
GRASS 4.1 Programmer’s Manual

Michael Shapiro

James Westervelt
Dave Gerdes

Marjorie Larson
Kenneth R. Brownfield

U.S. Army Construction Engineering Research Laboratory

ABSTRACT

This manual introduces the reader to the Geographic Resources
Analysis Support System from the programming perspective. Design theory,
system support libraries, system maintenance, and system enhancement are all
presented.

March, 1993

Foreword

This work was performed by the Environmental Division (EN) of the U.S.Army
Construction Engineering Research Laboratory (USACERL). Dr. William D. Goran is
Acting Chief of the Environmental Sustainment Laboratory; Diane K. Mann is Acting
Chief of the Environmental Compliance Division.

COL Daniel Waldo, Jr. is Commander and Director of USACERL, and Dr. L.R.
Shaffer is Technical Director.

Chapter 1

Introduction

1.1. Background
The Geographic Resources Analysis Support System (GRASS) is a geographic
information system (GIS) designed and developed by researchers at the U.S. Army
Construction Engineering Research Laboratory (USACERL). GRASSprovides software
capabilities suitable for organizing, portraying and analyzing digital spatial data.

Since the first release of GRASS software in 1985, the number of users and applications
has rapidly grown. BecauseGRASS is distributed with source code, user sites (including
many government organizations, educational institutions, and private firms) are able to
customize and enhance GRASS to meet their own requirements. While researchers at
USACERL still maintain and support GRASS, and still develop and organize new
versions of GRASS for release, programmers at numerous sites now work directly with
GRASS source code.

1.2. Objective
Those who work with GRASS source code need detailed information on the structure and
organization of the software, and on procedures and standards for programming and
documentation. Theobjective of this manual is to provide the necessary information for
programmers to understand and enhance GRASS software.

1.3. Approach
GRASS software is continuously updated and improved. Software enhancements are
developed at various sites, and submitted to USACERL to be shared with other sites and
included in future releases of GRASS.Improvements to the code are periodically
incorporated into new releases (which occur approximately once per year).

With each new release of GRASS, more and more sites have begun working directly with
GRASS source code. Sites are encouraged to use standard procedures in development of
new GRASS capabilities. Sites that develop GRASS software are encouraged to learn

§1 Introduction

- 2 - - 2 -

and use GRASS programming libraries, and to use standard procedures for coding,
commenting and documenting software. Theuse of GRASS libraries and conventions
will:

(1) Eliminate duplication of functions that already exist in GRASS
libraries;

(2) Increasethe capability of multiple sites to share enhancements;

(3) Reduceproblems in adapting contributed GRASS capabilities to new
data structures and new versions of GRASS software;

(4) Provide some common elements (such as documentation and user
interfaces) for users who use code contributed from multiple sites, and
reduce the learning curve associated with each contributed capability.

The first GRASS Programmer’s Manual was developed for GRASS 2.0 (released in
1987). TheGRASS Programmer’s Reference Manual for GRASS 3.0 (released in 1988)
was completely rewritten due to the numerous and fundamental changes made in GRASS
3.0.

Because much of GRASS has remained consistent from 3.0 to 4.0 and 4.1, USACERL
researchers elected to upgrade the 3.0 Programmer’s Manual to reflect the changes that
have turned GRASS 3.0 into GRASS 4.0 and 4.1.

The approach used in the development of this manual involves a systematic effort to
describe GRASS development guidelines, user interfaces, data structures, programming
libraries and peripheral drivers.

1.4. Scope
Information in this manual is valid for GRASS version 4.1, released in May, 1991. As
changes are made to GRASS libraries, data structures, and user interfaces, elements in
this manual will require updating. Plans to perform updates, and the availability of these
updates, will be announced in the newsletter GRASSClippingsand other GRASS
information forums.

1.5. Modeof Technology Transfer
Army and Corps of Engineer organizations can acquire GRASS software from
USACERL. Several other federal organizations provide distribution and support services
for GRASS within their own agencies, and several educational institutions and private
firms also provide distribution, training and support services for GRASS.Current
information on the status and availability of services for GRASS can be obtained from
the GRASS Information Center.1

1 See§1.6 GRASS Information Center[p. 4] for phone numbers and mail addresses.

§1 Introduction

- 3 - - 3 -

This manual should prove to be a valuable resource facilitating GRASS software
development efforts at the numerous government agency, educational institutions and
private firms that now use GRASS and plan to modify, enhance or customize the
software. Sitesthat develop new analytical capabilities or peripheral drivers for GRASS
are encouraged to share their products with others in the GRASS/GIS user community.
To facilitate this sharing process among user, support and development sites, several
forums have been established. These include the following:

The GRASS Information Center,

The GRASS Inter-Agency Coordinating Committee,

An annual GRASS/GIS User Group Meeting,

GRASSClippings, a periodic newsletter, and

GRASSNET, an electronic mail and software retrieval forum.

The GRASS Information Center maintains: (1) a set of publications on GRASS and
GRASS-related items, (2) updated information on locations that distribute and support
GRASS software and on training courses for GRASS, (3) the mailing list for the
newsletterGRASSClippings, and (4) updated information on the status of GRASS user
group meetings and software releases.

The GRASS Inter-Agency Coordinating Committeeis an informal organization with
members from government agencies and other organizations that use, support and
enhance GRASS. This organization sponsors the annual User Group Meeting and the
quarterly newsletter. It holds at least two meetings annually to share and coordinate
GRASS plans among the participating agencies.

The annualGRASS/ GIS User Group Meeting is hosted each year by one of the
member agencies of the Coordinating Committee.Papers, demonstrations, and
discussion panels present GRASS applications and software development issues.The
meeting provides opportunities for current and potential users to share and demonstrate
new GRASS software.

The GRASSClippings newsletter is published to provide information to anyone
interested in GRASS software. Thenewsletter includes articles on software development,
hardware options and applications of GRASS.

GRASSNET is an electronic mail forum that provides a mechanism through which
GRASS user and development sites can exchange messages. It can be reached via
Arpanet, Internet and other networks. GRASSNETalso includes a library of contributed
software available for users to retrieve and review. Thus, new software is available before
it is integrated into a formal release of GRASS code.

§1 Introduction

- 4 - - 4 -

1.6. GRASSInformation Center
Sites wishing to contribute code to GRASS, or wanting to participate in any of these
GRASS/GIS user community forums, should contact the GRASS Information Center by
phone at: (800)-USA-CERL, extension 220 or (217)-373-7220; by U.S. mail at: GRASS
Information Center, USACERL, P.O. Box 9005, Champaign, IL, 61826-9005; or by
electronic mail at: grass@zorro.cecer.army.mil .

§1 Introduction

- 5 - - 5 -

Chapter 2

Development Guidelines

GRASS continues its development with several key objectives as a guide. The
programmer should be aware of these and strive to write code that blends well with
existing capabilities. All objectives are based on an understanding of the needs of the end
users of GRASS.

2.1. IntendedGRASS Audience
GRASS is a general purpose geographic information system.Its intended users are
regional land planners, ecologists, geologists, geographers, archeologists, and landscape
architects. Usedto evaluate broad land use suitability, it is ideal for siting large projects,
managing parks, forest, and range land, and evaluating impacts over wide areas.These
users are generally NOT equipped to write programs or design a system. In many cases
they hav enever used a computer or even a keyboard.

REGIONAL PLANNING TOOL -
GRASS is designed for planning at the county, park, forest, or range level. It is
suitable for planning at a macro scale where the land uses are larger than 30 meters
(or so, depending on the database resolution).As yet, no GRASS tools exist for the
modeling and simulation of traffic, electrical, water, and sewage infrastructure loads,
or for the precise positioning of urban structures.

UTM REFERENCED -
To facilitate area calculations, a planimetric projection was desired for initial
GRASS development. Fundingwas provided through Army military installations
which were familiar with the Universal Transverse Mercator (UTM) projection.
Due to these factors, GRASS developed around the UTM coordinate system.The
UTM projection allows GRASS to assume equal area cells anywhere in the
database. Italso makes distance calculations simple and straightforward.

LATITUDE-LONGITUDE REFERENCING -
It has been recognized that the UTM projection has limitations that make it
awkward if not impossible to use for regions that span two (or more) UTM zones.
Significant capabilities have been added to support latitude-longitude referenced
data bases that will support analyses over large regions as well global analysis.
However, the development is incomplete, especially on the vector side. The
programmer will find some routines in the libraries which are specifically designed

§2 Development Guidelines

- 6 - - 6 -

to support this projection.

INTERACTIVE -
GRASS has a strong interactive component. Its multilevel design allows users to
work either at a very user friendly level, at a more flexible command level, or at a
programming level.

GRAPHIC ORIENTED -
Many of the functions can be accompanied by graphic output results.

FOR NONPROGRAMMER -
Users of GRASS are often first-time users of a computer. To this end, it is important
that the programmer take the extra time to provide on-line help, clear prompts, and
user tutorials.

INEXPENSIVE -
GRASS can run on microcomputers in the under-$10,000 range.Higher-cost
equipment should be necessary only for providing faster analyses, and more disk
and memory space.

PORTABLE -
This system is intended to be as portable as possible. At the November 1986 User
Group meeting, groups interested in GRASS resoundingly stated that portability was
the number one concern, ranking firmly above speed and user friendliness.GRASS
code must run on a wide variety of hardware configurations.

2.2. Programming Standards
Programming is done within the following guidelines.

UNIX ORIENTED -
Primarily for the purpose of portability, GRASS will continue its development under
the UNIX operating system environment. Programmersshould accommodate both
AT&T (System 5) and Berkeley (BSD) UNIX.

C LANGUAGE -
All code is written in the C programming language. Some Fortran 77 code has
occasionally been adopted into the system, but problems with portability, efficiency,
and legibility have resulted in most Fortran programs being rewritten in C.

FUNCTION LEVELS -
GRASS is designed within a functional level scheme. Eachlevel is designed to
perform particular functions. Programming must be done within this scheme.
Briefly, these levels are as follows:

Specialized Interface Level -
The new and occasional user would work at this level. It is expected that
specialized models, natural language interfaces, graphic pop-up menu front-
ends, and fancier menus will be developed in the future. Programs developed
at this level may be specifically designed for one hardware arrangement.

Command Level -
This is the level most used. Using the user’s login shell, GRASS commands
are made available through modification of thePATH variable. Helpand on-

§2 Development Guidelines

- 7 - - 7 -

line manual commands are available.

In version 2.0, GRASS programs included both user interface and program
function capabilities and were highly interactive. GRASS 3.0 introduced
complementary command-line versions of these functions in which the
information required by the program was provided by the user on the command
line or in the standard input stream (with no prompting). This provided the
advanced user greater flexibility and the system analyst a high-level GIS
programming language in concert with other UNIX utilities. However, this
resulted in a doubling of the number of commands: one for the interactive
form, another for the command-line form.

In GRASS 4.1 the interactive and command-line versions of a program have
been "merged" into a single program (as far as the user is concerned).This
merging should be understood by programmers developing new code. It is
described in§11 Compiling and Installing GRASS Programs[p. 57]. A standard
command-line interface has been developed to complement the existing
interactive interface, and an attempt has been made to standardize the
command names.

Programming Level -
For even greater flexibility in the application of GRASS, a user has the
opportunity to program GRASS functions in the C language. The main
restrictions here are that the programmer is to use the existing GRASS function
libraries to the greatest extent possible, and support both AT&T and Berkeley
UNIX.

Library Level -
Work at the library level should be done with the cooperation and approval of
one group. At this writing, that group is the GRASS programming staff at
USACERL. Themost critical functions are those that manipulate data.It is
believed that these functions will be more permanent than the database
structure. Thoughthe database structure may change, these functions (and the
programming environment) will not.

2.3. DocumentationStandards
GRASS is a public domain system.While such systems are usually inexpensive to new
sites wishing to adopt them, costs incurred in putting up the system, modifying the code,
and understanding the product can be very high.To minimize these costs, GRASS
programs shall be thoroughly documented at several levels.

Source code -
The source code for the functions should be accompanied by liberal amounts of
descriptive variables, algorithm explanations, and function descriptions.

On-line help -
Brief help/information will be available for the new user of a program.

§2 Development Guidelines

- 8 - - 8 -

On-line manual -
Manual entries in the style of the UNIX manual entries will also be available to
the user.

Tutorial -
The tools that are more involved or difficult to use shall be accompanied by
tutorial documents which teach a user how to use the code. These have been
written in nroff/troff using thems macro package.1 Final documents have been
kept separate from the GRASS directories, though it is suggested that they
appear with appropriate "makefiles" under $GISBASE/tutorials.2

1 This package, invoked with the -ms option to nroff, is documented in section 7 of the UNIX
manual.

2 $GISBASE is the directory where GRASS is installed.See§10.1 UNIX Environment[p. 53]

for details.

§2 Development Guidelines

- 9 - - 9 -

Chapter 3

Multile vel

As introduced in the previous section, the overall GRASS design incorporates several
levels:

Specialized Interfaces
Command Level
Programming Level
Library Level

Each level is associated with a different type of user interface.

3.1. GeneralUser
The general GRASS user is someone with a skill in some resource area (e.g., planning,
biology, agronomy, forestry, etc.) in which GRASS can be used to support spatial
analysis. Suchusers have no significant computer skills, know nothing of UNIX, and
may struggle with the learning curve for GRASS.Such users should select aSpecialized
Interface, if available, where they are guided through the GRASS system or a specific
application in a friendly way. Programs written at this level may take many forms in the
future. Thepromise of a natural language capability may take form here. Current
success with graphic menu systems in other applications will lead to pleasant graphic
screens with pull-down menus.Interfaces developed at this level (and this level only)
may be hardware specific.GRASS may take the form of a voice-activated system with
fancy AI capabilities on one machine, while it is driven by a pull-down menu system
which is also tightly interfaced to an RDBMS on another. All versions, however, will
rely heavily on the consistent commands available at theCommand Level. It is
anticipated that specialized analysis models using little or no user input will be developed
shortly, making use of UNIX shell scripts andCommand Level programs. These models
will be written by system analysts and will require no knowledge of C programming.
Until improvements in speed and cost of hardware and flexibility of software are made
available, most general users of GRASS will interface the system through theCommand
Level.

TheCommand Level requires some knowledge of UNIX. The user starts up the GRASS

§3 Multilevel

- 10 - - 10 -

tools individually through the UNIX shell (commonly Bourne or Csh). Once a GRASS
tool is started, the user either enters a very friendly and interactive environment or
provides information to the tool in the form of arguments on the command line.Users
arenot prompted through graphics. Prompting is restricted to written interaction.

3.2. GRASSProgrammer
The GRASS programmer, using an array of programming libraries, writes interactive
tools and command line tools. Programmers must keep in mind thatSpecial Interfaces
tools will be:

a. Writtenfor the occasional user;
b. Verbose in their prompting;
c. Accompaniedby plenty of help; and
d. Give the user few options.

The programmer also writesCommand Level tools. These:

a. Canrun in batch (background) mode;
b. Take input from the command line, standard input, or a file;
c. Canrun from a shell; and
d. Operatewith a standard interface.

GRASS programmers should keep the following design goals in mind:

a. Consistentuser interface;
b. Consistent database interface;
c. Functionalconsistency;
d. Installationconsistency; and
e. Codeportability.

As much as possible, interaction with the user (e.g., prompting for database files, or full
screen input prompting) must not vary in style from program to program.All GRASS
programs must access the database in a standard manner. Functional mechanisms (such
as automatic resampling into the current region and masking of raster data) which are
independent of the particular algorithm must be incorporated in most GRASS programs.
Users must be able to install GRASS (data, programs, and source code) in a consistent
manner. Finally, GRASS programs must compile and run on most (if not all) versions of
UNIX. To achieve these goals, all programming must adhere to the following guidelines:

Use C language -
This language is quite standard, ensuring very good portability. All of the GRASS
system libraries are written in C.With very few exceptions, GRASS programs are
also written in C.While UNIX machines offer a Fortran 77 compiler, experience
has shown that F77 code is not as portable or predictable when moved between
machines. ExistingFortran code has occasionally been adopted, but programmers
often prefer to rewrite the code in C.

§3 Multilevel

- 11 - - 11 -

Use Bourne shell -
GRASS also makes use of the UNIX command interpreter to implement various
function scripts, such as menu front-ends to a suite of related functions, or
application macros combining GRASS command level tools and UNIX utilities.
Portability requires that these scripts be written using the Bourne Shell (/bin/sh) and
no other. See§25 Writing GRASS Shell Scripts[p. 283].

Do not access data directly -
The GRASS database isNOT guaranteed to retain its existing organization and
structure. Thesehave changed in the past; however, the library function calls to the
data have remained more consistent over time. Plansdo exist to significantly change
the data organization. While the programmer should be aware of the data
capabilities and limitations, it should not be necessary to open and read data files
directly.

Use GRASS Compilation Procedures -
GRASS code is compiled using a special procedure1 which is a front-end to the
UNIX makeutility. This procedure allows the programmer to construct a file with
makerules containing instructions for making the binary executables, manual and
help entries, and other items from the directory’s contents. However, there are no
hardcoded references to other GRASS programs, libraries, or directories.Variables
defining these items are provided by the procedure and are used instead.This
allows the compilation and installation process to remain identical from system to
system. Thisprocedure is described in detail in§11 Compiling and Installing
GRASS Programs[p. 57].

Use GRASS libraries -
Use of the existing GRASS programming libraries speeds up programming efforts.
While user and data interface may make up a large part of a new program, the
programmer, using existing library functions, can concentrate primarily on the
analysis algorithms of the new tool. Suchprograms will maintain a consistency in
data access and (more importantly) a degree of consistency in the user interface.
The libraries are listed briefly below.

GIS Library . This library contains all of the routines necessary to read and write
the GRASS raster data layers and their support files. General GRASS database
access routines are also part of this library. A standardized method to prompt the
user for map names is available. The library also provides some general purpose
tools like memory allocation, string analysis, etc.Nearly all GRASS programs use
routines from this library. See§12 GIS Library[p. 69].

Vector Library . While GRASS is primarily a raster map analysis and display
system, it also has some vector capabilities.The principal uses of GRASS vector
files are to generate raster maps and to plot base maps on top of raster map displays.
However, it is anticipated that additional analysis and data import capabilities will
be added to the vector database.Many vector formats exist in the GIS world, but

1 Known asGmakeunder GRASS 3.0 andgmake4.1under GRASS 4.1.

§3 Multilevel

- 12 - - 12 -

GRASS has chosen to implement its own internal vector format. The format is a
variant of arc-node.The Vector Library provides access to the GRASS vector
database. See§13 Vector Library[p. 157].

Segment Library. For programs that need random access to an entire map layer,
the segment library provides an efficient paging scheme for raster maps.While
virtual memory operating systems perform paging, this library sometimes provides
better control and efficiency of paging for raster maps.See§19 Segment Library
[p. 221].

Vask Library . This screen-oriented user interface is widely used in the GRASS
programs. Itprovides the programmer with a simple means for displaying a
particular screen layout, with defined fields where the user is prompted for answers.
The user, using the carriage return (or line-feed) and ctrl-k keys, moves from prompt
to prompt, filling an answer into each field. When the ESC (escape) key is struck,
the answers are provided to the program for analysis. Users have found this
interface pleasant and consistent. See§20 Vask Library[p. 229].

Graphics Libraries. Graphics design has been a difficult issue in GRASS
development. To ensure portability and competitive bidding, GRASS has been
designed with graphics flexibility in mind.This has meant restricting graphics to a
minimal set of graphics primitives, which generally do not make full use of the
graphics capabilities on all GRASS machines.Tw o libraries, displaylib and
rasterlib , are involved in generating graphics.The rasterlib contains the primitive
graphics commands used by GRASS.At run time, programs using this library
communicate (through fifo files) with another program which translates the graphics
commands into graphics on the desired device. Eachtime the program runs, it may
be talking to a different graphics device. Functionsavailable in therasterlib
include color setting and choosing, line drawing, mouse access (with three types of
cursor), raster drawing operations, and text drawing. Generally, this library is used
in conjunction with thedisplaylib. The displaylib provides graphics frame
management routines, coordinate conversion capabilities, and raster data to raster
graphic conversions. See§16 Display Graphics Library [p. 195] and §15 Raster
Graphics Library[p. 183].

3.3. Driver Programmer
GRASS programs are written to be portable.To this end, a tremendous amount of
modularity is designed into the system. Throughout its development, GRASS programs
have become increasingly specialized. The original monolithic approach continues to
fragment into ever smaller pieces. Smaller pieces will allow future developers and users
ev er more variability in the mixing of the tools.

This modularity has been manifested in the graphics design.A graphics-oriented tool
connects, at run time, to a graphics driver (or translator) program.This separate process
understands the standard graphics commands generated by the GRASS tool, and makes

§3 Multilevel

- 13 - - 13 -

the appropriate graphics calls to a particular graphics device. Eachgraphics device
available to a user is accompanied by a driver program, and each program understands the
graphics calls of the application program. Porting of GRASS to a new system primarily
means the development of one new graphics driver. See§23 Writing a Graphics Driver
[p. 263].

Those sites using the digitizing software of GRASS must also provide driver routines for
their digitizer. These routines, unlike the above graphics calls, are compiled directly into
the digitizing programs. See§22 Writing a Digitizer Driver[p. 251].

