_by name()
G_location()

G_mapset()

G_program_name()
G_tempfile()
G_whoamj(

I_ask_group dn
D_set_cell_name()

D_translate_color()
|_add_file_to_group_ref()
Ggi filename()
Vect_read_net_line()
G_unset_error_routine()

D_u_to_aw0)
D_u_to_dw@©
G_rwv_to_northing()
G_format_northing()
G_scan_northing()

G_northing_to_ra/()
D_translate_color()
V2_line_att()
V2_num_lines()
V2_area_att()

V2_num_areas()
G_windav_cols()

V_float_accufac
G_windav_rows()
V1 _read_line(

G_fopen_old()
G_open_old()
G_fopen_append()
G_open_update()
G_fopen_wé)
G_open_\wg)
G_open_cellymerandom()
G_open_cellwte

Permuted Index for Library Subroutines

119
204
193
192
192

186
187
209
209

76

76
185
130
199

76

96
77
97
72
72

152
131
153
175
199

207
177
78
162
71

200
201
87
90
90

87
207
167
167
167

167
85
231
85
164

79
79
80
80
81

81
102
102

- 326 -

open a n& raster file (uncompressed)
open a n& site list file

open a n& vector file

open an existing raster file

open an existing site list file
open an existing vector file

open existing vector map

getopen leel of vector map
open n& vector map
drav anopen polygon
draw anopen polygon
specify level foropening map

returnsOption structure
outlines current frame
configure rasten@rlay mode
get ellipsoidparameters
parse command line

forcepending updates to disk
flushpending updates to disk
printpercent complete messages
move topixel
move pixel

set number of decimalplaces
plot f(eastl) to f(east2)
plot filled polygon with n ertices
plot line between latlon coordinates
low levd rasterplotting

initializeplotting routines
add ne&v controlpoint
ispoint in area?
find which arcpoint is closest to
find which areapoint is in

find distance ofpoint to line
get mouse location usingpointer
read group controlpoints
write group controlpoints
get definingpoints for area polygon

create ne initialized linepoints structure
deallocate linepoints structure space
pole in polygon
area in square meters ofpolygon
area of lat-longpolygon

pole inpolygon
drav a dosedpolygon
drav a dosedpolygon
drav an goenpolygon
drav an goenpolygon

get defining points for areapolygon
beginpolygon area calculations
plot filledpolygon with n ertices
pop-up menu
resets current frameposition

prepare for raster graphics

- 326 -

G_open_celvnencompressed() 102
G_fopen_sites_md) 128
G_fopen_vector_ng) 125
G_open_cell_old() 101
G_fopen_sites_old() 128

G_foperector_old() 124
Vect_open_old() 161
Vect_level() 169
Vect_open_ne/() 161
R_polyline_abs() 189
R_polyline_rel() 189
Vect_set_open_iel() 162
G_define_option() 134

D_show_wind() 197
D_set v@rlay_mode() 204
G_get_ellipsoid_parameters() 97
G_parser() 134
wio_flush() 218
geeent_flush() 224
G_percent() 152
D_more_abs() 209
D_mae_rel() 209

V_float_accutac 231
G_plot_fx() 131
G_plot_polygon(130
G_plot_line() 130

D_raste)(204
G_setup_plot() 129
|_ne&v_control_point() 179
dig_point_in_area() 169
dig_point_to_line() 170
dig_point_to_area() 169
dig_check_dist() 170
R_get_location_with_pointer() 192
I_get_control_points() 179
|_put_control_points() 179
Vect_get_area_points() 166
Vect_nev_line_struct() 165
Vect_destrg_line_struct() 165
G_pole_in_polygon() 98
G_area_of_polygon() 93
G_ellipsoid_polygon_area() 94
G_pole_in_polygon() 98

R_polygon_abs(189

R_polygon_rél(189

R_polyline_ab¥(189

R_polyline_re)(189
Vect_get_area_points() 166

Ggbe polygon_area_calculations() 93

G_plot_polygon(130
D_popup() 206
D_reset_screen_wiijlo 198
D_cell wraetup() 204

Permuted Index for Library Subroutines

- 327 -

print error message andie

print header info to stdout

print percent complete messages
print warning message and continue

printable version of control character
create a protected childprocess
top levelprogram directory
returnprogram name
query cartographicprojection

query cartographicprojection
prompt for a n& vector file
prompt for an existing group
prompt for an existing vector file
prompt for an existing vector file

prompt for ag valid file name
prompt for ag valid group name
prompt for existing database file
prompt for existing database file
prompt for existing raster file

prompt for existing raster file
prompt for existing site list file
prompt for existing site list file
prompt for nev database file
prompt for ngv group

prompt for nev raster file
prompt for nev site list file
create aprotected child process
put value to segment file
fullyqualified file name

query cartographic projection
query cartographic projection
query cartographic zone

qguery GRASS environmentxiable
guery GRASS environmentxiable

randomquery of cell stats
ask a yes/noquestion
define screenquestion
radius of conformal tangent sphere
meridionalradius of cuature

transverseradius of cuature
makerainbw colors
make mlorramp
open a ne raster file(random)
write a raster file(random)

makerandom colors
random query of cell stats
get colorrange
read rasterrange
write rasterrange file

getrange min and max
verify arange of colors
initializerange structure
updaterange structure

- 327 -

G_fatal_error()

Vect_print_header()

G_percent()
@rming()

G_unctrl()

G_fork()

G_gisbase()
G_program_name()
G_database_projection_name()

G_projection()

G_ask_vector_ng)

I_ask_group_old()
G_aslector_in_mapset()
G_aslector_old()

G_ask_g0)

I_ask_group yn
G_ask_in_mapset()
G_ask_old()
G_ask_cell_in_mapset()

G_ask_cell_old()
G_ask_sites_in_mapset()
G_ask_sites_old()

G_ask weé)
I_ask_group_ng)

G_ask_cell_ng)
G_ask_sites_md)
G_fork()

gment_put()
G_fully_qualified_name()

G_database_projection_name()
G_projection()
G_zone()

G__geten()

G_getenr()

G_find_cell_stat()
G_yes()
V_ques()

70
169
152

70

149
150
72
152
88

88
122
174
122
122

76
175
75
75
99

99
127
127

75
174

99
127
150
224

7

88
88
88
73
73

120
153
230

G_radius_of_conformal_tangent_spheré&?)