Similarly, GRASS sites may wish to write code to support different hardcopy color
printers (inkjet, thermal, etc.). See§24 Writing a Paint Driver[p. 271].

3.4. GRASSSystem Designer
To date, GRASS system design has been done at one location:USACERL. One,and
only one site must be responsible for the design of the system at the database and
fundamental library level. As the software is public domain, sites are free to do their own
work. However, the strength of future GRASS releases depends on cooperation and
sharing of software. Therefore,it is strongly encouraged thatdatabase design and
database library development be fully coordinated with GRASS staff at USACERL .

§3 Multilevel

- 14 - - 14 -

- 15 - - 15 -

Chapter 4

Database Structure

This section presents the programmer interested in developing new applications with an
explanation of the structure of the GRASS databases, as implemented under the UNIX
operating system.

4.1. Programming Interface
GRASS Programmers are provided with theGIS Library , which interfaces with the
GRASS database. It is described in detail in§12 GIS Library [p. 69]. Programmers
should use this library to the fullest extent possible. In fact, a programmer will find that
use of the library will make knowledge of the database structure almost unnecessary.

GRASS programs are not written with specific database names or directories hardcoded
into them. The user is allowed to select the database or change it at will. The database
name, its location within the UNIX file system, and other related database information
are stored as variables in a hidden file in the user’s home directory.1 GRASS programs
access this information via routines in theGIS Library. The variables that specify the
database are described briefly below; see§10 Environment Variables [p. 53] for more
details about these and other environment variables.

Note. These GRASS environment variables may also be cast into the UNIX environment
to make them accessible for shell scripts.2 In the discussion below, these variables will
appear preceded by a dollar sign ($).However, C programs should not access the
GRASS environment variables using the UNIX getenv() since they do not originate in
the UNIX environment. GISLibrary routines, such asG_getenv(p. 73), must be used
instead.

1 The file in the user’s home directory is called
2 usingg.gisenv; see§25 Writing GRASS Shell Scripts[p. 283]

§4 Database Structure

- 16 - - 16 -

4.2. GISDBASE
The database for GRASS makes use of the UNIX hierarchical directory structure.The
top level directory is known as GISDBASE. Usersspecify this directory when entering
GRASS. Thefull name of this directory is contained in the UNIX environment variable
$GISDBASE, and is returned by library routineG_gisdbase(p. 73).

4.3. Locations
Subdirectories under the GISDBASE are known as locations. Locations are independent
databases. Usersselect a location when entering GRASS. All database queries and
modifications are made to this location only. It is not possible to simultaneously access
multiple locations. The currently selected location is contained in the environment
variable $LOCATION_NAME, and is returned by the library routineG_location(p. 72).

GISDBASE
|

| | | |
location.1 location.2 location.3 ...

When users select a location, they are actually selecting one of the location directories.

Note. GISDBASE may be changed to the parent directory of other sets of locations,
notably on other system hard disks for database management purposes. Note that
GRASS programs will only work within one location under one GISDBASE directory in
a giv en GRASS session.

4.4. Mapsets
Subdirectories under any location are known as mapsets. Users select a mapset when
entering GRASS. New mapsets can be created during the selection step. The selected
mapset is known as the current mapset.It is named in the environment variable
$MAPSET and returned byG_mapset(p. 72).

LOCATION
|

| | | | |
mapset.1 mapset.2 mapset.3 ... PERMANENT

Modifications to the database can only be made in the current mapset.Users may only
select (and thus modify) a mapset that they own (i.e., have created). However, data in all
mapsets for a given location can be read by anyone (unless prevented by UNIX file
permissions). See§4.7 Database Access Rules[p. 20] for more details.

§4 Database Structure

- 17 - - 17 -

When users select a mapset, they are actually selecting one of the mapset directories.

Note. The full UNIX directory name for the current mapset is
$GISDBASE/$LOCATION_NAME/$MAPSET and is returned by the library routine
G_location_path(p. 73).

Note. Each location will have a special mapset called PERMANENT that contains non
volatile data for the location that all users will use.However, it also contains some
information about the location itself that is not found in other mapsets.See §4.6
Permanent Mapset[p. 19].

4.5. MapsetStructure
Mapsets will containfiles and subdirectories, known as databaseelements. In the
diagram below, the elements are indicated by a trailing /.

MAPSET
|

| | | | | | |
SEARCH_PATH WIND cats/ cell/ paint/ windows/ ...

4.5.1. MapsetFiles

The following is a list of some of the mapset files used by GRASS programs:

files function

GROUP currentimagery group
SEARCH_PATH mapset search path
WIND currentregion

This list may grow as GRASS grows. TheGROUP file records the current imagery
group selected by the user, and is used only by imagery functions. The other two files are
fundamental to all of GRASS. These are WIND and SEARCH_PATH.

WIND is the current region.3 This file is created when the mapset is created and is
modified by the g.region command. Thecontents of WIND are returned by
G_get_window(p. 83). See§9.1 Region[p. 49] for a discussion of the GRASS region.

3 Under GRASS 3.0 this was called the database "window". However, the term "window" has
many meanings. For clarity this term has been replaced by the term "region". Thedatabase files
and programming interfaces, however, hav e not been renamed.Thus WIND now contains the
current region.

§4 Database Structure

- 18 - - 18 -

SEARCH_PATH contains themapset search path. This file is created and modified by
theg.mapsetscommand. Itcontains a list of mapsets to be used for finding database files.
When users enter a database file name without specifying a specific mapset, the mapsets
in this search path are searched to find the file. Library routines that look for database
files follow and use the mapset search path.See§4.7.1 Mapset Search Path [p. 20] for
more information about the mapset search path.

4.5.2. Elements

Subdirectories under a mapset are the databaseelements.Elements are not created when
the mapset is created, but are created dynamically when referenced by the application
programs.4 Mapset data reside in files under these elements.

The dynamic creation of database elements makes adding new database elements simple
since no reconfiguration of existing mapsets is required.However, the programmer must
be aware of the database elements already used by currently existing programs when
creating new elements. Furthermore,as development occurs outside USACERL,
guidelines must be developed for introducing new element names to avoid using the same
element for two div erse purposes.

Programmers using shell scripts must exercise care. It is not safe to assume that a mapset
has all, or any, database elements (especially brand new mapsets). CertainGRASS
commands automatically create the element when it is referenced (e.g.,g.ask). In
general, however, elements are only created when a new file is to be created in the
element. Itis wise to explicitly check for the existence of database elements.

4 See§12.5.7 Creating and Opening a New Database File[p. 80].

§4 Database Structure

- 19 - - 19 -

Here is list of some of the elements used by GRASS programs written at USACERL:

element function

cell binaryraster file
cellhd headerfiles for raster maps
cats category information for raster maps
colr colortable for raster maps
colr2 secondarycolor tables for raster maps
cell_misc miscellaneousraster map support files
hist historyinformation for raster maps

dig binaryvector data
dig_ascii asciivector data
dig_att vector attribute support
dig_cats vector category label support
dig_plus vector topology support
reg digitizer point registration

bdlg binarydlg files
dlg asciidlg files

icons iconfiles used byp.map
paint labeland comment files used byp.map
group imagerygroup support data
site_lists sitelists forsitesrelated programs
windows predefinedregions

COMBINE r.combinescripts
WEIGHT r.weightscripts

Note. The mapset database elements can be simple directory names (e.g., cats, colr) or
multilevel directory names (e.g., paint/labels, group/xyz/subgroup/abc). The library rou-
tines that create the element will create the top level directory and all subdirectories as
well.

4.6. Permanent Mapset
Each location must have a PERMANENT mapset. This mapset not only contains original
raster and vector files that must not be modified, but also two special files that are only
found in this mapset. These files are MYNAME and DEFAULT_WIND and are never
modified by GRASS software.

MYNAME contains a single line descriptive name for the location. This name is
returned by the routineG_myname(p. 72).

DEFAULT_WIND contains the default region for the location. The contents of this file
are returned byG_get_default_window(p. 84). Thisfile is used to initialize the WIND file
when GRASS creates a new mapset. andcan be used by the user as a reference region at
any time.

§4 Database Structure

- 20 - - 20 -

4.7. DatabaseAccess Rules
GRASS database access is controlled at the mapset level. Thereare three simple rules:

1 A user can select a mapset as thecurrent mapset only if the user is the owner
of the mapset directory (see§4.4 Mapsets[p. 16]).

2 GRASS will create or modify files only in the current mapset.

3 Files in all mapsets may be read by anyone (see§4.7.1 Mapset Search Path
[p. 20]) unless prohibited by normal UNIX file permissions (see§4.7.2 UNIX
File Permissions[p. 20]).

4.7.1. MapsetSearch Path

When users specify a new data file, there is no ambiguity about the mapset in which to
create the file: it is created in the current mapset.However, when users specify an
existing data file, the database must be searched to find the file. For example, if the user
wants to display the "soils" raster map, the system looks in the various database mapsets
for a raster file named "soils."The user controls which mapsets are searched by setting
the mapset search path, which is simply a list of mapsets. Each mapset is examined in
turn, and the first "soils" raster file found is the one that is displayed.Thus users can
access data from other users’ mapsets through the choice of the search path.

Users set the search path using theg.mapsetscommand.

Note. If there were more than one "soils" file, the mapset search mechanism returns the
first one found. If the user wishes to override the search path, then a specific mapset could
be specified along with the file name. For example, the user could request that
"soils@PERMANENT" be displayed.

4.7.2. UNIXFile Permissions

GRASS creates all files with read/write permission enabled for the owner and read only
for everyone else; directories are created with read/write/search permission enabled for
the owner and read/search only for everyone else.5 This implies that all users can read
anyone else’s data files. Read access to all files in a mapset can be controlled by
removing (or adding) the read and search permissions on the mapset directory itself using
the GRASSg.accesscommand, without adversely affecting GRASS programs. If read
and search permissions are removed, then no other user will be able to read any file in
your mapset.

Warning. Since the PERMANENT mapset contains global database information, all

5 This means -rw-r--r-- for files, and drwxr-xr-x for directories. It is accomplished by setting the
umask to 022 in all GRASS programs.

§4 Database Structure

- 21 - - 21 -

users must have read and search access to the PERMANENT mapset directory.6 Do not
remove the read and search permissions from PERMANENT.

6 PERMANENT has the DEFAULT_WIND and MYNAME files. This is a minor design flaw.
Global database information should be kept in the database, but not in any of the mapsets.All
mapsets could then be treated equally.

§4 Database Structure

- 22 - - 22 -

- 23 - - 23 -

Chapter 5

Raster Maps

This chapter provides an explanation of how raster map layers are accommodated in the
GRASS database.1

5.1. What is a Raster Map Layer?
GRASS raster map layers can be conceptualized, by the GRASS programmer as well as
the user, as representing information from a paper map, a satellite image, or a map
resulting from the interpretation of other maps.Usually the information in a map layer is
related by a common theme (e.g., soils, or landcover, or roads, etc.).

GRASS raster data are stored as a matrix ofgrid cells. Each grid cell covers a known,
rectangular (generally square) patch of land. Each raster cell is assigned a single integer
attribute value called thecategory number. For example, assume the land cover map
covers a state park.The grid cell in the upper-left corner of the map is category 2 (which
may represent prairie); the next grid cell to the east is category 3 (for forest); and so on.

land cover

2 3 3 3 4 4

2 2 3 3 4 4

2 2 3 3 4 4

1 2 3 3 3 4

1 1 1 3 3 4

1 1 3 3 4 4

1 = urban 3= forest
2 = prairie 4= wetlands

In addition to the raster file itself, there are a number of support files for each raster map
layer. The files which comprise a raster map layer all have the same name, but each
resides in a different database directory under the mapset. These database directories are:

1 The descriptions given here are for GRASS 4.x data formats only. Previous formats, still
supported by GRASS but no longer generated, are described in documents from earlier releases of
GRASS.

§5 Raster Maps

- 24 - - 24 -

directory function

cell binaryraster (cell) files
cellhd rasterheader files
cats rastermap category information
colr rastermap color tables
colr2 alternateraster map color tables
hist rastermap history information
cell_misc miscellaneousraster map support information

For example, a raster map namedsoils would have the files cell/soils, cellhd/soils,
colr/soils, cats/soils,etc.

Note. Database directories are also known as databaseelements.See§4.4 Mapsets[p. 16]

for a description of database elements.

Note. GIS Library routines which read and write raster files are described in§12.9
Raster File Processing[p. 98].

5.2. RasterFile Format
The programmer should think of the raster data file as a two-dimensional matrix (i.e., an
array of rows and columns) of integer values. Eachgrid cell is stored in the file as one to
four 8-bit bytes of data. An NxM raster file will contain N rows, each row containing M
columns of cells.

The physical structure of a raster file can take one of 3 formats: uncompressed,
compressed, or reclassed.

Uncompressed format. The uncompressed raster file actually looks like an NxM matrix.
Each byte (or set of bytes for multibyte data) represents a cell of the raster map layer. The
physical size of the file, in bytes, will berows∗cols∗bytes-per-cell.

Compressed format. The compressed format uses a run-length encoding schema to
reduce the amount of disk required to store the raster file.Run-length encoding means
that sequences of the same data value are stored as a single byte repeat count followed by
a data value. If the data is single byte data, then each pair is 2 bytes. If the data is 2 byte
data, then each pair is 3 bytes, etc.(seeMultibyte data f ormat below). The rows are
encoded independently; the number of bytes per cell is constant within a row, but may
vary from row to row. Also if run-length encoding results in a larger row, then the row is
stored non-run-length encoded. And finally, since each row may have a different length,
there is an index to each row stored at the beginning of the file.

Reclass layers. Reclass map layers do not contain any data, but are references to another
map layer along with a schema to reclassify the categories of the referenced map layer.
The reclass file itself contains no useful information. The reclass information is stored in
the raster header file.

§5 Raster Maps

- 25 - - 25 -

Multibyte data f ormat. When the data values in the raster file require more than one
byte, they are stored inbig-endian format,2 which is to say as a base 256 number with
the most significant digit first.

Examples:

cell value base256 storedas

868 = 3*256+ 100 3 100

137,304 = 2*2562 + 24*256 + 88 2 24 88

174,058,106 = 10*2563 + 95*2562 + 234*256 + 122 10 95 234 122

Negative values are stored as a signed quantity, i.e., with the highest bit set to 1:3

cell value base256 storedas

-1 = -(1) 1| 0 0 0 1

-868 = -(3*256+ 100) 1| 0 0 3 100

-137,304 = -(2*2562 + 24*256 + 88) 1| 0 2 24 88

-174,058,106 = -(10*2563 + 95*2562 + 234*256 + 122) 1| 10 95 234 122

All data values in a given row are stored using the same number of bytes. This means that
if the value 868, which uses 2 bytes, occurred in a row that uses 3 bytes to represent the
largest data value, 868 would be stored as03100

Also, one row may only require 2 bytes to store its data values, another 4 bytes, and yet
another 1 byte. The rows are stored independently and would be stored using 2 bytes, 4
bytes, and 1 byte respectively.

File portability . The multibyte format described above is (except possibly for negative
values) machine independent. If raster files are to be moved to a machine with a different
cpu, or accessed using a heterogeneous network file system (NFS), the following
guidelines should be kept in mind.All 4.1 format4 raster files will transfer between

2 The fact that the values are storedbig-endian should not be construed to mean that the
machine architecture must also bebig-endian. The programs which read raster files perform the
necessary arithmetic to construct the value. They do NOT assume anything about byte ordering in
the cpu.

3 This means that the value is stored using as many bytes as required by an integer on the
machine (usually 4).

4 The raster file format did not change from 3.0 to 4.0.

§5 Raster Maps

- 26 - - 26 -

machines, with two restrictions: (1) if the file contains negative values, the size of an
integer on the two machines must be the same; and (2) the size of the file must be within
the seek capability of the lseek() call.5 Thepre-3.0 compressedformat is not stored in a
machine-independent format, and cannot generally be used for intermachine transfer,
unless the two machines have the same integer and long integer format.

5.3. RasterHeader Format
The raster file itself has no information about how many rows and columns of data it
contains, or which part of the earth the layer covers. This information is in the raster
header file.The format of the raster header depends on whether the map layer is a regular
map layer or a reclass layer.

Note. GIS Library routines which read and write the raster header file are described in
§12.10.1 Raster Header File[p. 106].

5.3.1. RegularFormat

The regular raster header contains the information describing the physical characteristics
of the raster file. The raster header has the following fields:

raster header

proj: 1
zone: 18
north: 4660000
south: 4570000
east : 770000
west : 710000
e-w resol: 50
n-s resol: 100
rows: 900
cols: 1200
format : 0
compressed: 0

proj, zone
Theprojection field specifies the type of cartographic projection:6

0 is unreferenced x,y (imagery data)
1 is UTM
2 is State Plane
3 is Latitude-Longitude

Others may be added in the future.The zone field is the projection zone. In the

5 This usually means that the size of a long integer on the two machines is the same.
6 State Plane is not yet fully supported in GRASS and Latitude-Longitude is still under

§5 Raster Maps

- 27 - - 27 -

example above, the projection is UTM, the zone is 18.

north, south, east, west
The geographic boundaries of the raster file are described by thenorth, south, east,
andwest fields. Thesevalues describe the lines which bound the map at its edges.
These lines do NOT pass through the center of the grid cells at the edge of the
map, but along the edge of the map itself.

n-s resol, e-w resol
The fieldse-w resolandn-s resoldescribe the size of each grid cell in the map layer
in physical measurement units (e.g., meters in a UTM database).They are also
called the grid cell resolution.Then-s resolis the length of a grid cell from north to
south. Thee-w resolis the length of a grid cell from east to west.As can be noted,
cells need not be square.

rows, cols
The fieldsrows and cols describe the number of rows and columns in the raster
matrix.7

format
The format field describes how many bytes per cell are required to represent the
raster data. 0 means 1 byte, 1 means 2 bytes, etc.

compressed
The compressedfield indicates whether the raster file is in compressed format or
not :1 means it is compressed and 0 means it is not. If this field is missing, then the
raster file was produced prior to GRASS 3.0 and the compression indication is
encoded in the raster file itself.

Note.
If the rows and columns of the raster matrix are not stored in the raster header, they
are computed from the geographic boundaries as follows:

rows = (north − south) / (nsresol)
cols = (east − west) / (ew resol)

If the rows and columns of the raster matrix are stored in the raster header, the
resolution values are computed from the geographic boundaries as follows:

ns resol = (north − south) / (rows)
ew resol = (east − west) / (cols)

development.
7 These fields were added for 4.0. Under 3.0 the number of rows and columns were calculated

from the other values in the header. Howev er, this sometimes resulted in wrong results since the
resolution values could not be stored with sufficient accuracy in ascii format. 4.0 used the
resolution fields only if the row and column fields are not present (i.e., 3.0 format header files).

§5 Raster Maps

- 28 - - 28 -

5.3.2. ReclassFormat

If the raster file is a reclass file, the raster header does not have the information mentioned
above. It will have the name of the referenced raster file and the category reclassification
table.

reclass header

reclass
name: county
mapset : PERMANENT
#5 first category in reclass
1 5 is reclassified to 1
0 6 is reclassified to 0
1 7 is reclassified to 1
0 8 is reclassified to 0
2 9 is reclassified to 2

In this case, the library routines will use this information to open the referenced raster file
in place of the reclass file and convert the raster data according to the reclass scheme.
Also, the referenced raster header is used as the raster header.

5.4. RasterCategory File Format
The category file contains the largest category value which occurs in the data, a title for
the map layer, an automatic label generation capability, and a one line label for each
category.

category file

5 categories
title for map layer
<automatic label format>
<automatic label parameters>
0:no data
1:description for category 1
2:description for category 2
3:description for category 3
5:description for category 5

The number which follows the # on the first line is the largest category value in the raster
file. Thenext line is a title for the map layer. The next two lines are used for automatic
label generation.They are used to create labels for categories which do not have explicit
labels. (Theautomatic label capability is not normally used in most map layers, in which
case theformat line is a blank line and theparametersline is: 0.00.0 0.0 0.0.) Category
labels follow on the remaining lines. The format iscat : label.

The first four lines of the file are required.The remaining lines need only appear if

§5 Raster Maps

- 29 - - 29 -

categories are to be labeled.

Note. GIS Library routines which read and write the raster category file are described in
§12.10.2 Raster Category File[p. 108].

5.5. RasterColor Table Format

The GRASS raster color tables and associated programming interface have undergone a
fairly major revision to resolve problems presented by raster maps that have a large range
of data values. The previous design8 used arrays to store a color for each data value
between the minimum and maximum values in the raster map. This array structure was
also reflected in the format of the color table file -- each color stored as a single line in the
color file. Because GRASS raster maps can have data values in the range± 21474836479

this method of storing color information is clearly untenable.

GRASS 4.1 solves the above problem by representing color tables as linear ramps for
intervals of data values. Colorsare specified (and stored) for the endpoints of each
interval. Colorsfor values between endpoints are not stored but are computed using a
linear interpolation scheme.