G_meridional_radius_of_cature()

G_transarse_radius_of cuature()

G_mak_rainbav_colors()

G_ma&_ramp_colors()
G_open_cellwmerandom()
G_put_mapwragandom()

G_mekrandom_colors()
G_find_cell_stat()
G_get_color_range()
G_read_range()
G_write_range()

G_get_range_min_max()

D_check_colormap_size()

G_init_range()
Gwoupdate_range()

Permuted Index for Library Subroutines

97

97
115
115
102
105

116
120
114
118
118

119
202
118
119

- 328 -

updaterange structure

draw araster
draw araster
allocate araster bigfr
zero araster bfdr
readraster category file

writeraster category file
selectraster color for line
resetraster coloralue
establishraster colors for graphics
prompt for existingraster file

prompt for newraster file
prompt for existingraster file
close araster file

find araster file

read araster file

open an existingraster file
unopen araster file
open a newraster file (random)
write araster file (random)
open a newraster file (sequential)

write araster file (sequential)
open a newraster file (uncompressed)
read araster file (without masking)
prepare forraster graphics
read theraster header

write theraster header
readraster history file
writeraster history file
retrieveraster map name
addraster map name to display list

getraster map title
changeraster map title
configurerastererlay mode
low levdraster plotting
readraster range

writeraster range file
render araster vo
specify types of arcs toread
read a raster file
read a raster file (without masking)

read a rov
unset ag vectorread constraints
read group control points
read group REF file
read map layer color table

read next vector line

read raster category file
read raster history file
read raster range

read rev from segment file

read site list file
read subgroup REF file

- 328 -

G_update_range()

R_rastej(

R_RGB_rastey(
G_allocate_cell_uf()
G_zero_cell_tf()
G_read_cats()

G_write_cats()
D_color()
D_reset_coloj(
D_set_colors()
G_ask_cell_in_mapset()

G_ask_cellw(®
G_ask_cell_old()
G_close_cell()
G_find_cell()

G_get_mapw(@©

G_open_cell_old()
G_unopen_cell()
G_open_celv mandom()
G_put_mapwraandom()
G_open_cell(he

G_put_mapvd
G_open_cell urecompressed()
G_get_map_nwomask()
D_cell_draetup()
G_get_cellhd()

G_put_cellhd()
G_read_history()
G_write_history()
D_get_cell_name()
D_set_cell_name()

G_get_cell_title()
G_put_cell_title()
D_set werlay_mode()
D_raster()
G_read_range()

G_write_range()
D_draw_cell()
Vect_set_constraint_type()

G_get_mapw(Q
G_get_map_momask()

rowio_get()
Vect_remae_constraints()
|_get_control_points()
I_get_group_ref()
G_read_colors()

Vect_read_net_line()
G_read_cats()
G_read_history()
G_read_range()
segment_getw(g

G_get_site()
|_get_subgroup_ref()

Permuted Index for Library Subroutines

118

190
190
103
103
109

109
203
202
203

99

99
99
106
100
104

101
106
102
105
102

105
102
104
204
107

108
117
117
199
199

109
109
204
204
118

118
204
163
104
104

217
164
179
176
111

162
109
117
118
224

128
176

-329 -

read target information
read the databasegien
read the default ggon

read the raster header

read vector arc by specifying line id

read vector arc by specifyingfeét
set restricted region toread vector arcs from

read vector category file

open a database file forreading
open a database file forreading
reclass file?
makered,yella,green colors
read groupREF file

read subgroupREF file
write groupREF file
write subgroupREF file
copyRef lists
add file name toRef structure

freeRef structure

initializeRef structure
assign/retriee aurrent maprgion
read the defaultgion
get the actieregion

read the databaseien

write the databaseg®n

set the actieregion

number of columns in astregion
number of rows in aatéregion

set restrictedregion to read vector arcs from
align tworegions
remove a ditabase file
remove a fame
remove a bck

remove leading/training white space
remove nnecessary white space
rename a database file
render a raster vo

rewind vector map forre-reading

reset normal error handling
reset raster coloralue
reset/rewind cell stats

resets current frame position
resolution to ASCII

ASClIresolution to double

I_get_gmt()
G_get_winde()
G_get_defult_windav()

G_get_cellhd()

V2_read_line()

V1 _read_line(

Vect_set_constraint_géon()
G_reacctor_cats()

G_fopen_old()
G_open_old()
G_is_reclass()
G_maX ryg_colors()
I_get_group_ref()

I_get_subgroup_ref()
|_put_group_ref()
|_put_subgroup_ref()
I_transfer_group_ref_file()
|_add_file_to_group_ref()

I_free_group_ref()
I_init_group_ref()
D_check_map_winad()
G_get_defult_windav()
G_get_set_winau()

G_get_winde()
G_put_windar()
G_set_winda()
G_windav_cols()
G_windeov_rows()

Vect_set_constraint_géon()
G_align_winde()
G_reme()
D_remee_window()
unlock_file(

G_strip()
G_squeeze()
G_rename()
D_drav_cell()
Vect_rewind()

G_unset_error_routine()
D_reset_coloj(
G wend_cell_stats()
D_reset_screen_wiGijlo
G_format_resolution()

G_scan_resolution()

setrestricted region to read vector arcs frorect_set_constraint_géon()

retrieve aurrent frame coordinates
retrieve rmster map name
retrieve srted cell stats

return ellopsoid name
return Flag structure
return interrupt char
get HtRETURN msg
set HitRETURN msg

D_get_screen_wimdo
D_get_cell_name()
G_me cell_stat()

G_ellipsoid_name()
G_define_flag()
G_intr_char()
G_get_ask_return_msg()
G_set_ask_return_msg()

Permuted Index for Library Subroutines

-329 -

178
83
84

107
164
164
163
126

79
79
108
116
176

176
176
176
177
177

178
177
198
84
86

83
84
85
85
85

163
86
82

198

212

148
148

81
204
163

71
202
120
198

90

91
163
197
199
120

96
134
152

76

76

-330 -

return program name

returns a temporary file name
returns east larger than west
returns Option structure

rewind vector map for re-reading

initialize plottingroutines
array to screen(vo)
render a rastervo
cell area in specifiedvo
northing torev

forget arav
read aro
write arav
readrav from segment file
row to northing

writerow to segment file
configurerowio structure
number ofrows in acte regon
run a shell leel command
male linear grgscale

erasescreen

bottom ofscreen

top ofscreen

add line of text toscreen
array toscreen (column)

definescreen constant
initializescreen description
earth toscreen (east)
screen left edge
earth toscreen (north)

definescreen question
screen right edge
array toscreen (1)
screen to array (x)
screen to array (y)

screen to earth (x)
screen to earth (y)
format asegment file
get value fromsegment file
read rov fromsegment file

put value tosegment file
write rov tosegment file
initializesegment structure
select color
select color

select fixed color table

select floating color table

select raster color for line

select standard color
open a ne raster file(sequential)

write a raster file(sequential)
draw aseries of dots
draw aseries of dots

G_program_name()
G_tempfile()
G_adjust_easting()
G_define_option()
Vect_rewind()

G_setup_plot()

D_a to_d_rw()
D_drawv_cell()
G_area_of _cell_at_ ()
G_northing_to_rw/()

rowio_forget()
rowio_get()
rowio_put()

segment_getw(g
G_raov_to_northing()

segment_put_ g)
vao_setup()
G_windav_rows()
G_systen)(

G_ma&_grg_scale_colors()

R_eraje(
R_screen_bot()
R_screen_top()
V_line()

D_a to_d_col()

V_const()
V_clear()
D_u_to_d_col()
R_screen_left()
D_u_to_dw(©

V_ques()
R_screen_rite()
D_a to_d_rw()
D_d_to_a_col()
D_d_to_aw)

D_d_to_u_col()
D_d_to_uw()
geent_format()
gment_get()
segment_getw(Q

gment_put()

segment_putwi)

gment_init()
R_color()
R_RGB_color()

R_color_table ik)
R_color_table_float()
D_color()
R_standard_color()

G_open_cellwie

G_put_mapvd
R_polydots_abs()

R_polydots_rel()

Permuted Index for Library Subroutines

-330 -

152
131

96
134
163

129
200
204
91
87

217
217
218
224

87

223
216

85
151
115

188
186
186
230
201

230
230
201
186
201

230
186
200
202
202

201
201
222
223
224

224
223
223
185
186

185
185
203
186
102

105
188
188

-331-

set a category color
set a category label

set clipping windw

set clipping windw to map windav
set colors

set colors in dvier

set current graphics frame

set geodesic distance latl

set geodesic distance lat2

set GRASS environmenaryiable
set GRASS environmentxiable
set Hit RETURN msg

set number of decimal places

-331-

G_set_color()
G_set_cat()

D_set_clip_windw()
D_set_clip_window_to_map_windd)
G_add_color_rule()
D_reset_colors()

D_set_cur_wind()

G_set_geodesic_distance_lat1()
G_set_geodesic_distance_lat2()
G__seten()
G_setert)

G_set_ask_return_msg()

V_float_accufac

set restricted region to read vector arcs fromVect_set_constraiion (e

set text clipping frame
set text size
set the actie regon

set title in category structure
graphics framesetup
run ashell leel command
shortest way between eastings
definesingle color

prompt for existingsite list file
prompt for newsite list file
prompt for existingsite list file
open a newsite list file

open an existingsite list file

readsite list file
writesite list file
set tetsize
sleep on error?
retrievesorted cell stats

remove nnecessary whitespace
remove leading/training whitespace

deallocate line points structurespace

cell area inspecified vo
specify level for opening map

specify types of arcs to read
read vector arc byspecifying line id
read vector arc byspecifyingfeét
initialize calculations forsphere
radius of conformal tangentsphere

area insquare meters of polygon
selectstandard color
random query of cellstats
free cellstats
initialize cellstats

retrieve orted cellstats
reset/rewind cellstats
add data to cellstats
print header info tostdout
copystring to allocated memory

convertstring to lower case

R_set_wingf)
R_te_size()
G_set_windw/()

G_set_cats _title()
D_setup()
G_systen)(
G_shortesy(\v
R_reset_color()

G_ask_sites_in_mapset()
G_ask_sitesw{g

G_ask_sites_old()
G_fopen_siteswig

G_fopen_sites_old()

G_get_site()
G_put_site()
R_tet_size()
G_sleep_on_error()
G_Re cell_stat()

G_squeeze()

G_strip()
Vect_destrg_line_struct()
G_area_of _cell_at_ ()
Vect_set_open_iel()

Vect_set_constraint_type()

V2_read_line()

V1 _read_line(
G_dria_zone_area_on_sphere()

114
111

208
208
113
206
197

95
95
73
73
76

231
163
191
191

85

111
196
151

96
185

127
127
127
128
128

128
129
191

71
120

148
148
165

91
162

163
164
164

92

G_radius_of_conformal_tangent_spheré&?)

G_area_of_polygon()
R_standard_color()
G_find_cell_stat()
G_free_cell_stats()
G_init_cell_stats()

G_mé¢ _cell_stat()

G wend_cell_stats()
G_update_cell_stats()
Vect_print_header()
G_store()

G_tolcase()

Permuted Index for Library Subroutines

93
186
120
119
119

120
120
120
169
148

148

-332 -

corvertstring to upper case
concatenatestrings
copystrings
copystrings

copy vector headerstruct data
return Flagstructure
returns Optionstructure
get title from catgorystructure
initialize catgorystructure

initialize colorstructure
initialize rangestructure
update rangestructure

set title in catgorystructure
initialize historystructure

update rangestructure

add file name to Refstructure
free Refstructure
initialize Refstructure
configure raviostructure

initialize sgmentstructure
corvert xy arrays to line_pntsstructure
create ne initialized line pointsstructure
free categorystructure memory
free colorstructure memory

deallocate line pointsstructure space
convert line_pntsstructure to xy arrays
readsubgroup REF file
writesubgroup REF file
suppress @arnings?

synchronize graphics
read map layer colortable
write map layer colortable
select fixed colortable
select floating colortable

radius of conformaltangent sphere
readtarget information
writetarget information
returns atemporary file name
terminate graphics

writetext
settext clipping frame
gettext atents
settext size
add line oftext to screen

get raster maptitle
locationtitle
change raster maptitle
gettitle from category structure
settitle in category structure

top level database directory
top level program directory
top of screen

transverse radius of clature

-332-
G_toucase() 149
G_streat(148
G_strop() 147
G_strnop() 147
Vect_copy_head_data() 166
G_define_flag() 134
G_define_option() 134
G_get_cats_title(110
G_init_cat3(110
G_init_colors() 113
G_init_range() 118
Gwoupdate_range() 119
G_set_cats_tithe(111
G_short_history() 117
G_update_range() 118
|_add_file_to_group_ref() 177
I_free_group_ref() 178
I_init_group_ref() 177
ravio_setup() 216
ggnent_init() 223
Vect_copy_xy_to_pnts() 165
Vect_nev_line_struct() 165
G_free_cats() 111
G_free_colors() 114
Vect_destrg_line_struct() 165
Vect_copy_pnts_to_xy() 166
|_get_subgroup_ref() 176
|_put_subgroup_ref() 176
G_suppressamings() 71
R_stabilize() 188
G_read_colors() 111
G_write_colors() 112
R_color_table €ik) 185
R_color_table_float() 185
G_radius_of_conformal_tangent_spheré&)
I_get_twet() 178
|_put_tget() 178
G_tempfile() 131
R_close () 184
R_text() 192
R_set_wind() 191
R_get_te box() 192
R_t&_size() 191
V_line() 230
G_get_cell_title() 109
G_mynameé(72
G_put_cell_title() 109
G_get_cats_title() 110
G_set_cats_title() 111
G_gisdbase() 73
G_gisbase() 72
R_screen_top() 186
G_transarse_radius_of cuature() 97