The following is an example 4.1 color file:

4.1 color table file

% 1387 1801
1387:255:85:85 1456:170:170:0 colors for categories 1387-1456
1456:170:170:0 1525:85:255:85 colors for categories 1456-1525
1525:85:255:85 1594:0:170:170 colors for categories 1525-1594
1594:0:170:170 1663:85:85:255 colors for categories 1594-1663
1663:85:85:255 1732:170:0:170 colors for categories 1663-1732
1732:170:0:170 1801:255:85:85 colors for categories 1732-1801

The first line is a % character (to indicate that this is a 4.x format color file) and two
numbers indicating the minimum and maximum data values which have colors. Therest
of the file are the color descriptors. In this example, the minimum and maximum values
are 1387 and 1801. Looking at the first color line, the color for category 1387 is red=255,
green=85, blue=85; the color for category 1456 is red=170, green=170, blue=0.10 The
color for category 1400 is calculated from the colors for categories 1387 and 1456:

8 See theGRASS 3.0 Programmer’s Manual, for details on the 3.0 color file.
9 These values are for 32-bit architectures.
10 The colors are represented as levels of red, green, and blue, where 0 represents the lowest

intensity and 255 represents the highest intensity.

§5 Raster Maps

- 30 - - 30 -

red = interpolate(255,170) = 239
green = interpolate(85,170) = 101
blu = interpolate(85,0) = 69

There are other formats which are simply variants of this format. For example, if the red,
green, and blue intensities are all the same, then only the "red" value appears. This next
example defines a gray scale color table:

4.1 color table file

% 1387 1801
1387:0 1801:255

Also, if the starting and ending categories are the same, only the first appears:

4.1 color table file

% 1 6
1:34:179:112
2:233:110:15
3:127
4:43:135:33
5:70:7:52
6:93:210:163

Note. GIS Library routines which read and write the raster color table are described in
§12.10.3 Raster Color Table[p. 111].

5.6. RasterHistory File
The history file contains historical information about the raster map: creator, date of
creation, comments, etc.It is generated automatically along with the raster file. In most
applications, the programmer need not be concerned with the history file. Occasionally a
program might put information into this file not known or readily available to the user,
such as information about a satellite image: sun angles, dates, etc. The GRASSr.info
program allows the user to view this information, and ther.supportprogram allows the
user to update it. It is the user’s responsibility to maintain this file.

Note. GIS Library routines which read and write the raster history file are described in
§12.10.4 Raster History File[p. 116].

§5 Raster Maps

- 31 - - 31 -

5.7. RasterRange File
The range file contains the minimum and maximum values which occur in a raster file.It
is generated automatically for all new raster files. This file lives in thecell_miscelement
as "cell_misc/name/range" wherename is the related raster file name.

It contains one line with four integer values. These represent the minimum and maximum
negative values, and the minimum and maximum positive values in the raster file. If there
are no negative values, then the first pair of numbers will be zero. If there are no positive
values, then the second pair of numbers will be zero.

Note. GIS Library routines which read and write the raster range file are described in
§12.10.5 Raster Range File [p. 117].

§5 Raster Maps

- 32 - - 32 -

- 33 - - 33 -

Chapter 6

Vector Maps

This chapter provides an explanation of how vector map layers are accommodated in the
GRASS database.

6.1. What is a Vector Map Layer?
GRASS vector maps are stored in anarc-node representation, consisting of
nonintersecting curves calledarcs. An arc is stored as a series of x,y coordinate pairs.1

The two endpoints of an arc are callednodes.Tw o consecutive x,y pairs define an arc
segment.2

The arcs, either singly, or in combination with others, form higher level map features:
lines3 (e.g., roads or streams) orareas4 (e.g., farms or forest stands).Arcs that form
linear features are sometimes calledlines, and arcs that outline areas are calledarea
edgesor area lines.5

Each map feature is assigned a single integer attribute value called thecategorynumber.
For example, assume a vector file contains land cover information for a state park.One
area may be assigned category 2 (perhaps representing prairie); another is assigned
category 3 (for forest); and so on. Another vector file which contains road information
may have some roads assigned category 1 (for paved roads); other roads may be assigned
category 2 (for gravel roads); etc.See§5.1 What is a Raster Map Layer?[p. 23] for more
information about GRASS category values.

A vector map layer is stored in a number of data files.The files which comprise a single

1 For this reasonarcs are also calledvectors.
2 Arc segmentsare sometimes calledline-segments.
3 A line here does not mean a straight line between two points. It only means a linear feature.
4 Areas are also calledpolygons. The GRASS vector format does not store the polygons

explicitly. They are constructed by finding the particulararcs which form the polygon perimeter.
5 Obviously, there is some confusion in the GIS vector terminology. This is partly due to use of

terms that have a common meaning as well as a mathematical meaning. Vector terminology is a
subject for much debate in the GIS world.

§6 Vector Maps

- 34 - - 34 -

paste vect.xfig diagram here

vector map layer all have the same name, but each resides in a different database
directory under the mapset.6 These database directories are:

directory function

dig binaryarc file
dig_ascii asciiarc file
dig_att vector category attribute file
dig_cats vector category labels
dig_plus vector index/pointer file
reg digitizer registration points

For example, a map layer namedsoils would have the files dig/soils, dig_att/soils,
dig_plus/soils, dig_ascii/soils, dig_cats/soils, reg/soils,etc.

Note. Vector files are also calleddigit files, since they are created and modified by the
GRASS digitizing programv.digit.

Note. When referring to one of the vector map layer files, the directory name is used. For
example, the file under thedig directory is called thedig file.

Note. Library routines which read and write vector files are described in§13 Vector
Library [p. 157].

6.2. AsciiAr c File Format
The arc information is stored in a binary format in thedig file. The format of this file is
reflected in the ascii representation stored in thedig_ascii file. It is the ascii version
which is described here.7

6 Database directories are also calledelements.See§4.4 Mapsets[p. 16] for a description of
database elements.

7 The programsv.import, v.in.ascii, and v.out.ascii convert between the ascii and binary
formats.

§6 Vector Maps

- 35 - - 35 -

Thedig_ascii file has two sections: a header section, and a section containing the arcs.

6.2.1. HeaderSection

The header contains historical information, a description of the map, and its location in
the universe. Itconsists of fourteen entries. Each entry has a label identifying the type of
information, followed by the information. The format of the header is:

label format description

ORGANIZATION: text (max 29 characters)* organization that digitized the data
DIGIT DATE: text (max 19 characters)* date the data was digitized
DIGIT NAME: text (max 19 characters)* person who digitized the data
MAP NAME: text (max 40 characters)* title of the original source map
MAP DATE: text (max 10 characters)* date of the original source map
OTHER INFO: text (max 72 characters)* other comments about the map
MAP SCALE: integer scaleof the original source map
ZONE: integer zoneof the map (e.g., UTM zone)
WEST EDGE: real number (double) western edge of the entire map †
EAST EDGE: real number (double) eastern edge of the entire map †
SOUTH EDGE: real number (double) southern edge of the entire map †
NORTH EDGE: real number (double) northern edge of the entire map †
MAP THRESH: real number (double) digitizing resolution ‡
VERTI: (no data) marksthe end of the header section

The labels start in column 1 and continue through column 14.Labels are uppercase, left
justified, end with a colon, and blank padded to column 14. The information starts in
column 15.For example:

ORGANIZATION: USArmy CERL
DIGIT DATE: 03/18/88
DIGIT NAME: grass
MAP NAME: Urbana,IL.
MAP DATE: 1975
OTHER INFO: USGS sw/4 urbana 15’ quad. N4000-W8807.5/7.5
MAP SCALE: 24000
ZONE: 16
WEST EDGE: 383000.00
EAST EDGE: 404000.00
SOUTH EDGE: 4429000.00
NORTH EDGE: 4456000.00
MAP THRESH: 0.00
VERTI:

* Currently, GRASS programs which read the header information are not tolerant of text fields
which exceed these limits. If the limits are exceeded, the ascii to binary conversion will probably
fail.

† The edges of the map describe a region which should encompass all the data in the vector file.
‡ The MAP THRESH is set by thev.digit program. If the data comes from outside GRASS, this

field can be set to 0.0.

§6 Vector Maps

- 36 - - 36 -

6.2.2. Arc Section

The arc information appears in the second section of thedig_ascii file (following VERTI:
which marks the end of the header section). Each arc consists of a description entry,
followed by a series of coordinate pairs.The description specifies both the type of arc (A
for area edge, orL for line8), and the number of points (coordinate pairs) in the arc.Then
the points follow.

For example:

A 5
4434456.04 388142.16
4434446.65 388202.64
4434407.49 390524.38
4434107.06 390523.59
4433326.51 390526.48

L 3
4434862.31 392043.33
4434872.42 394662.14
4434871.44 398094.75

A 3
4454747.38 396579.60
4454722.69 393539.73
4454703.68 390786.90

In this example, the first arc is an area edge and has 5 points. The second arc is part of a
linear feature and has 3 points. The third arc is another area edge and has 3 points.

The arc description has the letterA or L in the first column, followed by at least one
space, and followed by the number of points.9

Point entries start with a space, and have at least one space between the two coordinate
values.10

Note. The points are stored asy,x (i.e., north, east), which is the reverse of the way
GRASS usually represents geographic coordinates.

Note. If the v.digit program has deleted an arc, the arc type will be represented using a
lower case letter (i.e.,l instead ofL, a instead ofA). Of course, this will only be
manifest when a binarydig file with a deleted arc is converted to the asciidig_ascii file.

8 Other types may be added in the future.
9 This can be written with the Fortran format :A1,1X,I4.
10 These can be written with the Fortran format :2(1X,F12.2).

§6 Vector Maps

- 37 - - 37 -

6.3. Vector Category Attribute File
As was mentioned in§6.1 What is a Vector Map Layer?[p. 33], each feature in the vector
map layer has acategory number assigned to it. The category number for each map
feature is not stored in thedig file itself, but in thedig_att file.

Thedig_att file is an ascii file that has multiple entries, each with the same format.Each
entry refers to one map feature, and specifies the feature type (area or line), an x,y
marker, and a category number.

For example:

A 389668.32 4433900.99 7
L 395103.96 4434881.19 2

In this example, an area feature is assigned category 7, and a linear feature is assigned
category 2.

The x,y marker is used to find the map feature in thedig file. It must be located so that it
uniquely identifies its related map feature.In particular, an area marker must be inside
the area, and a line marker must be closer to its related line than to any other line
(preferably on the line) and not at a node.

If multiple entries identify the same map feature, only one will be used (currently thee
last entry).

A map feature which has no entry in this file is considered to be unlabeled. This means
that during the vector to raster conversion (i.e.,v.to.rast), unlabeled areas will convert as
category zero, and unlabeled lines will be ignored.

The format of this file is rather strict, and is described in the following table:

columns data
1 Type of map feature (A or L)*

2-3 spaces
4-15 Easting(x) of the marker, right justified

16-17 spaces
18-29 Northing(y) of the marker, right justified
30-31 spaces
32-39 Category number, right justified
40-49 spaces

50 newline †

* Other types, such aspoint, may be allowed in the future.
† UNIX text files are terminated with a newline. Therefore, each entry will appear as 49

characters. The entire file size should be a multiple of 50.

§6 Vector Maps

- 38 - - 38 -

This format is required by programs which modify the vector map (e.g.,v.digit).
Programs which only read the vector map accept a looser format: the feature type must
start in column 1; the items must be separated by at least one space; and the entries must
be less than 50 characters. Also, the programv.supportwill convert the looser format to
this stricter format.

Note. The marker is specified asx,y (i.e., east, north), which is the way GRASS usually
represents geographic coordinates, but which is reverse of the way the arcs are stored in
thedig_ascii file.

6.4. Vector Category Label File
Each category in the vector map layer may have a one-line description. These category
labels are stored in thedig_cats file. The format of this file is identical to the raster
category file described in§5.4 Raster Category File Format [p. 28], and the reader is
referred to that section for details.

Note. The programv.supportallows the user to enter and modify the vector category
labels. Theprogramv.to.rastcopies thedig_catsfile to the raster category file during the
vector to raster conversion.

Note. Library routines which read and write thedig_cats file are described under
§12.11.6 Vector Category File[p. 125].

6.5. Vector Index and Pointer File
Thedig_plus file contains information that accelerates vector queries. It is created by the
programbuild.vect (which is run byv.digit when a vector file is created or modified, and
by v.supportat user request) from the data in thedig anddig_att files.

For this reason, and since the internal structure of thedig_plus file is complex, the format
of this file will not be described.

6.6. Digitizer Registration Points File
The reg file is an ascii file used by thev.digit program to store map registration control
points. Eachmap registration point has one entry with the easting and northing of the
map control point. For example:

§6 Vector Maps

- 39 - - 39 -

383000.000000 4429000.000000
383000.000000 4456000.000000
404000.000000 4456000.000000
404000.000000 4429000.000000

Note. This file is used byv.digit only. It is not used by any other program in GRASS.

6.7. Vector Topology Rules
The following rules apply to the vector data:

1 Arcs should not cross each other (i.e., arcs which would cross must be split at their
intersection to form distinct arcs).

2 Arcs which share nodes must end at exactly the same points (i.e., must besnapped
together). Thisis particularly important since nodes are not explicitly represented in
the arc file, but only implicitly as endpoints of arcs.

3 Common boundaries should appear only once (i.e., should not be double digitized).

4 Areas must be explicitly closed.This means that it must be possible to complete
each area by following one or more area edges that are connected by common
nodes, and that such tracings result in closed areas.

5 It is recommended that area features and linear features be placed in separate layers.
However if area features and linear features must appear in one layer, common
boundaries should be digitized only once. An area edge that is also a line (e.g., a
road which is also a field boundary), should be digitized as an area edge (i.e., arc
type A) to complete the area. The area feature should be labeled as an area (i.e.,
feature typeA in the dig_att file). Additionally, the common boundary arc itself
(i.e., the area edge which is also a line) should be labeled as a line (i.e., feature type
L in thedig_att file) to identify it as a linear feature.

6.8. Importing Vector Files Into GRASS
The following files are required or recommended for importing vector files from other
systems into GRASS:

dig_ascii

Thedig_ascii file, described in§6.2 Ascii Arc File Format[p. 34], is required.

dig_att

The dig_att file, described in§6.3 Vector Category Attribute File [p. 37], is
essentially required. While thedig_ascii file alone is sufficient for simple vector
display, the dig_att file is required for vector to raster conversion, as well as more

§6 Vector Maps

- 40 - - 40 -

sophisticated vector query.

dig_cats

The dig_cats file, described in§6.4 Vector Category Label File [p. 38], while not
required, allows map feature descriptions to be imported as well.

Note. Thedig_plus file, described in§6.5 Vector Index and Pointer File [p. 38], is created
by the GRASS programv.import when converting thedig_ascii file to the binarydig file.

§6 Vector Maps

- 41 - - 41 -

Chapter 7

Point Data: Site List Files

This section describes how point data is currently accommodated in the GRASS database.

7.1. What is a Site List?
Point data is currently stored in ascii files calledsite listsor site files.These files are used
by thes.menu1 program, which was developed as an application within GRASS to aid in
archeological site predictive modeling. Thesite list files were designed for use by this
program, but have since become the principal data structure for point data.2

7.2. SiteFile Format
Site files are ascii files stored under thesite_listsdatabase element.3 The format of a site
file is best explained by example:

name| sample
desc| sample site list
728220 | 5182440 | site27
727060 | 5181710 | site28
725500 | 5184000 | site29
719800 | 5187200 | site30

name
This line contains the name of the site list file, and is printed on all the reports
generated by thes.menuprogram. Theword namemust be all lower case letters.

It is permissible for this line to be missing, since thes.menuprogram will add a
name record using the name of the site list file itself.

1 The GRASS User’s Reference Manualcontains a complete description of thes.menu
capability.

2 Other GRASS programs which read site lists includes.out.ascii, d.sitesandp.map.
3 See§4.5.2 Elements[p. 18] for an explanation of database elements.

§7 Point Data: Site List Files

- 42 - - 42 -

desc
This line contains a description of the site list file, and is printed on all the reports
generated by thes.menuprogram. Theword descmust be all lower case letters.

It is also permissible for this line to be missing, in which case the site list will have
no description.

points
The remaining lines arepoint records. Eachsite is described by apoint record.
The format for this record is:4

east | north | description

The east and north fields represent the geographic coordinates (easting and
northing) of the site.The description field provides a one line text description
(label) of the site, and is optional.

comments
Blank lines, and lines beginning with #, are accepted (and ignored).

7.3. Programming Interface to Site Files
The programming interface to the site list files is described in§12.12 Site List Processing
[p. 126] and the programmer should refer to that section for details.

4 The pipe character ("|") is sometimes used to separate the fields in the records, but sometimes
blank spaces are used.

§7 Point Data: Site List Files

- 43 - - 43 -

Chapter 8

Image Data: Groups

This chapter provides an explanation of how imagery data are accommodated in the
GRASS database.

8.1. Introduction
Remotely sensed images are captured for computer processing by satellite or airborne
sensors by filtering radiation emanating from the image into various electromagnetic
wavelength bands, converting the overall intensity for each band to digital format, and
storing the values on computer compatible media such as magnetic tape.Color and color
infrared photographs are optically scanned to convert the red, green, and blue wav elength
bands in the photograph into a digital format as well.

The digital format used by image data is basically a raster format.GRASS imagery
programs1 which extract image data from magnetic tape extract the band data into cell
files in a GRASS database.Each band becomes a separate cell file, with standard
GRASS data layer support, and can be displayed and analyzed just like any other cell file.

However, since the band files are extracted as individual cell files, it is necessary to have a
mechanism to maintain a relationship between band files from the same image as well as
cell files derived from the band files. The GRASSgroup database structure accomplishes
this goal.

8.2. What is a Group?
The group is a database mechanism which provides the following:

(1) A list of related cell files,

(2) A place to store control points for image registration and rectification,
and

1 See§8.4 Imagery Programs[p. 47] for a list of the major GRASS imagery programs.

§8 Image Data: Groups

- 44 - - 44 -

(3) A place to store spectral signatures, image statistics, etc., which are
needed by image classification procedures.

8.2.1. AList of Cell Files

The essential feature of a group is that it has a list of cell files that belong in the group.
These can be band data extracted from the same data tape, or cell files derived from the
original band files.2 Therefore, the group provides a convenient "handle" for related
image data; i.e., referring to thegroup is equivalent to referring to all the band files at
once.

8.2.2. ImageRegistration and Rectification

The group also provides a database mechanism for image registration and rectification.
The band data extracted from tapes are usually unregistered data. This means that the
GRASS software does not know the Earth coordinates for pixels in the image. The only
coordinates known at the time of extraction are the columns and the rows relative to the
way the data was stored on the tape.

Image registration is the process of associating Earth coordinates with pixels on the
image. Imagerectification is the process of converting the image files to the new
coordinate system based on the registration.

Image registration is applied to a group, rather than to individual cell files. The user
displays any of the cell files in a group on the graphics monitor and then marks control
points on the image, assigning Earth coordinates to each control point. The control points
are stored in the group, allowing all related group files to be registered in one step rather
than individually.

Image rectification is applied to individual cell files, with the control points for the group
used to control the rectification.The rectified cell files are placed into another database3

known as thetarget database. Rectificationcan be applied to any or all of the cell files
associated with a group.

8.2.3. ImageClassification

Image classification methods process all or a subset of the band files as a unit.For
example, a clustering algorithm generates spectral signatures which are then used by a
maximum likelihood classifier to produce a landcover map.

2 Derived cell files can be the results of image classification procedures such as clustering and
maximum likelihood, or band ratios formed usingr.mapcalc, etc.

3 Either a projected database, such as UTM, or an unregistered database, if the image is being
registered to another image.

§8 Image Data: Groups

- 45 - - 45 -

Sometimes only a subset of the band files are used during image classification.The
signatures must be associated only with the cell files actually used in the analysis.
Therefore, within a group,subgroupscan be formed which list only the band files to be
"subgrouped" for classification purposes. The signatures are stored with the subgroup.
Multiple subgroups can be created within a group, which allows different classifications
to be run with different combinations of band files.

8.3. TheGroup Structure
Groups live in the GRASS database under thegroup database element.4 The structure of
a group can be seen in the following diagram.A trailing / indicates a directory.

group/
|

| | | | |
mss.may80/ nhap.jun88/ nhap.oct88/tm.apr88/ ...

tm.apr88/
|

| | | |
REF POINTS TARGET subgroup/

In this example, the groups are namedmss.may80, nhap.jun88, etc.5 Note that each
group is itself a directory. Each group contains some files (REF, POINTS, and
TARGET), and a subdirectory (subgroup).

8.3.1. TheREF File

The REF file contains the list of cell files associated with the group. The format is
illustrated below:

tm.apr88.1 grass
tm.apr88.2 grass
tm.apr88.3 grass
tm.apr88.4 grass
tm.apr88.5 grass
tm.apr88.7 grass

Each line of this file contains the name and mapset of a cell file. In this case, there are six
cell files in the group:tm.apr88.1, tm.apr88.2, tm.apr88.3, tm.apr88.4, tm.apr88.5and
tm.apr88.7 in mapsetgrass. (Presumably these are bands 1-5 and 7 from an April 88
Landsat Thematic Mapper image.)