Permuted Index for Library Subroutines

-333 -

turns of interactve @apability

specifytypes of arcs to read
open a n& raster file(uncompressed)
databaseunits
area in coordinateunits
removeunnecessary white space

unopen a raster file

unset ayp vector read constraints
open a database file forupdate
open a database file forupdate

update range structure

update range structure
force pendingupdates to disk
flush pendingupdates to disk
corvert string toupper case
interact with theuser

users home directory
users name

get mouse locationusing a box

get mouse locationusing a line

get mouse locationusing pointer

prompt for anyvalid file name
prompt for anyvalid group name
reset raster coloalue
getvalue from segment file
putvalue to segment file

query GRASS environmerdaviable

query GRASS environmerdaviable

set GRASS environmerdviable

set GRASS environmerdviable
readvector arc by specifying line id

readvector arc by specifyingfeét
set restricted region to readvector arcs from
readvector category file
writevector category file
prompt for an existingvector file

prompt for a newvector file
prompt for an existingvector file
find avector file
find avector file
open a newvector file

open an existingvector file
copyvector header struct data
read nextvector line
get number of areas invector map
get number of arcs invector map

close avector map

get open leel ofvector map
open newvector map
open existingvector map
write out arc tovector map

rewindvector map for re-reading
unset anyvector read constraints

G_disable_interagt()

Vect_set_constraint_type()

-333 -

G_open_cellvnencompressed()

G_database_unit_ngme(

G_planimetric_polygon_area()

G_squeeze()

G_unopen_cell()
Vect_remae_constraints()
G_fopen_append()
G_open_update()
Gwoupdate_range()

G_update_range()
wio_flush()
geeent_flush()

G_toucase()

V_call()

G_home()

G_whoami(
R_get_location_with_box()
R_get_location_with_line()

R_get_location_with_pointer()

G_ask yén
|_ask_groupy(@n
D_reset_coloj(
gment_get()
gment_put()

G__geten()
G_getenr()
G__seten()

G_setert)
V2_read_line()

V1 _read_line(

Vect_set_constraint_géon()
G_reackcvor_cats()
G_writeeetor_cats()
G_asleator_in_mapset()

G_ask_vectorw(e

G_asleator_old()
G_find_ector2()
G_find_ector()

G_fopen_vectorwiig

G_foperector_old()
Vect_copy_head_data()
Vect_read_net_line()
V2_num_areas()
V2_num_lines()

Vect_close()
Vect_level()
Vect_open_ne()
Vect_open_old()
Vect_write_line()

Vect_rewind()
Vect_remae_constraints()

Permuted Index for Library Subroutines

135

163
102
88
93
148

106
164
80
80
119

118
218
224
149
231

152
153
193
192
192

76
175
202
223
224

73
73
73
73
164

164
163
126
126
122

122
122
123
123
125

124
166
162
167
167

162
169
161
161
164

163
164

-334 -

verify a range of colors
printableversion of control character
plot filled polygon with nertices

printwarning message and continue

suppressarnings?
malke mlorwave
returns east larger thanwest
remove wnnecessarywhite space

remove leading/trainingwhite space
clip coordinates towinde
set clippingwindev
set clipping windw to mapwindav
set clippingwinder to map windav

read a raster file(without masking)
write a raster file (random)
write a raster file (sequential)
write a rav
write group control points

write group REF file

write map layer color table
write out arc to vector map
write raster category file
write raster history file

write raster range file
write row to segment file
write site list file

write subgroup REF file
write target information

write text

write the databaseg®n

write the raster header

write vector category file
screen to array(x)

screen to earth(x)
line tox,y
line tox,y
east,north tox,y
convert line_pnts structure toxy arrays

corvertxy arrays to line_pnts structure

X,y to east,north
screen to array(y)
screen to earth(y)
ask ayes/no question

zero a raster bfdr
query cartographiczone

-334 -

D_check_colormap_size()
G_unctrl()

G_plot_polygon(

@rming()
G_suppressamings()
G_make_vave colors()
G_adjust_easting()
G_squeeze()

G_strip()

D_clip()

D_set_clip_windw/()
D_set_clip_window_to_map_winddg)
D_set_clip_window_to_map_windd)

G_get_map_nwomask()
G_put_mapwrgandom()
G_put_mapv(d

rowio_put()
I_put_control_points()

I_put_group_ref()
G_write_colors()
Vect_write_line()
G_write_cats()
G_write_history()

G_write_range()
segment_put_\ng)
G_put_site()
|_put_subgroup_ref()
|_put_tget()

R_text()
G_put_winda()
G_put_cellhd()
G_writeeetor_cats()
D_d_to_a_col()

D_d_to_u_col()
D_cont_abs()
D_cont_rel()
G_plot_where_xy()
Vect_copy_pnts_to_xy()

Vect_cofy_xy_to_pnts()
G_plot_where_en()
D_d_to_a rw()
D_d to u_rav()
G_yes()

G_zero_cell_wf()
G_zone()

Permuted Index for Library Subroutines

202
149
130

70
71
115
96
148

148
205
208
208
208

104
105
105
218
179

176
112
164
109
117

118
223
129
176
178

192

84
108
126
202

201
209
209
130
166

165
130
202
201
153

103
88

-335- -335-

Index

Throw this page way and replace it with the real index.