4 See§4.5.2 Elements[p. 18] for an explanation of database elements.
5 The group names are chosen by the user.

§8 Image Data: Groups

- 46 - - 46 -

8.3.2. ThePOINTS File

The POINTS file contains the image registration control points. This file is created and
modified by thei.pointsprogram. Its format is illustrated below:

image target status
east north east north (1=ok)
#

504.00 -2705.00 379145.30 4448504.56 1
458.00 -2713.00 378272.67 4448511.67 1

2285.80 -2296.00 415610.08 4450456.17 1
2397.00 -2564.00 417043.22 4444757.65 0
2158.00 -2944.00 411037.79 4438210.97 1
2148.00 -2913.00 410834.61 4438656.18 0
2288.80 -2336.20 415497.19 4449671.77 1

The lines which begin with# are comment lines. The first two columns of data (under
image) are the column (i.e.,east) and row (i.e., north6) of the registration control points
as marked on the image. The next two columns (undertarget) are theeast andnorth of
the marked points in the target database coordinate system (in this case, a UTM
database). Thelast column (understatus) indicates whether or not the control point is
well placed.7 (If it is ok, then it will be used as a valid registration point. Otherwise, it is
simply retained in the file, but not used.)

8.3.3. TheTARGET File

The TARGET file contains the name of thetarget database; i.e., the GRASS database
mapset into which rectified cell files will be created. The TARGET file is written by
i.target and has two lines:

spearfish
grass

The first line is the GRASS location (in this casespearfish), and the second is a mapset
within the location (in this casegrass).

8.3.4. Subgroups

The subgroup directory under a group has the following structure:

6 Note that the row values are negative. This is because GRASS requires the northings to
increase from south to north. Negative values accomplish this while preserving the row value.
The true image row is the absolute value.

7 The user makes this decision ini.points.

§8 Image Data: Groups

- 47 - - 47 -

subgroup/
|

| | | |
123/ 234/ 1357/ ...

1357/
|

| |
REF sig/

|

| |
cluster.1 cluster.2

In this example, the subgroups are named123, 234, 1357, etc.8 Within each subgroup,
there is a REF file and asig directory. The REF file would list a subset of the cell files
from the group. In this example, it could look like:

tm.apr88.1 grass
tm.apr88.3 grass
tm.apr88.5 grass
tm.apr88.7 grass

indicating that the subgroup is composed of bands 1, 3, 5, and 7 from the April 1988 TM
scene. Thefiles cluster.1 and cluster.29 under thesig directory containspectral
signature information (i.e., statistics) for this combination of band files. The files were
generated by different runs of the clustering programi.cluster.

8.4. ImageryPrograms
The following is a list of some of the imagery programs in GRASS, with a brief
description of what they do. Refer to theGRASS User’s Reference Manualfor more
details.

8 The subgroup names are chosen by the user (hopefully reflecting the contents of the
subgroup).

9 Again, these file names are chosen by the user.

§8 Image Data: Groups

- 48 - - 48 -

image extraction
i.tape.mss LandsatMultispectral Scanner data
i.tape.tm LandsatThematic Mapper data
i.tape.other other formats, such as scanned aerial photography or

SPOT satellite data

image rectification
i.points imageregistration (assign control points)
i.rectify imagerectification
i.target establishtarget database for the group

image classification
i.cluster unsupervisedclustering
i.maxlik maximumlikelihood classifier

other
i.group groupmanagement

8.5. Programming Interface for Groups
The programming interface to the group data is described in§14 Imagery Library [p. 173]

and the reader is referred to that chapter for details.

§8 Image Data: Groups

- 49 - - 49 -

Chapter 9

Region and Mask

GRASS users are provided with two mechanisms for specifying the area of the earth in
which to view and analyze their data. These are known in GRASS as theregion and the
mask.The user is allowed to set aregion which defines a rectangular area of coverage on
the earth, and optionally further limit the coverage by specifying a "cookie cutter"mask.
The region and mask are stored in the database under the user’s current mapset.GRASS
programs automatically retrieve only data that fall within the region. Furthermore,if
there is a mask, only data that fall within the mask are retained. Programs determine the
region and mask from the database rather than asking the user.

9.1. Region
The user’s current database region is set by the user using the GRASSg.region,or d.zoom
commands. Itis stored in the WIND file in the mapset. This file not only specifies the
geographic boundaries of the region rectangle, but also the region resolution which
implicitly grids the region into rectangular "cells" of equal dimension.

Users expect map layers to be resampled into the current region. Thisimplies that raster
maps must be extended with no data for portions of the region which do not cover the
map layer, and that the raster map data be resampled to the region resolution if the raster
map resolution is different. Usersalso expect new map layers to be created with exactly
the same boundaries and resolution as the current region.

§9 Region and Mask

- 50 - - 50 -

The WIND file contains the following fields:

WIND

north: 4660000.00
south: 4570000.00
east : 770000.00
west : 710000.00
e-w resol: 50.00
n-s resol: 100.00
rows: 900
cols: 1200
proj: 1
zone: 18

north, south, east, west
The geographic boundaries of the region are given by the north, south, east,and
west fields. Note:these values describe the lines which bound the region at its
edges. Theselines do NOT pass through the center of the grid cells which form the
region edge, but rather along the edge of the region itself.

rows, cols
These values describe the number of rows and columns in the region.1

e-w resol, n-s resol
The fieldse-w resolandn-s resol(which stand for east-west resolution and north-
south resolution respectively) describe the size of each grid cell in the region in
physical measurement units (e.g., meters in a UTM database).The e-w resolis the
length of a grid cell from east to west.Then-s resolis the length of a grid cell from
north to south. Note that since thee-w resolmay differ from then-s resol, region
grid cells need not be square.

proj, zone
The projection field specifies the type of cartographic projection: 0 is unreferenced
x,y (imagery data), 1 is UTM, 2 is State Plane,2 3 is Latitude Longitude.3 Others
may be added in the future.The zonefield is the projection zone. In the example
above, the projection is UTM, the zone 18.

Note. The format for the region file "WIND" is very similar to the format for the raster
header files. See§5.3 Raster Header Format[p. 26] for details about raster header files.

1 These fields were not present in GRASS 3.0
2 State Plane is not yet fully supported in GRASS.
3 Latitude Longitude is a nonplanimetric projection and is only partially supported in GRASS.

§9 Region and Mask

- 51 - - 51 -

9.2. Mask
In addition to the region, the user may set a mask using ther.maskcommand. Themask
is stored in the user’s current mapset as a raster file with the name MASK.4 The mask
acts like an opaque filter when reading other raster files. No-data values in the mask (i.e.,
category zero) will cause corresponding values in other raster files to be read as no data
(irrespective of the actual value in the raster file).

The following diagram gives a visual idea of how the mask works:

input MASK output

3 4 4 0 1 1 0 4 4

3 3 4 + 1 1 0 = 3 3 0

2 3 3 1 0 0 2 0 0

9.3. Variations
If a GRASS program does not obey either theregion or themask, the variation must be
noted in the user documentation for the program, and the reason for the variation given.

4 The r.maskprogram creates MASK as a reclass file because the reclass function is fast and
uses less disk space, but it does not actually matter that MASK is a reclass file.A regular raster
file can be used. The only thing that really matters is that the raster file be called MASK.

§9 Region and Mask

- 52 - - 52 -

- 53 - - 53 -

Chapter 10

Environment Variables

GRASS programs are written to be independent of which database the user is using,
where the database resides on the disk, or where the programs themselves reside.When
programs need this information, they get some of it from UNIX environment variables,
and the rest from GRASS environment variables.

10.1. UNIX Environment
The GRASS start-up commandgrass4.1 sets the following UNIX environment
variables:1

GISBASE toplevel directory for the GRASS programs
GIS_LOCK processid of the start-up shell script
GISRC nameof the GRASS environment file

GISBASE is the top level directory for the GRASS programs.For example, if GRASS
were installed under/grass, then GISBASE would be set to/grass. The command
directory would be/grass/bin, the command support directory would be/grass/etc,the
source code directory would be/grass/src,the on-line manual would live in /grass/man,
etc.

GISBASE, while set in the UNIX environment, is given special handling in GRASS code.
This variable must be accessed using theGIS Library routineG_gisbase(p. 72).

GIS_LOCK is used for various locking mechanisms in GRASS. It is set to the process id
of the start-up shell so that locking mechanisms can detect orphaned locks (e.g., locks
that were left behind during a system crash).

GIS_LOCK may be accessed using the UNIX getenv() routine.

GISRC is set to the name of the GRASS environment file where all other GRASS

1 Any interface to GRASS must set these variables.

§10 Environment Variables

- 54 - - 54 -

variables are stored. This file is.grassrcin the user’s home directory.

10.2. GRASSEnvironment
All GRASS users will have a file in their home directory named.grassrc2 which is used
to store the variables that comprise the environment of all GRASS programs. This file
will always include the following variables that define the database in which the user is
working:

GISDBASE toplevel database directory
LOCATION_NAME locationdirectory
MAPSET mapsetdirectory

The user sets these variables during GRASS start-up. While the value of GISDBASE
will be relatively constant, the others may change each time the user runs GRASS.
GRASS programs access these variables using theG_gisdbase(p. 73), G_location(p. 72),
andG_mapset(p. 72) routines in theGIS Library. See§4.2 GISDBASE [p. 16] for details
about GISDBASE, §4.3 Locations[p. 16] for details about database locations, and§4.4
Mapsets[p. 16] for details about mapsets.

Other variables may appear in this file. Some of these are:

MONITOR currentlyselected graphics monitor
PAINTER currentlyselected paint output device
DIGITIZER currentlyselected digitizer

These variables are accessed and set from C programs using the general purpose routines
G_getenv(p. 73) and G_setenv(p. 73). TheGRASS programg.gisenvprovides a command
level interface to these variables.

10.3. Difference Between GRASS and UNIX Environments
The GRASS environment is similar to the UNIX environment in that programs can access
information stored in "environment" variables. However, since the GRASS environment
variables are stored in a disk file, it offers two capabilities not available with UNIX
environment variables. First,variables may be set by one program for later use by other
programs. For example, the GRASS start-up sets these variables for use by all other

2 GRASS programs do not have this file name built into them.They look it up from the UNIX
environment variable GISRC.Note the similarity in naming convention to the .cshrc and .exrc
files.

§10 Environment Variables

- 55 - - 55 -

GRASS application programs. Second, since the variables remain in the file unless
explicitly removed, they are available from session to session. Also, several GRASS
environment variables are used as defaults each time a GRASS session is initiated.

§10 Environment Variables

- 56 - - 56 -

- 57 - - 57 -

Chapter 11

Compiling and Installing GRASS Programs

GRASS programs are compiled and installed using the GRASSgmake4.1front-end to the
UNIX makecommand:gmake4.1reads a file namedGmakefileto construct amake.rules
file (see§11.4.1 Multiple-Architecture Conventions[p. 64] for more information,) and then
runs make. The GRASS compilation process allows for multiple-architecture
compilation from a single copy of the source code (for instance, if the source code is RFS
or NFS mounted to various machines with differing architectures.) This chapter assumes
that the programmer is familiar withmakeand its accompanyingmakefiles.

11.1. gmake4.1

The GRASSgmake4.1utility allows make compilation rules to be developed
without having to specify machine and installation dependent information.
gmake4.1combines predefined variables that specify the machine and installation
dependent information with theGmakefile, to create amakefile. (The predefined
variables and the construction of aGmakefile are described in§11.2 Gmakefile
Variables [p. 58].)

gmake4.1is invoked as follows:1

gmake4.1 [source directory] [target]

If run without arguments,gmake4.1will run in the current directory, build a
makefile from theGmakefilefound there, and then runmake. If run with a source
directory argument,gmake4.1will change into this directory and then proceed as
above. If run with a target argument as well, thenmakewill be run on the specified
target.

1 When GRASS is installed,gmake4.1is placed into a directory which is in your $PATH (e.g.
/usr/local/bin). You should be able to rungmake4.1without having to specify its full path name.

§11 Compiling and Installing GRASS Programs

- 58 - - 58 -

11.2. Gmakefile Variables

The predefined Gmakefile variables which the GRASS programmer must use when
writing a Gmakefilespecify libraries, source and binary directories, compiler and
loader flags, etc.The most commonly used variables will be defined here.
Examples of how to use them follow in §11.3 Constructing a Gmakefile [p. 60]. The
full set of variables can be seen inAppendix A. Annotated Gmakefile Predefined
Variables [p. 287]. Variables marked with (-) are not commonly used.

GRASS Directories:The following variables tellgmake4.1where source code and
program directories are:

SRC (-) This is the directory where GRASS source code lives.

BIN This is the directory where user-accessible GRASS programs
live.

ETC This is the directory where support files and programs live.
These support files and programs are used by the $(BIN)
programs, and are not known to, or run by the user.

LIBDIR (-) This is the directory where most of the GRASS libraries are
kept.

INCLUDE_DIR (-)
This is where include and header files live. For example, "gis.h"
can be found here.gmake4.1 automatically specifies this
directory to the C compiler as a place to find include files.

GRASS Libraries. The following variables name the various GRASS libraries:

GISLIB This names theGIS Library, which is the principal GRASS
library. See§12 GIS Library [p. 69] for details about this library,
and §12.21 Loading the GIS Library [p. 156] for a sample
Gmakefilewhich loads this library.

VASKLIB This names theVask Library, which does full screen user input.

VASK This specifies theVask Library plus the UNIX curses and
termcap libraries needed to use theVask Library routines. See
§20 Vask Library [p. 229] for details about this library, and §20.4
Loading the Vask Library [p. 233] for a sampleGmakefilewhich
loads this library.

§11 Compiling and Installing GRASS Programs

- 59 - - 59 -

SEGMENTLIB
This names theSegment Library, which manages large matrix
data. See§19 Segment Library [p. 221] for details about this
library, and §20.4 Loading the Vask Library [p. 233] for a sample
Gmakefilewhich loads this library.

RASTERLIB
This names theRaster Graphics Library, which communicates
with GRASS graphics drivers. See§15 Raster Graphics Library
[p. 183] for details about this library, and §15.9 Loading the Raster
Graphics Library [p. 193] for a sampleGmakefilewhich loads this
library.

DISPLAYLIB
This names theDisplay Graphics Library, which provides a
higher level graphics interface to $(RASTERLIB).See §16
Display Graphics Library [p. 195] for details about this library, and
§16.11 Loading the Display Graphics Library [p. 207] for a sample
Gmakefilewhich loads this library.

UNIX Libraries: The following variables name some useful UNIX system
libraries:

MATHLIB This names the math library. It should be used instead of the -lm
loader option.

CURSES Thisnames both the curses and termcap libraries. It should be
used instead of the -lcurses and -ltermcap loader options.Do
not use $(CURSES) if you use $(VASK).

TERMLIB This names the termcap library. It should be used instead of the
-ltermcap or -ltermlib loader options.Do not use $(TERMLIB)
if you use $(VASK) or $(CURSES).

Compiler and loader variables. The following variables are related to compiling
and loading C programs:

CC Thisvariable specifies what compiler/loader to use. This should
always be referenced, as opposed to "cc".See§11.3.1 Building
programs from source (.c) files[p. 61] for the proper use of the
CC variable.

AR This variable specifies the rule that must be used to build object
libraries. See§11.3.3 Building object libraries [p. 62] for details.

§11 Compiling and Installing GRASS Programs

- 60 - - 60 -

CFLAGS (-) This variable specifies all the C compiler options.It should
never be necessary to use this variable -gmake4.1automatically
supplies this variable to the C compiler.

EXTRA_CFLAGS
This variable can be used to add additional options to
$(CFLAGS). It has no predefined values. Itis usually used to
specify additional -I include directories, or -D preprocessor
defines.

GMAKE This is the full name of thegmake4.1command. Itcan be used
to drive compilation in subdirectories.

LDFLAGS Thisspecifies the loader flags. The programmer must use this
variable when loading GRASS programs since there is no way
to automatically supply these flags to the loader.

MAKEALL This defines a command which runsgmake4.1 in all
subdirectories that have aGmakefilein them.

11.3. Constructinga Gmakefile

A Gmakefileis constructed like amakefile.The complete syntax for amakefile is
discussed in the UNIX documentation formakeand will not be repeated here. The
essential idea is that a target (e.g. a GRASS program) is to be built from a list of
dependencies (e.g. object files, libraries, etc.). The relationship between the target,
its dependencies, and the rules for constructing the target is expressed according to
the following syntax:

target :dependencies
actions
more actions

If the target does not exist, or if any of the dependencies have a newer date than the
target (i.e., have changed), the actions will be executed to build the target.

The actions must be indented using a TAB. Make is picky about this. It does not
like spaces in place of the TAB.

§11 Compiling and Installing GRASS Programs

- 61 - - 61 -

11.3.1. Buildingprograms from source (.c) files

To build a program from C source code files, it is only necessary to specify the
compiled object (.o) files as dependencies for the target program, and then specify
an action to load the object files together to form the program.The makeutility
builds .o files from .c files without being instructed to do so.

For example, the following Gmakefile builds the programxyz and puts it in the
GRASS program directory.

OBJ = main.o sub1.o sub2.o sub3.o

$(BIN)/xyz: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB)

$(GISLIB): # in case library changes

The target xyz depends on the object files listed in the variable $(OBJ) and the
$(GISLIB) library. The action runs the C compiler to load xyz from the $(OBJ) files
and $(GISLIB).

$@ is amakeshorthand which stands for the target, in this casexyz. Its use should
be encouraged, since the target name can be changed without having to edit the
action as well.

$(CC) is the C compiler. It is used as the interface to the loader. It should be
specified as $(CC) instead of cc.Makedefines $(CC) as cc, but using $(CC) will
allow other C-like compilers to be used instead.

$(BIN) is a gmake4.1variable which names the UNIX directory where GRASS
commands live. Specifying the target as $(BIN)/xyz will causegmake4.1to build
xyz directly into the $(BIN) directory.

$(LDFLAGS) specify loader flags which must be passed to the loader in this
manner.

$(GISLIB) is theGIS Library. $(GISLIB) is specified on the action line so that it is
included during the load step. It is also specified in the dependency list so that
changes in $(GISLIB) will also cause the program to be reloaded.

Note that no rules were given for building the .o files from their related .c files.In
fact, the GRASS programmer should never giv e an explicit rule for compiling .c
files. It is sufficient to list all the .o files as dependencies of the target. The .c files
will be automatically compiled to build up-to-date .o files before the .o files are
loaded to build the target program.

Also note that since $(GISLIB) is specified as a dependency it must also be
specified as a target. Makemust be told how to build all dependencies as well as
targets. In this case a dummy rule is given to satisfymake.

§11 Compiling and Installing GRASS Programs

- 62 - - 62 -

11.3.2. Includefiles

Often C code uses the # include directive to include header files in the source during
compilation. Headerfiles that are included into C source code should be specified
as dependencies as well. It is the .o files which depend on them:

OBJ = main.o sub1.o sub2.o

$(BIN)/xyz: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB)

$(OBJ): myheader.h

$(GISLIB): # in case library changes

In this case, it is assumed that "myheader.h" lives in the current directory and is
included in each source code file. If "myheader.h" changes, then all .c files will be
compiled even though they may not have changed. Andthen the target programxyz
will be reloaded.

If the header file "myheader.h" is in a different directory, then a different
formulation can be used:

EXTRA_CFLAGS = -I..
OBJ = main.o sub1.o sub2.o

$(BIN)/xyz: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB)

$(GISLIB): # in case library changes

$(EXTRA_CFLAGS) will add the flag -I.. to the rules that compile .c files into .o
files. This flag indicates that # include files (i.e., "myheader.h") can also be found in
the parent (..) directory.

Note that this example does not specify that "myheader.h" is a dependency. If
"myheader.h" were to change, this would not cause recompilation here.The
following rule could be added:

$(OBJ): ../myheader.h

11.3.3. Buildingobject libraries

Sometimes it is desirable to build libraries of subroutines which can be used in many
programs. gmake4.1requires that these libraries be built using the $(AR) rule as

§11 Compiling and Installing GRASS Programs

- 63 - - 63 -

follows:

OBJ = sub1.o sub2.o sub3.o

lib.a: $(OBJ)
$(AR)

All the object files listed in $(OBJ) will be compiled and archived into the target
library lib.a. The $(OBJ) variable must be used.The $(AR) assumes that all object
files are listed in $(OBJ).

Note that due to the way the $(AR) rule is designed, it is not possible to construct
more than one library in a single source code directory. Each library must have its
own directory and relatedGmakefile.

11.3.4. Buildingmore than one target

Many target : dependencylines many be giv en. However, it is the first one in the
Gmakefilewhich is built bygmake4.1. If there are more targets to be built, the first
target must explicitly or implicitly causegmake4.1to build the others.

The following builds two programs,abc andxyz directly into the $(BIN) directory:

ABC = abc.o sub1.o sub2.o
XYZ = xyz.o sub1.o sub3.o

all: $(BIN)/abc $(BIN)/xyz

$(BIN)/abc: $(ABC) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(ABC) $(GISLIB)

$(BIN)/xyz: $(XYZ) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(XYZ) $(GISLIB)

$(GISLIB): # in case library changes

If it is desired to run the compilation in various subdirectories, aGmakefilecould be
constructed which simply runsgmake4.1in each subdirectory. For example:

all:
$(GMAKE) subdir.1
$(GMAKE) subdir.2
$(GMAKE) subdir.3

§11 Compiling and Installing GRASS Programs

- 64 - - 64 -

11.4. CompilationResults

This section describes the results of the GRASS compilation process for two
separate subjects.