- 336 - - 336 -

Table of Contents

(@ gF=T o] (=3 g I [o1 (0 To [1 T £ [] a PP URT

1
1.1, BACKGIrOUNG. ...ccooiiiiiieiie ettt 1
1.2, ODJECWE ..uuiiii it e e e et e e e e e e e e e e e e e aaaanaa 1
1.3, APPIOACKL. ..ot a e e e e e e e earaaanaa 1
T o7 oL PP U PP PPPPPPPPPPPPPTRRN 2
1.5. Mode of Technologyr@iNSferuuviiiiiiiiiie e 2

1.6. GRASS Information Center.........ccovviiiiiiiiiiiiiieee e

Chapter 2. Deslopment GUIAEIINES.........uuuiiiiiiiiiiiiiee e

2.2. Programming Standards..............eeeoiiiniiieeeeeeeeeeeeeeiiiii e

4
5
2.1. Intended GRASS AUIENCE.........cccoiiiiiieeeeeeee e 5
6
2.3. Documentation Standards............cccuviiiieiiiiiiiiie e 7

Chapter 3. MUIRIIBEL ..o e e 9

3.1, GENEIAI USEL.....ccoiiiiiiiiiitiiieie ettt e e e e e e e e e e e e eeeeeeennne 9
3.2. GRASS PrOQramIMeL.........uiiiiee e eeeeeeeieeeeeeeit e e e e e e e e e eeeennnannes 10
3.3. DIVEr PrOgramMEruuueiieiiiie e e e e e et e e e e e e e e e e e e e e eeeeeenennnannes 12

3.4. GRASS SyStem DeSIgNEL......ccooeeieeeiiiiieeeeeiiiiiieee e 13

Chapter 4. Database STTUCTULEuuuiiiiiiiiiiiiiieeee e e e e e e e e 15

4.1. Programming INtEAEEovvvviiiiiiiiii e 15

4.2, GISDBASE ...ttt 16

2 R o Yo 1 1 16
|V =T o 1S = PP 16
4.5. MAPSEE SITUCKUIE ... e eene e 17
4.5.1. MAPSEL FlES......uuiiiiiiiiiiiiiiieee et 17
4.5.2. EIBMENTS. ...ttt ettt 18
4.6. Permanent MapSeL.........oo oo 19
4.7. Database ACCESS RULES..........coovviiieiceee e 20
4.7.1. Mapset SearChafPlccccoooiiiiiiiiiiie e 20
4.7.2. UNIX File PermiSSIONS........ccoiiiiiiiiiiiiiiiiiiaae et 20

5.2, RASIEr FIlEBTMAL ...oeneeeeeee e 24
5.3, RASter HEACIOBEMAL ...oenieeeeeeeeee e e e e e e e e e e e aaeaaenas 26

5.3.1. Regular &Brmatoooiriiiiiiiiiiiie e 26
5.3.2. RECIASSAFMALccoeiiiiiiiiei e 28
5.4. Raster Category Filefnatcoooiiiiiiiiiiiiiiceeeeee e 28
5.5. Raster Color TableoFmatcoooiiiiiiiiiiiiiiiieeeeeeeee e 29
5.6. RASter HIStOrY File.......uuuuiiiiiiiiiee e 30
5.7. Raster Range File.............uuuiiiiiiiiiiiiiii e 31
Chapter 6. VECIOr MARS.........uuiiiiiiiiiiei e e e e e e ettt er s 33
6.1. What is @ Vector Map Layer?.........ooooeiiiiiiiiiiiiiiiiieeee e eeeeeeeeeens 33
6.2. ASCii Arc File Formatcoovviiiieiccce e 34
6.2.1. Header SECHON.........cooi ittt 35
B.2.2. AIC SECHION. ..o e e e e e e e e e eaaeee 36
6.3. Vector Category Attribute File.........coooviiiiiiiiiii e 37
6.4. Vector Category Label File............cooorriiiicci e 38
6.5. Vector Inde and Pointer File.........ooooviiiiiiiiiiiieeeee 38
6.6. Digitizer Registration PoiNts File.............ooooiiiiiiiiiiiiiiieeeeeeen 38
6.7. Vector Topology RUIES..........coooiiiieeeeeee e 39
6.8. Importing Vector Files Into GRASS..........oooiiiiii s 39
Chapter 7. Point Data: Site LiSt Files...........cccccuuiiiiiiiiiiieeeee 41
7.1, What iS @ Site LIST2...cciiiiiiiiiiiiiiiie ettt 41
7.2, Site File BrMaALtoovvieiiiiiiie e 41
7.3. Programming Interface to Site FileS.........ccccuviiiiiiiiis 42
Chapter 8. Image Data: GrOUPS.........cceviiiiiieeereiiiiiciee e s e e e e e e e e e e e e e e e e aaaaas 43
S 200 I g 11 0T [Fox 1 o o IR 43
8.2. WRNAL IS @ GrOUP 2. ... ittt ettt r e e e e e e e 43
8.2.1. A LISt Of Cell FIlES...cceiiiiiiiiiieeie ettt 44
8.2.2. Image Registration and Rectification................ouuvveviiiiiiiineeeeeneeee. 44
8.2.3. Image ClasSIfiCALION..........uuueiiiiiiiiiiieee e 44
8.3. The Group StTUCIULE ..o 45
8.3.1. TRE REF Flle...cc ittt 45
8.3.2. The POINTS File.....cci oottt 46
8.3.3. The TARGET Fll€...uuuieiiiiiiiiiiiieeeee ettt 46
SR T T ST oo [(o 10 oL TP 46
8.4. IMAagEry ProgramsS.ccoiiiiiie et 47
8.5. Programming Interface for GroUupS.......cccooeeeeeeeeiiiiieeecece e 48
Chapter 9. Region and MaskKouiuiiiiiiiiiii e 49
S I S o o PO PP PPPPPPPPPRPPP 49

0.3, VAITALIONS e e 51.

Chapter 10. Environmentaables ... 53

10.1. UNIDX EIWVITONMEBNT oot e e e e e eenaaes 53
10.2. GRASS BVIrONMENT ...eeeeeeeeeeeee e 54
10.3. Difference Between GRASS and UNIXviEonmentsccceveuenee.. 54

Chapter 11. Compiling and Installing GRASS Programs..........cccccceeeeieeeeeeeeenennn. 57

11,1, gMARA.L oo e 57.
11.2. Gmakefile ®riables ... 58

11.3. Constructing & GMAHRIEcoovviiiiiiiiiiee e 60
11.3.1. Building programs from source (.C) files..........cccoeeveeiiiiieeinnnnnn. 61
11.3.2. INCIUAE FIl@S....eeeeeeee e 62
11.3.3. Building Object IDraries. ... 62
11.3.4. Building more than one @tovviiiiiiiiini e 63
11.4. Compilation RESUIES........cooiiiiiiieeee e 64
11.4.1. Multiple-Architecture COBNLIONScccuvvviiiiiiiiiiiiieeeeeeeeeee e 64
11.4.2. Compiled Command Destinations..............ccceeeeiiiiiieeeeeeeeeieeeeiiiinns 64
R T A0 (SO P PP 67
11.5.1. Bypassing the creation of .0 files.............ccccoiiiiiiiiiii, 67
11.5.2. Simultaneous compilation..........cccoeeeeeeeiiiiiieee e 67