11.4.1. Multiple-Architecture Conventions

The following conventions allow for multiple architecture compilation on a machine
that uses a common or networked GRASS source code directory tree.

Object files and library archives are compiled into subdirectories that represent the
architecture that they were compiled on.These subdirectories are created in the
$(SRC) directory as OBJ.arch and LIB.arch, wherearch represents the architecture
of the compiling machine. Thus, for example, $(SRC)/OBJ.sun4 would contain the
object files for Sun/4 and SPARC architectures, and $(SRC)/LIB.386 would contain
library archives for Sun/4 and SPARC architectures.Likewise, $(SRC)/OBJ.386
would contain the object files for 386 architectures, and $(SRC)/LIB.386 would
contain library archives for 386 architectures.

Note that ’arch’ is defined for a specific architecture during setup and compilation of
GRASS, it is not limited to sun4 or any specific string.

gmake4.1 produces a make.rules file in the $(SRC)/OBJ.arch directory instead of a
makefile to allow for multiple-architecture compilation.

11.4.2. CompiledCommand Destinations

GRASS v4.1 merges the command-line and interactive versions of a function under
the same name. This merging happens in one of two methods.

1. The programmer writes a single program which uses the new parser
capability (see§12.15 Command Line Parsing [p. 132].) Theparser has both a
command-line and a rudimentary prompt-based interactive interface.

2. Theprogrammer writes writes a command-line version using the parser, but
also provides an interactive version as a separate module to override the
parser’s interactive interface.

The second method requires that both the command-line program and the interactive
program be somehow merged into one program. This is accomplished by placing
both programs in separate directories under $(GISBASE)/etc/bin and creating a link
(as described below) in $(BIN).

§11 Compiling and Installing GRASS Programs

- 65 - - 65 -

There are six directories where programs are placed. These, along with their
respective Gmakefile variables, are:

etc/bin/main/inter $(BIN_MAIN_INTER)
Interactive versions of the primary GRASS commands.

etc/bin/main/cmd $(BIN_MAIN_CMD)
Command-line versions of the primary GRASS commands.

etc/bin/alpha/inter $(BIN_ALPHA_INTER)
Interactive versions of the alpha-version commands.

etc/bin/alpha/cmd $(BIN_ALPHA_CMD)
Command-line versions of the alpha-version commands.

etc/bin/contrib/inter $(BIN_CONTRIB_INTER)
Interactive versions of the contributed commands.

etc/bin/contrib/cmd $(BIN_CONTRIB_CMD)
Command-line versions of the contributed commands.

To merge the command-line and interactive versions of a command, the compilation
process creates a link in $(BIN) to $(GISBASE)/etc/front.end. Thislink has the
same name as the command, and causes execution of the command to be passed to a
front-end. Thebehavior of the front.end command is shown in the figure below
using the commandr.reclassas an example.

paste front.end.xfig diagram here

The front.end program will call the interactive version of the command if there were

§11 Compiling and Installing GRASS Programs

- 66 - - 66 -

no command-line arguments entered by the user. Otherwise, it will run the
command-line version. If only one version of the specific command exists (for
example, there is only a command-line version available,) that one existing
command is executed.

§11 Compiling and Installing GRASS Programs

- 67 - - 67 -

11.5. Notes

11.5.1. Bypassingthe creation of .o files

If a program has only one .c source file, it is tempting to compile the program
directly from the .c file without creating the .o file. Please do not do this.There
have been problems on some systems specifying both compiler and loader flags at
the same time. The .o files must be built first. Once all the .o files are built, they are
loaded with any required libraries to build the program.

11.5.2. Simultaneouscompilation

The compilation process may be run on only one machine at a time.If you try to
compile the same source directory on two machines simultaneously, things will not
turn out properly. This is your responsibility -- gmake4.1 cannot detect
simultaneous compilations.

§11 Compiling and Installing GRASS Programs

- 68 - - 68 -

- 69 - - 69 -

Chapter 12

GIS Library

12.1. Introduction
The GIS Library is the primary programming library provided with the GRASS system.
Programs must use this libary to access the database.It contains the routines which
locate, create, open, rename, and remove GRASS database files. It contains the routines
which read and write raster files. It contains routines which interface the user to the
database, including prompting the user, listing available files, validating user access, etc.
It also has some general purpose routines (string manipulation, user information, etc.)
which are not tied directly to database processing.

It is assumed that the reader has read§4 Database Structure [p. 15] for a general
description of GRASS databases,§5 Raster Maps[p. 23] for details about raster map
layers in GRASS, and§9 Region and Mask[p. 49] which discusses regions and masks.

The routines in theGIS Library are presented in functional groupings, rather than in
alphabetical order. The order of presentation will, it is hoped, provide a better
understanding of how the library is to be used, as well as show the interrelationships
among the various routines. Note that a good way to understand how to use these
routines is to look at the source code for GRASS programs which use them.

Most routines in this library require that the header file "gis.h" be included in any code
using these routines.1 Therefore, programmers should always include this file when
writing code using routines from this library:

include "gis.h"

Note. All routines and global variables in this library, documented or undocumented,
start with the prefixG_. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic index is provided in§25.4 Appendix C. Index to GIS Library [p. 293].

1 The GRASS compilation process, described in§11 Compiling and Installing GRASS
Programs[p. 57], automatically tells the C compiler how to find this and other GRASS header files.

§12 GIS Library

- 70 - - 70 -

12.2. Library Initialization
It is mandatory that the system be initialized before any other library routines are called.

G_gisinit (program_name) initialize gis library

char *program_name;

This routine reads the user’s GRASS environment file into memory and makes sure
that the user has selected a valid database and mapset. It also initializes hidden
variables used by other routines.If the user’s database information is invalid, an
error message is printed and the program exits. Theprogram_name is stored for
later recall byG_program_name(p. 152). It is recommended that argv[0] be used for
theprogram_name:

main(argc, argv) char *argv[];
{

G_gisinit(argv[0]);

}

12.3. DiagnosticMessages
The following routines are used by other routines in the library to report warning and
error messages. They may also be used directly by GRASS programs.

G_fatal_error (message) print error message and exit

G_warning (message) print warning message and continue

char *message;

These routines report errors to the user. The normal mode is to write themessageto
the screen (on the standard error output) and wait a few seconds. G_warning()will
return and G_fatal_error()will exit.

If the standard error output is not a tty device, then the message is mailed to the user
instead.

If the file GIS_ERROR_LOG exists (with write permission), in either the user’s
home directory or in the $GISBASE2 directory, the messages will also be logged to
this file.

While most applications will find the normal error reporting quite adequate, there will be
times when different handling is needed.For example, graphics programs may want the

2 $GISBASE is the directory where GRASS is installed.See§10.1 UNIX Environment[p. 53]

for details.

§12 GIS Library

- 71 - - 71 -

messages displayed graphically instead of on the standard error output.If the
programmer wants to handle the error messages differently, the following routines can be
used to modify the error handling:

G_set_error_routine (handler) change error handling

int (*handler)();

This routine provides a different error handler for G_fatal_error()and G_warning().
Thehandler routine must be defined as follows:

handler (message, fatal)

char *message;
int fatal;

wheremessageis the message to be handled andfatal indicates the type of error: 1
(fatal error) or 0 (warning).

Note. The handler only provides a way to send the message somewhere other than
to the error output. If the error is fatal, the program will exit after the handler
returns.

G_unset_error_routine () reset normal error handling

This routine resets the error handling forG_fatal_error(p. 70) and G_warning(p. 70)
back to the default action.

G_sleep_on_error(flag) sleep on error?

int flag;

If flag is 0, then no pause will occur after printing an error or warning message.
Otherwise the pause will occur.

G_suppress_warnings(flag) suppress warnings?

int flag;

If flag is 0, thenG_warning(p. 70) will no longer print warning messages.If flag is
1, then G_warning()will print warning messages.

Note. This routine has no effect onG_fatal_error(p. 70).

§12 GIS Library

- 72 - - 72 -

12.4. Environment and Database Information
The following routines return information about the current database selected by the user.
Some of this information is retrieved from the user’s GRASS environment file. Some of
it comes from files in the database itself.See§10 Environment Variables [p. 53] for a
discussion of the GRASS environment.

The following four routines can be used freely by the programmer :

char *
G_location () current location name

Returns the name of the current database location. This routine should be used by
programs that need to display the current location to the user. See§4.3 Locations
[p. 16] for an explanation of locations.

char *
G_mapset() current mapset name

Returns the name of the current mapset in the current location.This routine is often
used when accessing files in the current mapset.See§4.4 Mapsets[p. 16] for an
explanation of mapsets.

char *
G_myname() location title

Returns a one line title for the database location. This title is read from the file
MYNAME in the PERMANENT mapset.See also§4.6 Permanent Mapset[p. 19]

for a discussion of the PERMANENT mapset.

char *
G_gisbase() top level program directory

Returns the full path name of the top level directory for GRASS programs.This
directory will have subdirectories which will contain programs and files required for
the running of the system. Some of these directories are:

bin commandsrun by the user
etc programsand data files used by GRASS commands
txt helpfiles
menu filesused by thegrass3menu interface

The use of G_gisbase() to find these subdirectories enables GRASS programs to be
written independently of where the GRASS system is actually installed on the
machine. For example, to run the programsroff in the GRASSetc directory:

char command[200];

sprintf (command, "%s/etc/sroff", G_gisbase());
system (command);

§12 GIS Library

- 73 - - 73 -

The following two routines return full path UNIX directory names.They should be used
only in special cases. They are used by other routines in the library to build full UNIX file
names for database files.The programmer should not use the next two routines to
bypass the normal database access routines.

char *
G_gisdbase() top level database directory

Returns the full UNIX path name of the directory which holds the database
locations. See§4.2 GISDBASE[p. 16] for a full explanation of this directory.

char *
G_location_path() current location directory

Returns the full UNIX path name of the current database location.For example, if
the user is working in locationspearfishin the /usr/grass3/datadatabase directory,
this routine will return a string which looks like/usr/grass3/data/spearfish.

These next routines provide the low-level management of the information in the user’s
GRASS environment file.They should not be used in place of the higher level
interface routines described above.

char *
G_getenv(name) query GRASS environment variable

char *
G_ _getenv (name) query GRASS environment variable

char *name;

These routines look up the variablename in the GRASS environment and return its
value (which is a character string).

If name is not set, G_getenv() issues an error message and calls exit().
G_ _setenv()just returns the NULL pointer.

G_setenv(name, value) set GRASS environment variable

G_ _setenv (name, value) set GRASS environment variable

char *name;
char *value;

These routines set the the GRASS environment variablename to value. If value is
NULL, thename is unset.

Both routines set the value in program memory, but only G_setenv() writes the new
value to the user’s GRASS environment file.

§12 GIS Library

- 74 - - 74 -

12.5. FundamentalDatabase Access Routines
The routines described in this section provide the low-level interface to the GRASS
database. They search the database for files, prompt the user for file names, open files for
reading or writing, etc. The programmer should never bypass this level of database
interface. These routines must be used to access the GRASS database unless there
are other higher level l ibrary routines which perform the same function. For
example, routines to process raster files (§12.9 Raster File Processing[p. 98]), vector files
(§12.11 Vector File Processing[p. 121]), or site files (§12.12 Site List Processing[p. 126]),
etc., should be used instead.

In the descriptions below, the term databaseelementis used. Elements are subdirectories
within a mapset and are associated with a specific GRASS data type. For example, raster
files live in the "cell" element. See§4.5.2 Elements[p. 18] for more details.

12.5.1. Prompting for Database Files

The following routines interactively prompt the user for a file name from a specific
databaseelement. (See§4.5.2 Elements[p. 18] for an explanation of elements.) In each,
theprompt string will be printed as the first line of the full prompt which asks the user to
enter a file name.If prompt is the empty string "" then an appropriate prompt will be
substituted. Thename that the user enters is copied into thenamebuffer.3 The short (one
or two word) label describing theelement is used as part of a title when listing the files
in element.

The user is required to enter a valid file name, or else hit the RETURN key to cancel the
request. Ifthe user enters an invalid response, a message is printed, and the user is
prompted again. If the user cancels the request, the NULL pointer is returned. Otherwise
the mapset where the file lives or is to be created is returned. Both the name and the
mapset are used in other routines to refer to the file.

An example will be given here. The G_ask_old() routine used in the example is
described a bit later. The user is asked to enter a file from the "paint/labels" element :

char name[50];
char *mapset;

mapset = G_ask_old ("", name, "paint/labels", "labels");
if (mapset == NULL)

exit(0); /* user canceled the request */

The user will see the following:

3 The size ofnameshould be large enough to hold any GRASS file name. Most systems allow
file names to be quite long. It is recommended that name be declaredchar name[50].

§12 GIS Library

- 75 - - 75 -

Enter the name of an existing labels file
Enter ’list’ for a list of existing labels files
Hit RETURN to cancel request4

>

char *
G_ask_old(prompt, name, element, label) prompt for existing database file

char *prompt;
char *name;
char *element;
char *label;

The user is asked to enter the name of an existing database file.

Note. This routine looks for the file in the current mapset as well as other mapsets.
The mapsets that are searched are determined from the user’s mapset search path.
See§4.7.1 Mapset Search Path [p. 20] for some more details about the search path.

char *
G_ask_new(prompt, name, element, label) prompt for new database file

char *prompt;
char *name;
char *element;
char *label;

The user is asked to enter the name of a new file which does not exist in the current
mapset.

Note. The file chosen by the user may exist in other mapsets. This routine does not
look in other mapsets, since the assumption is thatname will be used to create a
new file. New files are always created in the current mapset.

char *
G_ask_in_mapset(prompt, name, element, label) prompt for existing database file

char *prompt;
char *name;
char *element;
char *label;

The user is asked to enter the name of an file which exists in the current mapset.

Note. The file chosen by the user may or may not exist in other mapsets.This
routine does not look in other mapsets, since the assumption is thatname will be

4 This line of the prompt can be modified usingG_set_ask_return_msg(p. 76).

§12 GIS Library

- 76 - - 76 -

used to modify a file.GRASS only permits users to modify files in the current
mapset.

char *
G_ask_any(prompt, name, element, label, warn) prompt for any valid file name

char *prompt;
char *name;
char *element;
char *label;
int warn;

The user is asked to enter any leg al fi le name.If warn is 1 and the file chosen exists
in the current mapset, then the user is asked if it is ok to overwrite the file. Ifwarn is
0, then any leg al name is accepted and no warning is issued to the user if the file
exists.

G_set_ask_return_msg(msg) set Hit RETURN msg

char *msg;

The "Hit RETURN to cancel request" part of the prompt in the prompting routines
described above, is modified to "Hit RETURNmsg."

char *
G_get_ask_return_msg() get Hit RETURN msg

The currentmsg (as set byG_set_ask_return_msg(p. 76)) is returned.

12.5.2. FullyQualified File Names

All GRASS routines which access database files must be given both the file name and the
mapset where the file resides. Often the name and the mapset are 2 distinct character
strings. However, there is a need for a single character string which contains both the
name and the mapset (e.g., for interactive interfacing to command-line programs).This
form of the name is known as thefully qualified file nameand is built by the following
routine:

§12 GIS Library

- 77 - - 77 -

char *
G_fully_qualified_name(name, mapset) fully qualified file name

char *name;
char *mapset;

Returns a fully qualified name for the filename in mapset. Currently this string is
in the formname@mapset, but the programmer should pretend not to know this and
always call this routine to get the fully qualified name.

The following example shows how an interactive version of d.rast interfaces with
the command-line version ofd.rast :

#include "gis.h"
main(argc,argv) char *argv[];
{

char name[100], *mapset, *fqn;;
char command[1024];

G_gisinit(argv[0]);
mapset = G_ask_cell_old ("", name, "");
if (mapset == NULL) exit(0);
fqn = G_fully_qualified_name (name, mapset);
sprintf (command, "d.rast map=’%s’", fqn);
system(command);

}

12.5.3. FindingFiles in the Database

Noninteractive programs cannot make use of the interactive prompting routines described
above. For example, a command line driven program may require a database file name as
one of the command arguments. Inthis case, the programmer must search the database to
find the mapset where the file resides.

The following routines search the database for files:

char *
G_find_file (element, name, mapset) find a database file

char *element;
char *name;
char *mapset;

Look for the filename under the specifiedelement in the database.The mapset
parameter can either be the empty string "", which means search all the mapsets in
the user’s current mapset search path,5 or it can be a specific mapset, which means

5 See§4.7.1 Mapset Search Path [p. 20] for more details about the search path.

§12 GIS Library

- 78 - - 78 -

look for the file only in this one mapset (for example, in the current mapset).

If found, the mapset where the file lives is returned. If not found, the NULL pointer
is returned.

If the user specifies a fully qualified file name, (i.e, a name that also contains the
mapset; see§12.5.2 Fully Qualified File Names[p. 76]) thenG_find_file()modifies
nameby eliminating the mapset from thename

For example, to find a "paint/labels" file anywhere in the database:

char name[50];
char *mapset;

if ((mapset = G_find_file("paint/labels",name,"")) == NULL)

/* not found*/

To check that the file exists in the current mapset :

char name[50];

if (G_find_file("paint/labels",name,G_mapset()) == NULL)

/* not found*/

12.5.4. LegalFile Names

Not all names that a user may enter will be legal fi les for the GRASS databases. The
routines which create new files require that the new file have a leg al name. Theroutines
which prompt the user for file names (e.g.,G_ask_new(p. 75)) guarantee that the name
entered by the user will be legal. If the name is obtained from the command line, for
example, the programmer must check that the name is legal. The following routine
checks for legal fi le names:

G_legal_filename(name) check for legal database file names

char *name;

Returns 1 ifname is ok, -1 otherwise.

§12 GIS Library

- 79 - - 79 -

12.5.5. Openingan Existing Database File for Reading

The following routines open the filename in mapsetfrom the specified databaseelement
for reading (but not for writing).The filenameandmapsetcan be obtained interactively
usingG_ask_old(p. 75), and noninteractively usingG_find_file(p. 77)

G_open_old(element, name, mapset) open a database file for reading

char *element;
char *name;
char *mapset;

The database filename under theelement in the specifiedmapset is opened for
reading (but not for writing).

The UNIX open() routine is used to open the file. If the file does not exist, -1 is
returned. Otherwise the file descriptor from the open() is returned.

FILE *
G_fopen_old(element, name, mapset) open a database file for reading

char *element;
char *name;
char *mapset;

The database filename under theelement in the specifiedmapset is opened for
reading (but not for writing).

The UNIX fopen() routine, with "r" read mode, is used to open the file.If the file
does not exist, the NULL pointer is returned. Otherwise the file descriptor from the
fopen()is returned.

12.5.6. Openingan Existing Database File for Update

The following routines open the filename in the current mapset from the specified
databaseelementfor writing. The file must exist. Itsnamecan be obtained interactively
usingG_ask_in_mapset(p. 75), and noninteractively usingG_find_file(p. 77)

§12 GIS Library

- 80 - - 80 -

G_open_update(element, name) open a database file for update

char *element;
char *name;

The database filename under theelement in the current mapset is opened for
reading and writing.

The UNIX open() routine is used to open the file. If the file does not exist, -1 is
returned. Otherwise the file is positioned at the end of the file and the file descriptor
from the open() is returned.

G_fopen_append(element, name) open a database file for update

char *element;
char *name;

The database filename under theelement in the current mapset is opened for
appending (but not for reading).

The UNIX fopen() routine, with "a" append mode, is used to open the file. If the
file does not exist, the NULL pointer is returned. Otherwise the file is positioned at
the end of the file and the file descriptor from the fopen() is returned.

12.5.7. Creating and Opening a New Database File

The following routines create the new file name in the current mapset6 under the
specified databaseelementand open it for writing. The databaseelementis created, if it
does not already exist.

The file name should be obtained interactively using G_ask_new(p. 75). If obtained
noninteractively (e.g., from the command line),G_legal_filename(p. 78) should be called
first to make sure thatname is a valid GRASS file name.

Warning. It is not an error forname to already exist. However, the file will be removed
and recreated empty. The interactive routineG_ask_new(p. 75) guarantees thatnamewill
not exist, but ifname is obtained from the command line,name may exist. In this case
G_find_file(p. 77) could be used to see ifnameexists.

6 GRASS does not allow files to be created outside the current mapset; see§4.7 Database
Access Rules[p. 20].

§12 GIS Library

- 81 - - 81 -

G_open_new(element, name) open a new database file

char *element;
char *name;

The database filename under theelement in the current mapset is created and
opened for writing (but not reading).

The UNIX open() routine is used to open the file. If the file does not exist, -1 is
returned. Otherwise the file is positioned at the end of the file and the file descriptor
from the open() is returned.

FILE *
G_fopen_new(element, name) open a new database file

char *element;
char *name;

The database filename under theelement in the current mapset is created and
opened for writing (but not reading).

The UNIX fopen() routine, with "w" write mode, is used to open the file.If the file
does not exist, the NULL pointer is returned. Otherwise the file is positioned at the
end of the file and the file descriptor from the fopen() is returned.

12.5.8. DatabaseFile Management

The following routines allow the renaming and removal of database files in the current
mapset.7

G_rename(element, old, new) rename a database file

char *element;
char *old;
char *new;

The file or directoryold under the databaseelementdirectory in the current mapset
is renamed tonew.

Returns 1 if successful, 0 ifold does not exist, and -1 if there was an error.

Bug. This routine does not check to see if thenew name is a valid database file
name.

7 These functions only apply to the current mapset since GRASS does permit users to modify
things in mapsets other than the current mapset; see§4.7 Database Access Rules[p. 20].

§12 GIS Library

- 82 - - 82 -

G_remove (element, name) remove a database file

char *element;
char *name;

The file or directoryname under the databaseelement directory in the current
mapset is removed.

Returns 1 if successful, 0 ifnamedoes not exist, and -1 if there was an error.

Note. If name is a directory, everything within the directory is removed as well.

Note. These functions only apply to the specificelement and not to other "related"
elements. For example, ifelement is "cell", then the specified raster file will be removed
(or renamed), but the other support files, such as "cellhd" or "cats", will not.To remove
these other files as well, specific calls must be made for each relatedelement.

12.6. MemoryAllocation
The following routines provide memory allocation capability. They are simply calls to the
UNIX suite of memory allocation routines malloc(), realloc() and calloc(), except that if
there is not enough memory, they print a diagnostic message to that effect and then call
exit().

Note. Use the UNIX free() routine to release memory allocated by these routines.

char *
G_malloc (size) memory allocation

int size;

Allocates a block of memory at leastsizebytes which is aligned properly for all data
types. A pointer to the aligned block is returned.

char *
G_realloc (ptr, size) memory allocation

char *ptr;
int size;

Changes thesize of a previously allocated block of memory atptr and returns a
pointer to the new block of memory. The size may be larger or smaller than the
original size. If the original block cannot be extended "in place", then a new block
is allocated and the original block copied to the new block.

Note. If ptr is NULL, then this routine simply allocates a block ofsizebytes. This
is different than malloc(), which does not handle a NULLptr.

§12 GIS Library

- 83 - - 83 -

char *
G_calloc(n, size) memory allocation

int n;
int size;

Allocates a properly aligned block of memoryn∗sizebytes in length, initializes the
allocated memory to zero, and returns a pointer to the allocated block of memory.

Note. Allocating memory for reading and writing raster files is discussed in§12.9.5
Allocating Raster I/O Buffers[p. 103]

12.7. TheRegion
The region concept is explained in§9.1 Region [p. 49]. It can be thought of as a two-
dimensional matrix with known boundaries and rectangular cells.

There are logically two different regions. Thefirst is the database region that the user has
set in the current mapset. The other is the region that is active in the program.This
active program region is what controls reading and writing of raster file data.

The routines described below use a GRASS data structureCell_head to hold region
information. Thisstructure is defined in the "gis.h" header file.It is discussed in detail
under§12.20 GIS Library Data Structures[p. 153].

12.7.1. TheDatabase Region

Reading and writing the user’s database region8 are done by the following routines:

G_get_window(region) read the database region

struct Cell_head *region;

Reads the database region as stored in the WIND file in the user’s current mapset
into region.

An error message is printed and exit() is called if there is a problem reading the
region.

Note. GRASS applications that read or write raster files should not use this routine,

8 Previous versions of GRASS called this the "window". Due to overuse of this term (database
window, graphics window, etc.), the term was changed to "region". However, to maintain
compatibility with existing programs, library routine names were not changed - hence the term
"window" is used in the routine name (where "region" should probably be used instead.)

§12 GIS Library

- 84 - - 84 -

since its use implies that the active program region will not be used. Programs that
read or write raster file data (or vector data) can query the active program region
usingG_window_rows(p. 85) andG_window_cols(p. 85).

G_put_window (region) write the database region

struct Cell_head *region;

Writes the database region file (WIND) in the user’s current mapset fromregion.

Returns 1 if the region is written ok. Returns -1 if not (no diagnostic message is
printed).

Warning. Since this routine actually changes the database region, it should only be
called by programs which the user knows will change the region. It is probably fair
to say that under GRASS 3.0 only theg.region, and d.zoomprograms should call
this routine.

There is another database region. Thisregion is the default region for the location.The
default region provides the user with a "starting" region, i.e., a region to begin with and
return to as a reference point. The GRASS programsg.region allow the user to set their
database region from the default region. (See§4.6 Permanent Mapset[p. 19] for a
discussion of the default region.) Thefollowing routine reads this region:

G_get_default_window(region) read the default region

struct Cell_head *region;

Reads the default region for the location intoregion.

An error message is printed and exit() is called if there is a problem reading the
default region.

12.7.2. TheActive Program Region

The active program region is the one that is used when reading and writing raster file
data. This region determines the resampling when reading raster data. It also determines
the extent and resolution of new raster files.

Initially the active program region and the user’s database region are the same, but the
programmer can make them different. Thefollowing routines manage the active program
region.

§12 GIS Library

- 85 - - 85 -

G_window_rows () number of rows in active region

G_window_cols() number of columns in active region

These routines return the number of rows and columns (respectively) in the active
program region. Beforeraster files can be read or written, it is necessary to known
how many rows and columns are in the active region. For example:

int nrows, cols;
int row, col;

nrows = G_window_rows();
ncols = G_window_cols();
for (row = 0; row < nrows; row++)
{

read row ...

for (col = 0; col < ncols; col++)
{

processcol ...
}

}

G_set_window(region) set the active region

struct Cell_head *region;

This routine sets the active region from region. Setting the active region does not
change the WIND file in the database. It simply changes the region for the duration
of the program.9

A warning message is printed and -1 returned ifregion is not valid. Otherwise 1 is
returned.

Note. This routine overrides the region as set by the user. Its use should be very
limited since it changes what the user normally expects to happen. If this routine is
not called, then the active region will be the same as what is in the user’s WIND file.

Warning. Calling this routine with already opened raster files has some side effects.
If there are raster files which are open for reading, they will be read into the newly
set region, not the region that was active when they were opened.However, CELL
buffers allocated for reading the raster files are not automatically reallocated. The
program must reallocate them explicitly. Also, this routine does not change the
region for raster files which are open for writing. The region that was active when
the open occurred still applies to these files.

9 However, the new region setting is not retained across the UNIX exec() call. This implies that
G_set_window() cannot be used to set the region for a program to be executed using the system()
or popen() routines.

§12 GIS Library

- 86 - - 86 -

G_get_set_window(region) get the active region

struct Cell_head *region;

Gets the values of the currently active region into region. If G_set_window(p. 85)
has been called, then the values set by that call are retrieved. Otherwise the user’s
database region is retrieved.

Note. For programs that read or write raster data, and really need the full region
information, this routine is preferred over G_get_window(p. 83). However, since
G_window_rows(p. 85) and G_window_cols(p. 85) return the number of rows and
columns in the active region, the programmer should consider whether or not the
full region information is really needed before using this routine.

char *
G_align_window (region, ref) align two regions

struct Cell_head *region, *ref;

Modifies the inputregion to align to theref region. The resolutions inregion are set
to match those inref and theregion edges (north, south, east, west) are modified to
align with the grid of theref region.

The region may be enlarged if necessary to achieve the alignment. The north is
rounded northward, the south southward, the east eastward and the west westward.

This routine returns NULL if ok, otherwise it returns an error message.

double
G_col_to_easting(col, region) column to easting

double col;
struct Cell_head *region;

Converts acolumn relative to aregion to an easting;

Note. col is a double: col+0.5 will return the easting for the center of the column;
col+0.0 will return the easting for the western edge of the column; and col+1.0 will
return the easting for the eastern edge of the column.

§12 GIS Library

- 87 - - 87 -

double
G_row_to_northing (row, region) row to northing

double row;
struct Cell_head *region;

Converts aro w relative to aregion to a northing;

Note. row is a double: row+0.5 will return the northing for the center of the row;
row+0.0 will return the northing for the northern edge of the row; and row+1.0 will
return the northing for the southern edge of the row.

double
G_easting_to_col(east, region) easting to column

double east;
struct Cell_head *region;

Converts aneasting relative to aregion to a column.

Note. The result is a double. Casting it to an integer will give the column number.

double
G_northing_to_row (north, region) northing to row

double row;
struct Cell_head *region;

Converts anorth ing relative to aregion to a row.

Note. the result is a double. Casting it to an integer will give the row number.

12.7.3. Projection Information

The following routines return information about the cartographic projection and zone.
See§9.1 Region[p. 49] for more information about these values.

§12 GIS Library

- 88 - - 88 -

G_projection () query cartographic projection

This routine returns a code indicating the projection for the active region. The
current values are:

0 unreferenced x,y (imagery data)
1 UTM,
2 State Plane
3 Latitude-Longitude11

Others may be added in the future.

char *
G_database_projection_name(proj) query cartographic projection

int proj;

Returns a pointer to a string which is a printable name for projection codeproj (as
returned byG_projection(p. 88)). ReturnsNULL if proj is not a valid projection.

char *
G_database_unit_name(plural) database units

int plural

Returns a string describing the database grid units. It returns a plural form (eg. feet)
if plural is true. Otherwise it returns a singular form (eg. foot).

double
G_database_units_to_meters_factor() conversion to meters

Returns a factor which converts the grid unit to meters (by multiplication). If the
database is not metric (eg. imagery) then 0.0 is returned.

G_zone() query cartographic zone

This routine returns the zone for the active region. The meaning for the zone
depends on the projection. For example zone 18 for projection type 1 would be
UTM zone 18.

12.8. Latitude-LongitudeDatabases

GRASS supports databases in a longitude-latitude grid using a projection where the x
coordinate is the longitude and the y coordinate is the latitude.This projection is called

11 Latitude-Longitude is not yet fully supported in GRASS.

§12 GIS Library

- 89 - - 89 -

the Equidistant Cylindrical Projection.12 ECP has the property thatwhere am Iandrow-
column calculations are identical to those in planimetric grids (like UTM13). This
implies that normal GRASS registration and overlay functions will work without any
special considerations or modifications to existing code.

However, the projection is not planimetric.This means that distance and area
calculations are no longed Euclidean.

Also, since the world is round, maps may not have edges in the east-west direction,
especially for global databases.Maps may have the same longitude at both the east and
west edges of the display. This feature, called global wraparound, must be accounted for
by GRASS programs (particularly vector based functions, like plotting.)

What follows is a description of the GISLIB library routines that are available to support
latitude-longitude databases.

12.8.1. Coordinates

Latitudes and longitudes are specified in degrees. Northernlatitudes range from 0 to 90
degrees, and southern latitudes from 0 to -90. Longitudes have no limits since longitudes
±360 degrees are equivalent.

Coordinates are represented in ASCII using the formatdd:mm:ssN or dd:mm:ssS for
latitudes, ddd:mm:ssE or ddd.mm.ssW for longitudes, anddd.mm.ss for grid
resolution. For example, 80:30:24N represents a northern latitude of 80 degrees, 30
minutes, and 24 seconds. 120:15W represents a longitute 120 degrees and 15 minutes
west of the prime meridian. 30:15 represents a resolution of 30 degrees and 15 minutes.

These next routines convert between ASCII representations and the machine
representation for a coordinate.They work both with latitude-longitude projections and
planimetric projections.

Note. In each subroutine, the programmer must specify the projection number. If the
projection number is PROJECTION_LL,14 then latitude-longitude ASCII format is
invoked. Otherwise,a standard floating-point to ASCII conversion is made.

12 Also known as Plate Carree.
13 Universal Transverse Mercator Projection.
14 Defined in "gis.h".

§12 GIS Library

- 90 - - 90 -

G_format_easting(east, buf, projection) easting to ASCII

double east ;
char *buf ;
int projection ;

Converts the double representation of theeastcoordinate to its ASCII representation
(into buf).

G_format_northing (north, buf, projection) northing to ASCII

double north ;
char *buf ;
int projection ;

Converts the double representation of thenorth coordinate to its ASCII
representation (intobuf).

G_format_resolution (resolution, buf, projection) resolution to ASCII

double resolution ;
char *buf ;
int projection ;

Converts the double representation of theresolution to its ASCII representation
(into buf).

G_scan_easting(buf, easting, projection) ASCII easting to double

char *buf ;
double *easting ;
int projection ;

Converts the ASCII "easting" coordinate string inbuf to its double representation
(into easting).

G_scan_northing(buf, northing, projection) ASCII northing to double

char *buf ;
double *northing ;
int projection ;

Converts the ASCII "northing" coordinate string inbuf to its double representation
(into northing).

§12 GIS Library

- 91 - - 91 -

G_scan_resolution(buf, resolution, projection) ASCII resolution to double

char *buf ;
double *resolution ;
int projection ;

Converts the ASCII "resolution" string inbuf to its double representation (into
resolution).

The following are examples of how these routines are used.

double north ;
char buf[50] ;

G_scan_northing(buf, north, G_projection()); /* ASCII to double */
G_format_northing(north, buf, G_projection()); /* double to ASCII */
G_format_northing(north, buf, -1); /* double to ASCII */

/* This last example forces floating-point ASCII format */

12.8.2. RasterArea Calculations

The following routines perform area calculations for raster maps.,They are based on the
fact that while the latitude-longitude grid is not planimetric, the size of the grid cell at a
given latitude is constant. The first routines work in any projection.

G_begin_cell_area_calculations() begin cell area calculations

This routine must be called once before any call to G_area_of_cell_at_row(p. 91). It
can be used in either planimetric projections or the latitude-longitude projection.It
returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric, and
0 of the projection doesn’t hav ea metric (e.g. imagery.) If the return value is 1 or 0,
all the grid cells in the map have the same area. Otherwise the area of a grid cell
varies with the row.

double
G_area_of_cell_at_row (row) cell area in specified row

int row ;

This routine returns the area in square meters of a cell in the specifiedro w. This
value is constant for planimetric grids and varies with the row if the projection is
latitude-longitude.

§12 GIS Library

- 92 - - 92 -

G_begin_zone_area_on_ellipsoid(a, e2, s) begin area calculations for ellipsoid

double a, e2, s ;

Initializes raster area calculations for an ellipsoid, wherea is the semi-major axis of
the ellipse (in meters),e2 is the ellipsoid eccentricity squared, ands is a scale factor
to allow for calculations of part of the zone (s=1.0 is full zone,s=0.5 is half the
zone, ands=360/ew_res is for a single grid cell).

Note. e2must be positive. A negative value makes no sense, and zero implies a
sphere.

double
G_area_for_zone_on_ellipsoid(north, south) area between latitudes

double north, south ;

Returns the area between latitudesnorth andsouth scaled by the factors passed to
G_begin_zone_area_on_ellipsoid(p. 92).

G_begin_zone_area_on_sphere(r, s) initialize calculations for sphere

double north, south ;

Initializes raster area calculations for a sphere. The radius of the sphere isr ands is
a scale factor to allow for calculations of a part of the zone (see
G_begin_zone_area_on_ellipsoid(p. 92).

double
G_area_for_zone_on_sphere(north, south) area between latitudes

double north, south ;

Returns the area between latitudesnorth andsouth scaled by the factors passed to
G_begin_zone_area_on_sphere(p. 92).

12.8.3. Polygonal Area Calculations

These next routines provide area calculations for polygons. Some of the routines are
specifically for latitude-longitude, while others will function for all projections.

However, there is an issue for latitude-longitude that does not occur with planimetric
grids. Vector/polygon data is described as a series of x,y coordinates. The lines
connecting the points are not stored but are inferred. This is a simple, straight-forward
process for planimetric grids, but it is not simple for latitude-longitude. What is the
shape of the line that connects two points on the surface of a globe?

One choice (among many) is the shortest path fromx1,y1 to x2,y2, known as the

§12 GIS Library

- 93 - - 93 -

geodesic. Anotheris a straight line on the grid.The area routines described below
assume the latter. Routines to work with the former have not yet been developed.

G_begin_polygon_area_calculations() begin polygon area calculations

This initializes the polygon area calculation routines.It is used both for planimetric
and latitude-longitude projections.

It returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric,
and 0 if the projection doesn’t hav ea metric (e.g. imagery.)

double
G_area_of_polygon(x, y, n) area in square meters of polygon

double *x, *y ;
int n ;

Returns the area in square meters of the polygon described by then pairs of x,y
coordinate vertices. It is used both for planimetric and latitude-longitude
projections.

Note. If the database is planimetric with the non-meter grid, this routine performs
the required unit conversion to produce square meters.

double
G_planimetric_polygon_area(x, y, n) area in coordinate units

double *x, *y ;
int n ;

Returns the area in coordinate units of the polygon described by then pairs ofx,y
coordinate vertices for planimetric grids. If the units forx,y are meters, then the
area is in square meters.If the units are feet, then the area is in square feet, and so
on.

G_begin_ellipsoid_polygon_area(a, e2) begin area calculations

double a, e2 ;

This initializes the polygon area calculations for the ellipsoid with semi-major axisa
(in meters) and ellipsoid eccentricity squarede2.

§12 GIS Library

- 94 - - 94 -

double
G_ellipsoid_polygon_area(lon, lat, n) area of lat-long polygon

double *lon, *lat ;
int n ;

Returns the area in square meters of the polygon described by then pairs oflat,long
vertices for latitude-longitude grids.

Note. This routine assumes grid lines on the connecting the vertices (as opposed to
geodesics.)

12.8.4. DistanceCalculations

Tw o routines perform distance calculations for any projection.

G_begin_distance_calculations() begin distance calculations

Initializes the distance calculations. It is used both for the planimetric and latitude-
longitude projections.

It returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric,
and 0 if the projection doesn’t hav ea metric (e.g. imagery.)

double
G_distance(x1, y1, x2, y2) distance in meters

double x1, y1, x2, y2 ;

This routine computes the distance, in meters, fromx1,y1 to x2,y2. If the projection
is latitude-longitude, this distance is measured along the geodesic.

Tw o routines perform geodesic distance calculations.

G_begin_geodesic_distance(a, e2) begin geodesic distance

double a, e2 ;

Initializes the distance calculations for the ellipsoid with semi-major axisa (in
meters) and ellipsoid eccentricity squarede2. It is used only for the latitude-
longitude projection.

§12 GIS Library

- 95 - - 95 -

double
G_geodesic_distance(lon1, lat1, lon2, lat2) geodesic distance

double lon1, lat1, lon2, lat2 ;

Calculates the geodesic distance fromlon1,lat1 to lon2,lat2 in meters.

The calculation of the geodesic distance is fairly costly. These next three routines
provide a mechanism for calculating distance with two fixed latitudes and varying
longitude separation.

G_set_geodesic_distance_lat1(lat1) set geodesic distance lat1

double lat1 ;

Set the first latitude.

G_set_geodesic_distance_lat2(lat2) set geodesic distance lat2

double lat2 ;

Set the second latitude.

double
G_geodesic_distance_lon_to_lon(lon1, lon2) geodesic distance

double lon1, lon2 ;

Calculates the geodesic distance fromlon1,lat1 to lon2,lat2 in meters, wherelat1
was the latitude passed toG_set_geodesic_distance_lat1(p. 95) and lat2 was the
latitude passed toG_set_geodesic_distance_lat2(p. 95).

12.8.5. GlobalWraparound

These next routines provide a mechanism for determining the relative position of a pair of
longitudes. Sincelongitudes of±360 are equivalent, but GRASS requires the east to be
bigger than the west, some adjustment of coordinates is necessary.

§12 GIS Library

- 96 - - 96 -

double
G_adjust_easting(east, region) returns east larger than west

double east ;
struct Cell_head *region ;

If the region projection is PROJECTION_LL, then this routine returns an equivalent
east that is larger, but no more than 360 degrees larger, than the coordinate for the
western edge of the region. Otherwiseno adjustment is made and the originaleast
is returned.

double
G_adjust_east_longitude(east, west) adjust east longitude

double east, west ;

This routine returns an equivalent east that is larger, but no more than 360 larger
than thewestcoordinate.

This routine should be used only with latitude-longitude coordinates.

G_shortest_way(east1, east2) shortest way between eastings

double *east1, *east2 ;

If the database projection is PROJECTION_LL, theneast1,east2are changed so
that they are no more than 180 degrees apart. Their true locations are not changed.

If the database projection is not PROJECTION_LL, theneast1,east2are not
changed.

12.8.6. Miscellaneous

char *
G_ellipsoid_name(n) return ellopsoid name

int n ;

This routine returns a pointer to a string containg the name for thenth ellipsoid in
the GRASS ellipsoid table; NULL whenn is too large. Itcan be used as follows:

int n ;
char *name ;

for (n=0 ; name=G_ellipsoid_name(n) ; n++)
printf("%s\n", name);

§12 GIS Library

- 97 - - 97 -

G_get_ellipsoid_by_name(name, a, e2) get ellipsoid by name

char *name
double *a, *e2 ;

This routine returns the semi-major axisa (in meters) and eccentricity squarede2
for the named ellipsoid. Returns 1 ifname is a known ellipsoid, 0 otherwise.