Chapter 12. GIS LIDIary... .ot e e e e 69

1022 I [Yo [T 1[0 o U 69
12.2. Library INitialization.........cccooiiiie e 70
12.3. DIiagnNOSHC MESSAQES. uiiieeeeeeeeeieiiieieeiiiiiiiieaa s s e e e e e e e e e e e eeeeeeseeananens 70
12.4. Environment and Database Information..............ccccovvvvvvvviviiccinnnnnn. 72
12.5. Fundamental Database Access ROULINES.............ccoevveeeiiiiiiinnnnnee, 74
12.5.1. Prompting for Database Files............ccccooiiiiiiiiiiiiiiiieinnn 74
12.5.2. Fully Qualified File NamMEeS...........cccoiiiiiiiiiiiiiiieeeeeeeeee e 76
12.5.3. Finding Files in the Database...........ccccceeviiiiiieeiiiiieeeeee, 77
12.5.4. LA File NAMES... oot 78
12.5.5. Opening an Existing Database File for Reading..............c......... 79
12.5.6. Opening an Existing Database File for Update............c............. 79
12.5.7. Creating and Opening aviNBatabase File.............ccccccvvvviiiinnnnn. 80
12.5.8. Database File Management............ccccuuviriiiiiiiiiiiiiieeee e 81
12.6. Memory AIOCAtION............oovviiiiiicce e e e e e 82
12.7. THE RGION ..t e e e e e e e e eeeeenees 83
12.7.1. The Database GRONcooiiiiiiiiiiii e 83
12.7.2. The Actie Rogram REIONovvuviiiiiiiiiiiee e 84

-iv -
12.7.3. Projection Information...............oeeuviiiiiiiiiiii e 87
12.8. Latitude-Longitude Databases............coovviiiiiiiiiiiiiiiiie e 88
D2 S 0 I 0T o |1 = (= 89
12.8.2. Raster Area Calculations............cooooeiiiiiiiiiiiiiiiee e 91
12.8.3. Polygonal Area Calculations...........cccoooeeiieiiiiiiiiiiiiiiiiie e 92
12.8.4. Distance CalCUulatiOnsS.........cccuuiuieeeeeeiiieiiieeeiiiisese s e e e e e e e eeeeeeeeeenes 94
12.8.5. Global Wraparound............ccccoiiiieiieiiiiiieeeeeccse e 95
12.8.6. MISCEIIANEOUS......cccoiiiiieiiiiieeeee s 96
12.9. RaSter File ProCESSING......cccuiiiiiieeiiiiieieeieieii e e e 98
12.9.1. Prompting for Raster Files..........ccccoeeiiiiiiiiiiiieee e 98
12.9.2. Finding Raster Files in the Database............cccciiiiiiiiiiiiiiiininn, 99
12.9.3. Opening an Existing Raster File...........ccccoiiee, 100
12.9.4. Creating and OpeningW&aster FileS.........ccccceveeeeiiiiiiieeeiiiiiinn, 101
12.9.5. Allocating Raster 1/O BUFEISuuuuiiiiiiiiieeeeeeeeeeeeeee 103
12.9.6. Reading RaASter FIlES........ccooiiiiiiiiiieeeee e 103
12.9.7. Writing Raster FileS.........ooviiieiiiee e 104
12.9.8. Closing RaASter FIleS.........coooiiiiiiiiiiiiiiee e 106
12.10. Raster Map Layer Support ROULINES............uvviiiiiiiiiiiiieieieiiiie 106
12.10.1. Raster Header FUe...........ccuuiiiiiiiiiiiiiiiieeeeeee e 106
12.10.2. Raster Category Flle........ccoouiiiiiiiiiiiiiieeeeie e 108
12.10.3. Raster Color@abIeoooveviiiiiiiiiie e 111
12.10.4. Raster History File.........coooiviiiiceie e 116
12.10.5. Raster RANGE FilB.......ooiiiiiiiiiiiieeeee e 117
12.10.6. RaSter HiStOgIramsS..........uuuuiiiiiiiiiiiiiieieeee e 119
12.11. Vector File ProCeSSING........ieiiiiieieeeeeieeieeeeeise e e e e e e e e e e e eeeeeanaenns 121
12.11.1. Prompting for Vector FileS..........coooiiiiiiiiiiiiiee s 121
12.11.2. Finding Vector Files in the Database...........ccccvveveeiiiiiiiiiinnnnnnn. 122
12.11.3. Opening an EXxisting Vector File...........ccccceveiiiiiiiiiiiiieeiiiis 124
12.11.4. Creating and OpeningW¥ector Files..............oouviiiiiiiiiinnnnnnnnn. 124
12.11.5. Reading and Writing Vector Files............ooooiiiiiiiiiiiiieeeeeeecn 125
12.11.6. Vector Category File.......ccoouviiiiiieeiiieeeeeeiece e 125
12.12. Site LISt PrOCESSING ...uuuuuiiiiiieeeeieiieeieeeeiiiiiiies e e e eeeeeeananees 126
12.12.1. Prompting for Site LiSt FileS...........uuuuiiiiiiiiiiie 126
12.12.2. Opening Site LISt FIleS.......uuuiiiiieii e 127
12.12.3. Reading and Writing Site List Files.............ooiiiiiiii, 128
12.13. General Plotting ROULINES............uuuiiiiiiiiiiiiiiiieeeee e 129