G_get_ellipsoid_parameters(a, e2) get ellipsoid parameters

double *a, *e2 ;

This routine returns the semi-major axisa (in meters) and the eccentricity squared
e2 for the ellipsoid associated with the database. If there is no ellipsoid explicitly
associated with the database, it returns the values for the WGS 84 ellipsoid.

double
G_meridional_radius_of_curvature (lon, a, e2) meridional radius of curvature

double lon, a, e2 ;

Returns the meridional radius of curvature at a given longitude:

ρ =
a(1 − e2)

(1 − e2 sin2 lon)3/2

double
G_transverse_radius_of_curvature (lon, a, e2) transverse radius of curvature

double lon, a, e2 ;

Returns the transverse radius of curvature at a given longitude:

v =
a

(1 − e2 sin2 lon)1/2

double
G_radius_of_conformal_tangent_sphere(lon, a, e2) radius of conformal tangent sphere

double lon, a, e2 ;

Returns the radius of the conformal sphere tangent to ellipsoid at a given longitude:

r =
a(1 − e2)1/2

(1 − e2 sin2 lon)

§12 GIS Library

- 98 - - 98 -

G_pole_in_polygon(x, y, n) pole in polygon

double *x, *y ;
int n ;

For latitude-longitude coordinates, this routine determines if the polygon defined by
then coordinate verticesx,y contains one of the poles.

Returns−1 if it contains the south pole; 1 if it contains the north pole; 0 if it contains
neither pole.

Note. Use this routine only if the projection is PROJECTION_LL.

12.9. RasterFile Processing
Raster files are the heart and soul of GRASS. All analyses are performed with raster file
data. Because of this, a suite of routines which process raster file data has been provided.

The processing of raster files consists of determining which raster file or files are to be
processed (either by prompting the user or as specified on the program command line),
locating the raster file in the database, opening the raster file, dynamically allocating i/o
buffers, reading or writing the raster file, closing the raster file, and creating support files
for newly created raster files.

All raster file data is of type CELL15, which is defined in "gis.h".

12.9.1. Prompting for Raster Files

The following routines interactively prompt the user for a raster file name. In each, the
prompt string will be printed as the first line of the full prompt which asks the user to
enter a raster file name.If prompt is the empty string "" then an appropriate prompt will
be substituted. The name that the user enters is copied into thename buffer.16 These
routines have a built-in ’list’ capability which allows the user to get a list of existing
raster files.

The user is required to enter a valid raster file name, or else hit the RETURN key to
cancel the request. If the user enters an invalid response, a message is printed, and the
user is prompted again. If the user cancels the request, the NULL pointer is returned.
Otherwise the mapset where the raster file lives or is to be created is returned. Both the
name and the mapset are used in other routines to refer to the raster file.

15 SeeAppendix B. The CELL Data Type [p. 291] for a discussion of the CELL type and how to
use it (and avoid misusing it).

16 The size ofnameshould be large enough to hold any GRASS file name. Most systems allow
file names to be quite long. It is recommended that name be declaredchar name[50].

§12 GIS Library

- 99 - - 99 -

char *
G_ask_cell_old(prompt, name) prompt for existing raster file

char *prompt;
char *name;

Asks the user to enter the name of an existing raster file in any mapset in the
database.

char *
G_ask_cell_in_mapset(prompt, name) prompt for existing raster file

char *prompt;
char *name;

Asks the user to enter the name of an existing raster file in the current mapset.

char *
G_ask_cell_new(prompt, name) prompt for new raster file

char *prompt;
char *name;

Asks the user to enter a name for a raster file which does not exist in the current
mapset.

Here is an example of how to use these routines. Note that the programmer must handle
the NULL return properly:

char *mapset;
char name[50];

mapset = G_ask_cell_old("Enter raster file to be processed", name);
if (mapset == NULL)

exit(0);

12.9.2. FindingRaster Files in the Database

Noninteractive programs cannot make use of the interactive prompting routines described
above. For example, a command line driven program may require a raster file name as
one of the command arguments. GRASSallows the user to specify raster file names (or
any other database file) either as a simple unqualified name, such as "soils", or as a fully
qualified name, such as "soils@mapset", wheremapsetis the mapset where the raster file
is to be found.Often only the unqualified raster file name is provided on the command
line.

The following routines search the database for raster files:

§12 GIS Library

- 100 - - 100 -

char *
G_find_cell (name, mapset) find a raster file

char *name;
char *mapset;

Look for the raster filename in the database.The mapsetparameter can either be
the empty string "", which means search all the mapsets in the user’s current mapset
search path,17 or it can be a specific mapset name, which means look for the raster
file only in this one mapset (for example, in the current mapset).

If found, the mapset where the raster file lives is returned. If not found, the NULL
pointer is returned.

If the user specifies a fully qualified raster file which exists, thenG_find_cell()
modifiesnameby removing the "@mapset".

For example, to find a raster file anywhere in the database:

char name[50];
char *mapset;

if ((mapset = G_find_cell(name,"")) == NULL)
/* not found*/

To check that the raster file exists in the current mapset :

char name[50];

if (G_find_cell(name,G_mapset()) == NULL)
/* not found*/

12.9.3. Openingan Existing Raster File

The following routine opens the raster filename in mapsetfor reading.

The raster file name and mapset can be obtained interactively using
G_ask_cell_old(p. 99) or G_ask_cell_in_mapset(p. 99), and noninteractively using
G_find_cell(p. 100)

17 See§4.7.1 Mapset Search Path [p. 20] for more details about the search path.

§12 GIS Library

- 101 - - 101 -

G_open_cell_old(name, mapset) open an existing raster file

char *name;
char *mapset;

This routine opens the raster filename in mapsetfor reading.

A nonnegative file descriptor is returned if the open is successful.Otherwise a
diagnostic message is printed and a negative value is returned.

This routine does quite a bit of work. Since GRASS users expect that all raster files
will be resampled into the current region, the resampling index for the raster file is
prepared by this routine after the file is opened. The resampling is based on the
active program region.18 Preparation required for reading the various raster file
formats19 is also done.

12.9.4. Creating and Opening New Raster Files

The following routines create the new raster filename in the current mapset20 and open it
for writing. The raster file name should be obtained interactively using
G_ask_cell_new(p. 99). If obtained noninteractively (e.g., from the command line),
G_legal_filename(p. 78) should be called first to make sure thatname is a valid GRASS
file name.

Note. It is not an error forname to already exist. New raster files are actually created as
temporary files and moved into the cell directory when closed. This allows an existing
raster file to be read at the same time that it is being rewritten. Theinteractive routine
G_ask_cell_new(p. 99) guarantees thatname will not exist, but ifname is obtained from
the command line,namemay exist. In this caseG_find_cell(p. 100) could be used to see
if nameexists.

Warning. However, there is a subtle trap.The temporary file, which is created using
G_tempfile(p. 131), is named using the current process id.If the new raster file is opened
by a parent process which exits after creating a child process using fork(),21 the raster file
may never get created since the temporary file would be associated with the parent
process, not the child. GRASS management automatically removes temporary files
associated with processes that are no longer running. If fork() must be used, the safest
course of action is to create the child first, then open the raster file. (See the discussion

18 See also§12.7 The Region[p. 83].
19 See§5.2 Raster File Format[p. 24] for an explanation of the various raster file formats.
20 GRASS does not allow files to be created outside the current mapset.See§4.7 Database

Access Rules[p. 20].
21 See alsoG_fork(p. 150).

§12 GIS Library

- 102 - - 102 -

underG_tempfile(p. 131) for more details.)

G_open_cell_new(name) open a new raster file (sequential)

char *name;

Creates and opens the raster filename for writing by G_put_map_row(p. 105) which
writes the file row by row in sequential order. The raster file data will be compressed
as it is written.

A nonnegative file descriptor is returned if the open is successful.Otherwise a
diagnostic message is printed and a negative value is returned.

G_open_cell_new_random(name) open a new raster file (random)

char *name;

Creates and opens the raster filename for writing by
G_put_map_row_random(p. 105) which allows writing the raster file in a random
fashion. Thefile will be created uncompressed.22

A nonnegative file descriptor is returned if the open is successful. Otherwise a
diagnostic message is printed and a negative value is returned.

G_open_cell_new_uncompressed(name) open a new raster file (uncompressed)

char *name;

Creates and opens the raster filename for writing by G_put_map_row(p. 105) which
writes the file row by row in sequential order. The raster file will be in
uncompressed format when closed.

A nonnegative file descriptor is returned if the open is successful.Otherwise a
warning message is printed on stderr and a negative value is returned.

General use of this routine is not recommended.23 This routine is provided so the
r.compressprogram can create uncompressed raster files.

22 Nor will the file get automatically compressed when it is closed.If a compressed file is
desired, it can be compressed explicitly after closing by a system call: system("r.compressname").

23 At present, automatic raster file compression will create files which, in most cases, are
smaller than if they were uncompressed. In certain cases, the compressed raster file may be larger.
This can happen with imagery data, which do not compress well at all.However, the size
difference is usually small.Since future enhancements to the compression method may improve
compression for imagery data as well, it is best to create compressed raster files in all cases.

§12 GIS Library

- 103 - - 103 -

12.9.5. AllocatingRaster I/O Buffers

Since there is no predefined limit for the number of columns in the region,24 buffers
which are used for reading and writing raster data must be dynamically allocated.

CELL *
G_allocate_cell_buf() allocate a raster buffer

This routine allocates a buffer of type CELL just large enough to hold one row of
raster data (based on the number of columns in the active region).

CELL *cell;
cell = G_allocate_cell_buf();

If larger buffers are required, the routineG_malloc(p. 82) can be used.

If sufficient memory is not available, an error message is printed and exit() is called.

G_zero_cell_buf(buf) zero a raster buffer

CELL *buf;

This routines assigns each member of the raster buffer arraybuf to zero. It assumes
thatbuf has been allocated usingG_allocate_cell_buf(p. 103).

12.9.6. ReadingRaster Files

Raster data can be thought of as a two-dimensional matrix. The routines described below
read one full row of the matrix. It should be understood, however, that the number of
rows and columns in the matrix is determined by the region, not the raster file itself.
Raster data is always read resampled into the region.25 This allows the user to specify the
coverage of the database during analyses. It also allows databases to consist of raster files
which do not cover exactly the same area, or do not have the same grid cell resolution.
When raster files are resampled into the region, they all "look" the same.

Note. The rows and columns are specified "C style", i.e., starting with 0.

24 SeeG_window_cols(p. 85) to find the number of columns in the region.
25 The GRASS region is discussed from a user perspective in §9.1 Region [p. 49] and from a

programmer perspective in §12.7 The Region [p. 83]. The routines which are commonly used to
determine the number of rows and columns in the region areG_window_rows(p. 85) and
G_window_cols(p. 85).

§12 GIS Library

- 104 - - 104 -

G_get_map_row (fd, cell, row) read a raster file

int fd;
CELL *cell;
int row;

This routine reads the specifiedro w from the raster file open on file descriptorfd (as
returned byG_open_cell_old(p. 101)) into thecell buffer. The cell buffer must be
dynamically allocated large enough to hold one full row of raster data. It can be
allocated usingG_allocate_cell_buf(p. 103).

This routine prints a diagnostic message and returns -1 if there is an error reading
the raster file. Otherwise a nonnegative value is returned.

G_get_map_row_nomask(fd, cell, row) read a raster file (without masking)

int fd;
CELL *cell;
int row;

This routine reads the specifiedro w from the raster file open on file descriptorfd
into thecell buffer like G_get_map_row() does. Thedifference is that masking is
suppressed. Ifthe user has a mask set, G_get_map_row() will apply the mask but
G_get_map_row_nomask()will ignore it.

This routine prints a diagnostic message and returns -1 if there is an error reading
the raster file. Otherwise a nonnegative value is returned.

Note. Ignoring the mask is not generally acceptable. Users expect the mask to be
applied. However, in some cases ignoring the mask is justified. For example, the
GRASS programsr.describe,which reads the raster file directly to report all data
values in a raster file, andr.slope.aspect,which produces slope and aspect from
elevation, ignore both the mask and the region. However, the number of GRASS
programs which do this should be minimal.See §9.2 Mask [p. 51] for more
information about the mask.

12.9.7. Writing Raster Files

The routines described here write raster file data.

§12 GIS Library

- 105 - - 105 -

G_put_map_row (fd, buf) write a raster file (sequential)

int fd;
CELL *buf;

This routine writes one row of raster data frombuf to the raster file open on file
descriptorfd. The raster file must have been opened withG_open_cell_new(p. 102).
The cellbuf must have been allocated large enough for the region, perhaps using
G_allocate_cell_buf(p. 103).

If there is an error writing the raster file, a warning message is printed and -1 is
returned. Otherwise 1 is returned.

Note. The rows are written in sequential order. The first call writes row 0, the
second writes row 1, etc. The following example assumes that the raster filename is
to be created:

int fd, row, nrows, ncols;
CELL *buf;

fd = G_open_cell_new(name);
if (fd < 0) {ERROR}

buf = G_allocate_cell_buf();
ncols =G_window_cols();
nrows =G_window_rows();
for (row = 0; row < nrows; row++)
{

/* prepare data for this row into buf */

/* write the data for the row */
G_put_map_row(fd, buf);

}

G_put_map_row_random (fd, buf, row, col, ncells) write a raster file (random)

int fd;
CELL *buf;
int row, col, ncells;

This routine allows random writes to the raster file open on file descriptorfd. The
raster file must have been opened usingG_open_cell_new_random(p. 102). The
raster buffer buf containsncellscolumns of data and is to be written into the raster
file at the specifiedro w, starting at columncol.

§12 GIS Library

- 106 - - 106 -

12.9.8. ClosingRaster Files

All raster files are closed by one of the following routines, whether opened for reading or
for writing.

G_close_cell(fd) close a raster file

int fd;

The raster file opened on file descriptorfd is closed. Memory allocated for raster
processing is freed. If open for writing, skeletal support files for the new raster file
are created as well.

Note. If a program wants to explicitly write support files (e.g., a specific color
table) for a raster file it creates, it must do so after the raster file is closed. Otherwise
the close will overwrite the support files. See§12.10 Raster Map Layer Support
Routines[p. 106] for routines which write raster support files.

G_unopen_cell(fd) unopen a raster file

int fd;

The raster file opened on file descriptorfd is closed. Memory allocated for raster
processing is freed. If open for writing, the raster file is not created and the
temporary file created when the raster file was opened is removed (see§12.9.4
Creating and Opening New Raster Files[p. 101]).

This routine is useful when errors are detected and it is desired to not create the new
raster file. While it is true that the raster file will not be created if the program exits
without closing the file, the temporary file will not be removed at program exit.
GRASS database management will eventually remove the temporary file, but the file
can be quite large and will take up disk space until GRASS does remove it. Usethis
routine as a courtesy to the user.

12.10. RasterMap Layer Support Routines
GRASS map layers have a number of support files associated with them. These files are
discussed in detail in§5 Raster Maps[p. 23]. The support files are theraster header, the
category file, thecolor table, thehistory file, and therange file. Eachsupport file has
its own data structure and associated routines.

12.10.1. RasterHeader File

The raster header file contains information describing the geographic extent of the map
layer, the grid cell resolution, and the format used to store the data in the raster file. The
format of this file is described in§5.3 Raster Header Format [p. 26]. The routines

§12 GIS Library

- 107 - - 107 -

described below use theCell_head structure which is shown in detail in§12.20 GIS
Library Data Structures[p. 153].

G_get_cellhd(name, mapset, cellhd) read the raster header

char *name;
char *mapset;
struct Cell_Head *cellhd;

The raster header for the raster filename in the specifiedmapset is read into the
cellhd structure.

If there is an error reading the raster header file, a diagnostic message is printed and
-1 is returned. Otherwise, 0 is returned.

Note. If the raster file is a reclass file, the raster header for the referenced raster file
is read instead. See§5.3.2 Reclass Format [p. 28] for information about reclass files,
andG_is_reclass(p. 108) for distinguishing reclass files from regular raster files.

Note. It is not necessary to get the raster header for a map layer in order to read the
raster file data. The routines which read raster file data automatically retrieve the
raster header information and use it for resampling the raster file data into the active
region.26 If it is necessary to read the raster file directly without resampling into the
active region,27 then the raster header can be used to set the active region using
G_set_window(p. 85).

char *
G_adjust_Cell_head(cellhd, rflag, cflag) adjust cell header

struct Cell_head *cellhd;
int rflag, cflag;

This function fills in missing parts of the input cell header (or region). It also makes
projection-specific adjustments. Thecellhd structure must have its north, south,
east, west, and proj fields set. Ifrflag is true, then the north-south resolution is
computed from the number ofrows in thecellhd structure. Otherwise the number of
rows is computed from the north-south resolution in the structure, similarly for
cflagand the number of columns and the east-west resolution.

This routine returns NULL if execution occurs without error, otherwise it returns an
error message.

26 See§12.7 The Region[p. 83].
27 But see§9 Region and Mask[p. 49] for a discussion of when this should and should not be

done.

§12 GIS Library

- 108 - - 108 -

G_put_cellhd (name, cellhd) write the raster header

char *name;
struct Cell_head *cellhd;

This routine writes the information from thecellhd structure to the raster header file
for the map layername in the current mapset.

If there was an error creating the raster header, -1 is returned. Nodiagnostic is
printed. Otherwise, 1 is returned to indicate success.

Note. Programmers should have no reason to use this routine. It is used by
G_close_cell(p. 106) to giv e new raster files correct header files, and by ther.support
program to give users a means of creating or modifying raster headers.

G_is_reclass(name, mapset, r_name, r_mapset) reclass file?

char *name;
char *mapset;
char *r_name;
char *r_mapset;

This function determines if the raster filename in mapset is a reclass file. If it is,
then the name and mapset of the referenced raster file are copied into ther_name
andr_mapsetbuffers.

Returns 1 ifname is a reclass file, 0 if it is not, and -1 if there was a problem
reading the raster header forname.

12.10.2. RasterCategory File

GRASS map layers have category labels associated with them. The category file is
structured so that each category in the raster file can have a one-line description.The
format of this file is described in§5.4 Raster Category File Format[p. 28].

The routines described below manage the category file. Some of them use theCategories
structure which is described in§12.20 GIS Library Data Structures[p. 153].

12.10.2.1.Reading and Writing the Raster Category File

The following routines read or write the category file itself:

§12 GIS Library

- 109 - - 109 -

G_read_cats(name, mapset, cats) read raster category file

char *name;
char *mapset;
struct Categories *cats;

The category file for raster filename in mapsetis read into thecatsstructure.

If there is an error reading the category file, a diagnostic message is printed and -1 is
returned. Otherwise,0 is returned.

G_write_cats(name, cats) write raster category file

char *name;
struct Categories *cats;

Writes the category file for the raster filename in the current mapset from thecats
structure.

Returns 0 if successful. Otherwise, -1 is returned (no diagnostic is printed).

char *
G_get_cell_title(name, mapset) get raster map title

char *name;
char *mapset;

If only the map layer title is needed, it is not necessary to read the entire category
file into memory. This routine gets the title for raster filename in mapsetdirectly
from the category file, and returns a pointer to the title.A leg al pointer is always
returned. Ifthe map layer does not have a title, then a pointer to the empty string ""
is returned.

char *
G_put_cell_title (name, title) change raster map title

char *name;
char *title;

If it is only desired to change the title for a map layer, it is not necessary to read the
entire category file into memory, change the title, and rewrite the category file. This
routine changes thetitle for the raster filename in the current mapset directly in the
category file. It returns a pointer to the title.

§12 GIS Library

- 110 - - 110 -

12.10.2.2.Querying and Changing the Categories Structure

The following routines query or modify the information contained in the category
structure:

char *
G_get_cat(n, cats) get a category label

CELL n;
struct Categories *cats;

This routine looks up category n in the cats structure and returns a pointer to a
string which is the label for the category. A legal pointer is always returned. If the
category does not exist incats,then a pointer to the empty string "" is returned.

Warning. The pointer that is returned points to a hidden static buffer. Successive
calls to G_get_cat() overwrite this buffer.

char *
G_get_cats_title(cats) get title from category structure

struct Categories *cats;

Map layers store a one-line title in the category structure as well. This routine
returns a pointer to the title contained in thecatsstructure. Alegal pointer is always
returned. Ifthe map layer does not have a title, then a pointer to the empty string ""
is returned.

G_init_cats (n, title, cats) initialize category structure

CELL n;
char *title;
struct Categories *cats;

To construct a new category file, the structure must first be initialized. This routine
initializes thecats structure, and copies thetitle into the structure. The number of
categories is set initially ton.

For example:

struct Categories cats;

G_init_cats ((CELL)0, "", &cats);

§12 GIS Library

- 111 - - 111 -

G_set_cat(n, label, cats) set a category label

CELL n;
char *label;
struct Categories *cats;

The label is copied into thecatsstructure for categoryn.

G_set_cats_title(title, cats) set title in category structure

char *title;
struct Categories *cats;

Thetitle is copied into thecatsstructure.

G_free_cats(cats) free category structure memory

struct Categories *cats;

Frees memory allocated byG_read_cats(p. 109), G_init_cats(p. 110) and
G_set_cat(p. 111).

12.10.3. RasterColor Table

GRASS map layers have colors associated with them. The color tables are structured so
that each category in the raster file has its own color. The format of this file is described
in §5.5 Raster Color Table Format[p. 29].

The routines that manipulate the raster color file use theColors structure which is
described in detail in§12.20 GIS Library Data Structures[p. 153].

12.10.3.1.Reading and Writing the Raster Color File

The following routines read, create, modify, and write color tables.

G_read_colors(name, mapset, colors) read map layer color table

char *name;
char *mapset;
struct Colors *colors;

The color table for the raster filename in the specifiedmapset is read into the
colorsstructure.