12.14. TemMpPOorary FileS.........uuuiuiiiiiii e e e e e 131

12.15. Command LINEEAPSINGcvvvuuruiiiiieiieeeeeeeee e 132
12.15.1. DESCHPLION. ..cciiieiiiittiiiieea e e e e e e e e e ettt a e e e e e e e e e e e e e eeeeeeeeerennes 132
12.15.2. SHUCIUIES.. ..ottt e et e e e eaea e 133
12.15.3. Parser ROULINES........ccuiiiiiiiiiie ettt 134
12.15.4. Parser Programming EXamples...........cccoviiiiiiiiiiiiii e 135
12.15.5. Full Structure Members DesCription..........cccccuvvvviiiriiiiiiiiieeeeeeenn. 140
12.15.6. COMMON QUESHIONS.iieiiiiiiieee ettt 146
12.16. String Manipulation FUNCHIONS............oovviiiiiiiiiiiiie e 147
12.17. Enhanced UNIX ROULINES...........ccovvvieiiiiiiiiiiiiiee e e e e e e e eeeeeeeeeeaenennnes 149
12.17.1. Running in the Background...........ccccccooeeeeiiiiiiiieeeee e 149
12.17.2. Partially Interruptible System Call..............ooooiiiiiiiiiiiii. 150
12.18. MISCEIIANEOUS........ceeeeeeiiieiieee et e e e e e e e e e e e eeeeeenne 151
12.19. Deleted ROULINES.......ccuiiiiiiiee ettt 153
12.20. GIS Library Data StruCIUIeS..........ccevviiiiiiiiiiiiiiaaee e eeeeeeeeeeiiieees 153
12.20.1. struct Cell_head.........ccooeiiiiiiieiiiieeeeeerrr e 154
12.20.2. StrUCt CafrIES ...ovvvveeiieeiieee e e e e et e e e e e e e e e e e e e e eeannaanes 154
12.20.3. StIUCE COlOIS ...t 155
12.20.4. SETUCE HISTOIY.....eiiiiiiiiiiiiee et 155
12.20.5. StTUCE RANGEui it eaaas 156
12.21. Loading the GIS Library...........cccieeeeeii e 156
Chapter 13. VeCtor LIDrary..........cooo e 157
G 700 I 1 1 70T [T 1o] I PP PPPURPPTPRR 157
13.1.1. INCIUAE FlES...cceeeeeeeieee e 157
13.1.2. VECIOr AIC JPES ..ottt e 158
13.1.3. LEEIS Of ACCESS...eiiiiiiiiiiiiee ettt e e e e e e 158
13.2. Changes in 4.0 from 3.0......cuuuiiiiiiiiee e 158
13.2.1. ProbIem ... e 159
13.2.2. SOIULION. ...ttt e e e e e e e e e e e e e e e e e e e s e e annnes 159
13.2.3. APPIOACKH. ... e 159
13.2.4. IMPIEMENTALION........coi i 160
13.3. Opening and closing VECIOr MARS.........cuuuurrriiiiiieeeeeeeeeeeeeeeeeeeenannnnans 161
13.4. Reading and Writing VECLOr MAPS......uuuuuuuiiiieeaeeeeeeeeeeeeeeeeieeiiiies 162
13.5. DAta StIUCIUIES.....ccutiii ettt e e e e eeaaanns 165
13.6. DAt COEISION ...uveeeieiiiiiiiiieeeeeee e et e e e e e e e e e e e e e e e e e e e 165
13.7. MISCEIIANEOUS......uiiiiieiee e 166
13.8. Routines that remain from GRASS 3.1......cooviiiiiiiiiiiiiiiiieeeeeeeeee 169

13.9. Loading the Vector Library...........cccoovviiiiiiiiiiiiiiee e 170

-Vi- - Vi-

Chapter 14. Imagery LIDrary..........ooooeeiiiiiiiiiiee e e e 173
I I [0 Yo [T 1 [PR 173
14.2. GrOUP PrOCESSING. .. .uuuuuiureiiieiiieeeitttteaaeeeea e e e s s s s s s eeereeeeaeeeeeas 174
14.2.1. Prompting for @ GroUP..........coovviiiiiiiiiiiiiiisee e eee e 174
14.2.2. Finding Groups in the Database..............ccceeeiiiiinieieeiiiieeeeeeeiiiiiis 175
14.2.3. REF Flluuooooiiiiiiicc ettt 175
14.2. 4. TARGET Fle.....cuiiiiiiiiiiiiiiiiiiiie ettt 178
14.2.5. POINTS FilB..ciiiiiiiiiiee ettt 178
14.3. Loading the Imagery LiDrary..........ooooociiiiiiiiiiiiieieeeeeeeeee e 180
14.4. Imagery Library Data StruCturesS...........cccoovvviiiviiiiiiiiiiei e 180
14.4. 1. SEIUCE RET...e e 180
14.4.2. Struct CONtrol_POINIS.......ccooiiiiieieieiirr e s 181

Chapter 15. Raster Graphics Library..........cccoeeeiiiiiiiiieiics e 183
L T8 I [0 To [T 1 [o PP 183
15.2. Connecting t0 the IV ... 184
TS T 00 (o] £ TSP PR R TP PP PPPPI 184
15.4. BASIC GraphiCS.......cuuuuuiiiiiiiiie e 186
15.5. POIY CallS.....uiiiiiiiiiiiiiiiieiee et 188
15.6. RASLEI CallS......uuuiiiiiiiiiiiiiiiiee e 189
L T A = P U PR 190
15.8. USEI INPUL....cceiiieiiietie et e e e s 192
15.9. Loading the Raster Graphics Library...........cccccoovvvviviiiiiiiiiiceieeeeee 193

Chapter 16. Display Graphics Library...........ooouiiiiiiiiii e 195
I T8 I [0 Yo [T 1[0 U 195
16.2. Library INitialization.........cccoooiieeee e 195
16.3. Frame ManagemenL........couuuuiiiiiiiiiia et e e e e eeaeanns 197
16.4. Frame Contents Management...........ooovvvuiiiiiiiienie e 198
16.5. Coordinate Transformation ROULINES..............ccocecivviviiiiiiiiiiieeeeeennn 199
16.6. RAStEr GraphiCS....ccooei i 203
16.7. WINA@V ClIPPING ..eeeiiiiiiiiiiiiiieieee e e e 205
16.8. POP-UP MENUS.....uuiiiiiiiiiiiiie ettt ettt e e et eeaa e e eaans 206
16.9. COlOrS. .. e e 206
16.10. Deleted ROULINES......ccooiiiieeeeieeeeeeeeere e e 207
16.11. Loading the Display Graphics Library............cccccovvviiiiiiiiiiciiennnn. 207
16.12. Vector Graphics / Plotting ROULINES...........cccooiiiiiiiiiiiiiiiieeeeeeen 208
16.12.1. DISPLAYLIB rOULINES......cuteiuiiiiiieeeeeeeeeeeeeeeeeeeaatnnnns e e e e e e e e e e eeees 208

(@ gF=T o] (=] gl A o o3 QI o -V VR 211

- Vii - - Vii -
0 I 1 70T [T [) PP PPPPRPPPPRR 211
17.2. LOCK ROULINE SYNOPSES....uuuuuniiieieieeeeeeeeeeeeeeiiiitiieesa s s e e e e e e e e e e eeeeeeeneees 211
17.3. Use and LImitatioNS........ccoeeeiiiiieiiieiiiiciss e e e e e e e e 212
17.4. Loading the LOCK LiDrary.........cccccceieiiiiiieieiecieeeeeeee e 212
Chapter 18. ROWIO LIDIAIY......ccooiiiiiiiiiiiieiiieeiiee et e e e 215
RS0 I [0 Yo [T 1[0 o 215
18.2. ROWIO ROULINE SYNOPSES....ciiiieieeieiiieieeeeeiiie e e e e e e e e e e e e 216
18.3. Rowio Programming Considerations.............ccoovvvveviirviiiinniiininnneeenn. 218
18.4. Loading the ROWIO Library.........ccccuuuviiiiiiiiiiiiieeee e 219
Chapter 19. Segment LibDrary..........ooooirrieeeee e 221
TR I [0 To [T 1 [o PP 221
19.2. SEgMENT ROULINES.uuiiiiiiiiiiiiiiiieie e 222
19.3. Hav to Use the Library ROULINES...........ccviiiiiiieiiieiieeeeeee 225
19.4. Loading the Segment Library..........ooooveiiiiiiiiiiiieeieiiis 227
Chapter 20. Vask LIDIary.........ooooiiiiii s 229
P20 I I [g1 o o [F Tox 1 o] o PP TPPPRP 229
20.2. Vask ROULINE SYNOPSES........ccouiiiiiiiiiiiiiiiiiieee e 229
20.3. AN EXample Program.........ccoooiiiiiiiiiiiiiiiiiiieeee e 232
20.4. Loading the Vask Library..............iiiiiiiiiiii e 233
20.5. Programming ConsSIderations..........cooooeeeeeiiiiieiiiiiiiiiiciiee e 234
Chapter 21. Digitizer/Mouse/Trackball Files (.dgt)...........ccooviiiiiiiiiiiiiiiiiiiiieeee, 237
21.1. Rules for Digitizer Configuration FilesS..........ccccoeeeiiieeiiiiiiieieeiiiiiins 237
21.2. Digitizer Configuration File Commands............cccvvviiiiiiiiiiiiinneeeen. 238
A TS T -1 {0 o T EPEEURRURRR 238
21.2.2. Startrun, Startpoint, StartqueBop, QUErY..........ccovvvevevevvviiinnn. 241
21.2.3. FOIMAL .ot aaeeee 244.
21.3. Examples of Complete Files........uuuuiiiiiiiiiiiiiiieeee 247
21.3.1. EXAMPIE L. e e e e 247
21.3.2. EXAMPIE 2. eaaaee 248
21.4. Digitizer File Naming COBNLIONSccoeveiiiiiiiiiiiiiiiiiiiiieeeeeeee e 250
Chapter 22. Writing a DIgItiZEr DIciiiiiieeeeeeeieeeeeeeeiiiiies e e e e e e e e e e e eeeeeaananns 251
22,0, INETOTUCTION. ...ttt e e e e e e e e e e eeeeenenes 251
22.2. Writing the Digitizer DeviCe DIErcccvvvviiiiiiiiiiiiiieee e 251
22.2.1. Functions that must be WIitten.........cccccceeeeeeiiiiiiiiiicciiviee 252
22.2.2. Functions vailable FOr USE...........oooiiiiiiiiiiiiiiiiiie e 256
22.2.3. Compiling the DevVviCe MBIcooviiiiiiiiiii e 258

22.2.4. Testing the DeViCe DEcoovvvviiiiiiiiiiiiie e 258

- viii - - Viii -
22.3. Discussion of the Finer Points (HINES)........ccoeeeeeeiiiiiiieeen, 259
22.3.1. Setting uUp the DIgItIZEL........cceviiiiiiiiiai e 259
22.3.2. Program LOGIC.........uuuuuuuiiiiiiiiieieieeeeee e e e e 260
22.3.3. SPECIFIC DYIEr ISSUES ...evviiiiieee e e e e e e e 260
Chapter 23. Writing @ GraphiCs Blcccooviiiiiiiiiiiii e 263
P22 700 I 1 11 o o [3o 1o) SRR 263
23.2. BASICS ..ottt e e e e e e 263
23.3. BASIC ROULINES.ciiiiieeiieeieeeee et e e e e 264
23.3.1. Open/ClOSE IEEEccooeiiiiiiieeiiiite ettt 264
23.3.2. Return Edge and ColoalMesooovvviiiiiiiiiiiie e, 264
23.3.3. Drawing ROULINES.........uuiiiiiieieee ettt e e e e eeeeeaeaeees 265
P2 T 2 S o] (0] = 265
23.3.5. MOUSE INPUL.....ouiiiiiiie et eenan 266
23.3.6. RNEIS ..o 267..
23.4. Optional ROULINES.......cooiiiiiiiiiie ettt 268
Chapter 24. Writing a Paint IMBroooviiiiiiiiiiiee e 271
240, INETOTUCTION. ... ettt e e e e e e e e e e e e eeeeennnes 271
24.2. Creating a Source Directory for theveriCodeccccccceevniiiinnnns 271
24.3. The Paint Dvier Executable Programl............cccccevvvvvviiiiiiiiieieeeeeeeee 272
24.3.1. Printer 1/O ROULINES......uuuiiiieei et 272
P T [11 1= 114 1o] o 1 273
24.3.3. Alpha-Numeric MOdE...........ccoeeeeiiiiiiieeecee e 274
24.3.4. GraphiCS MOUE.......iiii i 274
24.3.5. Color INfOrMAatION........uueieiee e e e e e e e e e eeaaanees 276
24.4. The Device Dvier Shell SCrpt ..., 277
24.5. Programming ConSIderations..........cooooeeeeeiiiiiieiiiiiiiicies e 279
24.6. Paint DNEr LIDIary ...t 280
24.7. Compiling the DYIEYccooiiiiieieeeeeeer e 280
24.8. Creating 125 Colors From 3 ColOors.........cooovviiiiiiiiiiiiiiiieeee e 282
Chapter 25. Writing GRASS Shell SCHPLS.....ccovviiiiiiiiieeee e 283
25.1. Use the Bourne Shell.............oieeeee e 283
25.2. Hav a Script Should Start.........ooooeoeiie e 283
25,3, G ASK et 284
25.4. g.AINAFIlE ..o ———— 284
Appendix A. Annotated Gmakefile Predefineaidbles ..o, 287
Appendix B. The CELL DAtayPecccccueuiiiiiiiiiiiiiiiieee e 291

Appendix C. INAB t0 GIS LIDrarycooovviriiiiiiiei e 293

Appendix D. INd& to Vector LIDrary ... 299
Appendix E. Indg to Imagery LIDIary.............ooeeeeceeeiii e 301
Appendix FIndex to Display Graphics Library..........cccccccoiiiiiiiiiiiee 303
Appendix G. Inde to Raster Graphics Library..........ccccoovviiiiiiiiiiiiie e 305
Appendix H. INd& t0 ROWIO LIDIAIYccoooiiiiiiiiiiiiiicie e 307
Appendix |. INd& to SEgMeNnt LiDraryooooooiiiiiiiiieeeeeeee e 309
Appendix J. Indeto Vask LiDraryooooeeiiiiiiiiiiiii e 311
Appendix K. Permuted Inaefor Library Subroutines..............oooovviiiiiiiiiiinneeeeeeen, 313

N X oo et — et —————— 335