If the data layer has no color table, a default color table is generated and 0 is
returned. Ifthere is an error reading the color table, a diagnostic message is printed
and -1 is returned. If the color table is read ok, 1 is returned.

§12 GIS Library

- 112 - - 112 -

G_write_colors (name, mapset, colors) write map layer color table

char *name;
char *mapset;
struct Colors *colors;

The color table is written for the raster filename in the specifiedmapset from the
colorsstructure.

If there is an error, -1 is returned. No diagnostic is printed. Otherwise, 1 is returned.

Thecolors structure must be created properly, i.e.,G_init_colors(p. 113) to initialize
the structure andG_add_color_rule(p. 113) to set the category colors.28

Note. The calling sequence for this function deserves special attention.The
mapsetparameter seems to imply that it is possible to overwrite the color table for a
raster file which is in another mapset.However, this is not what actually happens.
It is very useful for users to create their own color tables for raster files in other
mapsets, but without overwriting other users’ color tables for the same raster file.If
mapsetis the current mapset, then the color file fornamewill be overwritten by the
new color table. But ifmapset is not the current mapset, then the color table is
actually written in the current mapset under thecolr2 element as:
colr2/mapset/name.

12.10.3.2.Lookup Up Raster Colors

These routines translates raster values to their respective colors.

G_lookup_colors(raster, red, green, blue, set, n, colors) lookup an array of colors

CELL *raster;
unsigned char *red;
unsigned char *green;
unsigned char *blue;
unsigned char *set;
int n;
struct Colors *colors;

Extracts colors for an array ofraster values. The colors for then values in the
raster array are stored in thered, green, and blue arrays. Thevalues in theset
array will indicate if the correspondingraster value has a color or not (1 means it
does, 0 means it does not). The programmer must allocate thered, green, blue,and
setarrays to be at least dimensionn.

28 These routines are called by higher level routines which read or create entire color tables,
such asG_read_colors(p. 111) or G_make_ramp_colors(p. 115).

§12 GIS Library

- 113 - - 113 -

Note. Thered, green,andblue intensities will be in the range 0−255.

G_get_color(cat, red, green, blue, colors) get a category color

CELL cat;
int *red;
int *green;
int *blue;
struct Colors *colors;

The red, green,andblue intensities for the color associated with category cat are
extracted from thecolorsstructure. Theintensities will be in the range 0−255.

12.10.3.3.Creating and/or Modifying the Color Table

These routines allow the creation of customized color tables as well as the modification
of existing tables.

G_init_colors (colors) initialize color structure

struct Colors *colors;

The colors structure is initialized for subsequent calls toG_add_color_rule(p. 113)
andG_set_color(p. 114).

G_add_color_rule(cat1, r1, g1, b1, cat2, r2, g2, b2, colors) set colors

CELL cat1, cat2;
int r1,g1,b1;
int r2,g2,b2;
struct Colors *colors;

This is the heart and soul of the new color logic.It adds a color rule to thecolors
structure. The colors defined by the red, green, and blue values r1,g1,b1 and
r2,g2,b2are assigned tocat1 andcat2 respectively. Colors for data values between
cat1 andcat2 are not stored in the structure but are interpolated when queried by
G_lookup_colors(p. 112) and G_get_color(p. 113). The color componentsr1,g1,b1
andr2,g2,b2must be in the range 0-255.

For example, to create a linear grey scale for the range 200-1000:

struct Colors colr;

G_init_colors (&colr);
G_add_color_rule ((CELL)200, 0,0,0, (CELL)1000, 255,255,255);

The programmer is encouraged to review §5.5 Raster Color Table Format [p. 29] how
this routine fits into the 4.1 raster color logic.

§12 GIS Library

- 114 - - 114 -

Note. Thecolorsstructure must have been initialized byG_init_colors(p. 113).

See§12.10.3.4 Predefined Color Tables[p. 114] for routines to build some predefined
color tables.

G_set_color(cat, red, green, blue, colors) set a category color

CELL cat;
int red;
int green;
int blue;
struct Colors *colors;

The red, green,andblue intensities for the color associated with category cat are
set in thecolors structure. Theintensities must be in the range 0−255. Values below
zero are set as zero, values above 255 are set as 255.

Use of this routine is discouraged because it defeats the new color logic.It is
provided only for backward compatibility. Overuse can create large color tables.
G_add_color_rule(p. 113) should be used whenever possible.

Note. Thecolorsstructure must have been initialized byG_init_colors(p. 113).

G_get_color_range(min, max, colors) get color range

CELL *min, *max;
struct Colors *colors;

Gets the minimum and maximum raster values that have colors associated with
them.

G_free_colors(colors) free color structure memory

struct Colors *colors;

The dynamically allocated memory associated with thecolorsstructure is freed.

Note. This routine may be used afterG_read_colors(p. 111) as well as after
G_init_colors(p. 113).

12.10.3.4.Predefined Color Tables

The following routines generate entire color tables.The tables are loaded into acolors
structure based on a range of category values frommin to max. The range of values for a
raster map can be obtained, for example, usingG_read_range(p. 118).

Note. The color tables are generated without information about any particular raster file.

§12 GIS Library

- 115 - - 115 -

These color tables may be created for a raster file, but they may also be generated for
loading graphics colors.

These routines return -1 ifmin is greater thanmax, 1 otherwise.

G_make_aspect_colors(colors, min, max) make aspect colors

struct Colors *colors;
CELL min, max;

Generates a color table for aspect data.

G_make_ramp_colors(colors, min, max) make color ramp

struct Colors *colors;
CELL min, max;

Generates a color table with 3 sections: red only, green only, and blue only, each
increasing from none to full intensity. This table is good for continuous data, such
as elevation.

G_make_wave_colors(colors, min, max) make color wave

struct Colors *colors;
CELL min, max;

Generates a color table with 3 sections: red only, green only, and blue only, each
increasing from none to full intensity and back down to none. This table is good for
continuous data like elevation.

G_make_grey_scale_colors(colors, min, max) make linear grey scale

struct Colors *colors;
CELL min, max;

Generates a grey scale color table. Each color is a level of grey, increasing from
black to white.

G_make_rainbow_colors(colors, min, max) make rainbow colors

struct Colors *colors;
CELL min, max;

Generates a "shifted" rainbow color table - yellow to green to cyan to blue to
magenta to red. The color table is based on rainbow colors. (Normalrainbow
colors are red, orange, yellow, green, blue, indigo, and violet.) This table is good for
continuous data, such as elevation.

§12 GIS Library

- 116 - - 116 -

G_make_random_colors(colors, min, max) make random colors

struct Colors *colors;
CELL min, max;

Generates random colors. Good as a first pass at a color table for nominal data.

G_make_ryg_colors(colors, min, max) make red,yellow,green colors

struct Colors *colors;
CELL min, max;

Generates a color table that goes from red to yellow to green.

G_make_gyr_colors(colors, min, max) make green,yellow,red colors

struct Colors *colors;
CELL min, max;

Generates a color table that goes from green to yellow to red.

G_make_histogram_eq_colors(colors, s) make histogram-stretched grey colors

struct Colors *colors;
struct Cell_stats *s;

Generates a histogram contrast-stretched grey scale color table that goes from the
histogram information in the Cell_stats structures. (See §12.10.6 Raster
Histograms[p. 119].)

12.10.4. RasterHistory File

The history file contains documentary information about the raster file: who created it,
when it was created, what was the original data source, what information is contained in
the raster file, etc. This file is discussed in§5.6 Raster History File[p. 30].

The following routines manage this file. They use the History structure which is
described in§12.20 GIS Library Data Structures[p. 153].

Note. This structure has existed relatively unmodified since the inception of GRASS. It
is in need of overhaul. Programmers should be aware that future versions of GRASS may
no longer support either the routines or the data structure which support the history file.

§12 GIS Library

- 117 - - 117 -

G_read_history (name, mapset, history) read raster history file

char *name;
char *mapset;
struct History *history;

This routine reads the history file for the raster filename in mapsetinto thehistory
structure.

A diagnostic message is printed and -1 is returned if there is an error reading the
history file. Otherwise, 0 is returned.

G_write_history (name, history) write raster history file

char *name;
struct History *history;

This routine writes the history file for the raster filename in the current mapset from
thehistory structure.

A diagnostic message is printed and -1 is returned if there is an error writing the
history file. Otherwise, 0 is returned.

Note. Thehistory structure should first be initialized usingG_short_history(p. 117).

G_short_history (name, type, history) initialize history structure

char *name;
char *type;
struct History *history;

This routine initializes thehistory structure, recording the date, user, program name
and the raster filenamestructure. Thetype is an anachronism from earlier versions
of GRASS and should be specified as "raster".

Note. This routine only initializes the data structure.It does not write the history
file.

12.10.5. RasterRange File

The following routines manage the raster range file. This file contains the minimum and
maximum values found in the raster file.The format of this file is described in§5.7
Raster Range File [p. 31].

The routines below use theRange data structure which is described in§12.20 GIS
Library Data Structures[p. 153].

§12 GIS Library

- 118 - - 118 -

G_read_range(name, mapset, range) read raster range

char *name;
char *mapset;
struct Range *range;

This routine reads the range information for the raster filename in mapset into the
rangestructure.

A diagnostic message is printed and -1 is returned if there is an error reading the
range file. Otherwise, 0 is returned.

G_write_range (name, range) write raster range file

char *name;
struct Range *range;

This routine writes the range information for the raster filename in the current
mapset from therangestructure.

A diagnostic message is printed and -1 is returned if there is an error writing the
range file. Otherwise, 0 is returned.

The range structure must be initialized and updated using the following routines:

G_init_range (range) initialize range structure

struct Range *range;

Initializes the range structure for updates byG_update_range(p. 118) and
G_row_update_range(p. 119).

G_update_range(cat, range) update range structure

CELL cat;
struct Range *range;

Compares thecat value with the minimum and maximum values in therange
structure, modifying the range ifcat extends the range.

§12 GIS Library

- 119 - - 119 -

G_row_update_range(cell, n, range) update range structure

CELL *cell;
int n;
struct Range *range;

This routine updates therange data just like G_update_range(p. 118), but for n
values from thecell array.

The range structure is queried using the following routine:

G_get_range_min_max(range, min, max) get range min and max

struct Range *range;
CELL *min, *max;

Themininum andmaximum CELL values are extracted from therangestructure.

12.10.6. RasterHistograms

The following routines provide a relatively efficient mechanism for computing and
querying a histogram of raster data. They use theCell_stats structure to hold the
histogram information. The histogram is a count associated with each unique raster value
representing the number of times each value was inserted into the structure.

These next two routines are used to manage the Cell_stats structure:

G_init_cell_stats(s) initialize cell stats

struct Cell_stats *s;

This routine, which must be called first, initializes the Cell_stats structures.

G_free_cell_stats(s) free cell stats

struct Cell_stats *s;

The memory associated with structures is freed. This routine may be called any
time after callingG_init_cell_stats(p. 119).

This next routine stores values in the histogram:

§12 GIS Library

- 120 - - 120 -

G_update_cell_stats(data, n, s) add data to cell stats

CELL *data;
int n;
struct Cell_stats *s;

The n CELL values in thedata array are inserted (and counted) in the Cell_stats
structures.

Once all values are stored, the structure may be queried either randomly (ie. search for a
specific raster value) or sequentially (retrieve all raster values, in ascending order, and
their related count):

G_find_cell_stat(cat, count, s) random query of cell stats

CELL cat;
long *count;
struct Cell_stats *s;

This routine allows a random query of the Cell_stats structures. The count
associated with the raster valuecat is set. The routine returns 1 ifcat was found in
the structure, 0 otherwise.

Sequential retrieval is accomplished using these next 2 routines:

G_rewind_cell_stats(s) reset/rewind cell stats

struct Cell_stats *s;

The structures is rewound (i.e., positioned at the first raster category) so that sorted
sequential retrieval can begin.

G_next_cell_stat(cat, count, s) retrieve sorted cell stats

CELL *cat;
long *count;
struct Cell_stats *s;

Retrieves the next cat,countcombination from the structures. Returns 0 if there are
no more items, non-zero if there are more.

For example:

§12 GIS Library

- 121 - - 121 -

struct Cell_stats s;
CELL cat;
long count;

.

. /* updatings occurs here */

.

G_rewind_cell_stats(&s);
while (G_next_cell_stat(&cat,&count,&s)

printf("%ld %ld\n", (long) cat, count);

12.11. Vector File Processing
TheGIS Library contains some functions related to vector file processing. These include
prompting the user for vector files, locating vector files in the database, opening vector
files, and a few others.

Note. Most vector file processing, however, is handled by routines in theVector Library,
which is described in§13 Vector Library[p. 157].

12.11.1. Prompting for Vector Files

The following routines interactively prompt the user for a vector file name. In each, the
prompt string will be printed as the first line of the full prompt which asks the user to
enter a vector file name.If prompt is the empty string "" then an appropriate prompt will
be substituted.The name that the user enters is copied into thename buffer.29 These
routines have a built-in ’list’ capability which allows the user to get a list of existing
vector files.

The user is required to enter a valid vector file name, or else hit the RETURN key to
cancel the request. If the user enters an invalid response, a message is printed, and the
user is prompted again. If the user cancels the request, the NULL pointer is returned.
Otherwise the mapset where the vector file lives or is to be created is returned. Both the
name and the mapset are used in other routines to refer to the vector file.

29 The size ofnameshould be large enough to hold any GRASS file name. Most systems allow
file names to be quite long. It is recommended that name be declaredchar name[50].

§12 GIS Library

- 122 - - 122 -

char *
G_ask_vector_old(prompt, name) prompt for an existing vector file

char *name;
char *mapset;

Asks the user to enter the name of an existing vector file in any mapset in the
database.

char *
G_ask_vector_in_mapset(prompt, name) prompt for an existing vector file

char *name;
char *mapset;

Asks the user to enter the name of an existing vector file in the current mapset.

char *
G_ask_vector_new(prompt, name) prompt for a new vector file

char *name;
char *mapset;

Asks the user to enter a name for a vector file which does not exist in the current
mapset.

Here is an example of how to use these routines. Note that the programmer must handle
the NULL return properly:

char *mapset;
char name[50];

mapset = G_ask_vector_old("Enter vector file to be processed", name);
if (mapset == NULL)

exit(0);

12.11.2. FindingVector Files in the Database

Noninteractive programs cannot make use of the interactive prompting routines described
above. For example, a command line driven program may require a vector file name as
one of the command arguments. GRASSallows the user to specify vector file names (or
any other database file) either as a simple unqualified name, such as "roads", or as a fully
qualified name, such as "roads inmapset", wheremapsetis the mapset where the vector
file is to be found. Often only the unqualified vector file name is provided on the
command line.

The following routines search the database for vector files:

§12 GIS Library

- 123 - - 123 -

G_find_vector (name, mapset) find a vector file

G_find_vector2(name, mapset) find a vector file

char *name;
char *mapset;

Look for the vector filename in the database.Themapsetparameter can either be
the empty string "", which means search all the mapsets in the user’s current mapset
search path,30 or it can be a specific mapset name, which means look for the vector
file only in this one mapset (for example, in the current mapset).

If found, the mapset where the vector file lives is returned. If not found, the NULL
pointer is returned.

The difference between these two routines is that if the user specifies a fully
qualified vector file which exists, then G_find_vector2() modifies name by
removing the "inmapset" while G_find_vector()does not.31 Normally, the GRASS
programmer need not worry about qualified vs. unqualified names since all library
routines handle both forms.However, if the programmer wants the name to be
returned unqualified (for displaying the name to the user, or storing it in a data file,
etc.), then G_find_vector2()should be used.

For example, to find a vector file anywhere in the database:

char name[50];
char *mapset;

if ((mapset = G_find_vector(name," "))= = NULL)
/* not found*/

To check that the vector file exists in the current mapset :

char name[50];

if (G_find_vector(name,G_mapset())= = NULL)
/* not found*/

30 See§4.7.1 Mapset Search Path [p. 20] for more details about the search path.
31 Be warned that G_find_vector2()should not be used directly on a command line argument,

since modifying argv[] may not be valid. The argument should be copied to another character
buffer which is then passed to G_find_vector2().

§12 GIS Library

- 124 - - 124 -

12.11.3. Openingan Existing Vector File

The following routine opens the vector filename in mapsetfor reading.

The vector file name and mapset can be obtained interactively using
G_ask_vector_old(p. 122) or G_ask_vector_in_mapset(p. 122), and noninteractively using
G_find_vector(p. 123) or G_find_vector2(p. 123).

FILE *
G_fopen_vector_old(name, mapset) open an existing vector file

char *name;
char *mapset;

This routine opens the vector filename in mapsetfor reading.

A fi le descriptor is returned if the open is successful.Otherwise the NULL pointer
is returned (no diagnostic message is printed).

The file descriptor can then be used with routines in theDig Library to read the
vector file. (See§13 Vector Library[p. 157].)

Note. This routine does not call any routines in theDig Library ; No initialization of
the vector file is done by this routine, directly or indirectly.

12.11.4. Creating and Opening New Vector Files

The following routine creates the new vector filename in the current mapset32 and opens
it for writing. The vector file name should be obtained interactively using
G_ask_vector_new(p. 122). If obtained noninteractively (e.g., from the command line),
G_legal_filename(p. 78) should be called first to make sure thatname is a valid GRASS
file name.

Warning. If namealready exists, it will be erased and re-created empty. The interactive
routine G_ask_vector_new(p. 122) guarantees thatname will not exist, but if name is
obtained from the command line,name may exist. In this caseG_find_vector(p. 123)
could be used to see ifnameexists.

32 GRASS does not allow files to be created outside the current mapset.See§4.7 Database
Access Rules[p. 20].

§12 GIS Library

- 125 - - 125 -

FILE *
G_fopen_vector_new(name) open a new vector file

char *name;

Creates and opens the vector filenamefor writing.

A fi le descriptor is returned if the open is successful.Otherwise the NULL pointer
is returned (no diagnostic message is printed).

The file descriptor can then be used with routines in theDig Library to write the
vector file. (See§13 Vector Library[p. 157].)

Note. This routine does not call any routines in theDig Library ; No initialization of
the vector file is done by this routine, directly or indirectly. Also, only the vector
file itself (i.e., thedig file), is created. None of the other vector support files are
created, removed, or modified in any way.

12.11.5. Readingand Writing Vector Files

Reading and writing vector files is handled by routines in theDig Library. See§13
Vector Library [p. 157] for details.

12.11.6. Vector Category File

GRASS vector files have category labels associated with them. The category file is
structured so that each category in the vector file can have a one-line description.

The routines described below read and write the vector category file.They use the
Categoriesstructure which is described in§12.20 GIS Library Data Structures[p. 153].

Note. The vector category file has exactly the same structure as the raster category file.
In fact, it exists so that the programv.to.rastcan convert a vector file to a raster file that
has an up-to-date category file.

The routines described in§12.10.2.2 Querying and Changing the Categories Structure
[p. 110] which modify theCategoriesstructure can therefore be used to set and change
vector categories as well.

§12 GIS Library

- 126 - - 126 -

G_read_vector_cats(name, mapset, cats) read vector category file

char *name;
char *mapset;
struct Categories *cats;

The category file for vector filename in mapsetis read into thecatsstructure.

If there is an error reading the category file, a diagnostic message is printed and -1 is
returned. Otherwise,0 is returned.

G_write_vector_cats(name, cats) write vector category file

char *name;
struct Categories *cats;

Writes the category file for the vector filename in the current mapset from thecats
structure.

Returns 0 if successful. Otherwise, -1 is returned (no diagnostic is printed).

12.12. SiteList Processing
GRASS has a point database capability calleds.menu,which manages a database of point
or site information. The s.menu program provides the majority of the analytical
capabilities within GRASS for site data. The routines described here provide
programmers with mechanisms for reading existing site list files and for creating new
ones. Thereader should also see§7 Point Data: Site List Files [p. 41] for more details
about the site list files.

12.12.1. Prompting for Site List Files

The following routines interactively prompt the user for a site list file name. In each, the
prompt string will be printed as the first line of the full prompt which asks the user to
enter a site list file name.If prompt is the empty string "" then an appropriate prompt
will be substituted. The name that the user enters is copied into thenamebuffer.33 These
routines have a built-in "list" capability which allows the user to get a list of existing site
list files.

The user is required to enter a valid site list file name, or else hit the RETURN key to
cancel the request. If the user enters an invalid response, a message is printed, and the

33 The size ofnameshould be large enough to hold any GRASS file name. Most systems allow
file names to be quite long. It is recommended that name be declaredchar name[50].

§12 GIS Library

- 127 - - 127 -

user is prompted again. If the user cancels the request, the NULL pointer is returned.
Otherwise the mapset where the site list file lives or is to be created is returned. Both the
name and the mapset are used in other routines to refer to the site list file.

char *
G_ask_sites_old(prompt, name) prompt for existing site list file

char *prompt;
char *name;

Asks the user to enter the name of an existing site list file in any mapset in the
database.

char *
G_ask_sites_in_mapset(prompt, name) prompt for existing site list file

char *prompt;
char *name;

Asks the user to enter the name of an existing site list file in the current mapset.

char *
G_ask_sites_new(prompt, name) prompt for new site list file

char *prompt;
char *name;

Asks the user to enter a name for a site list file which does not exist in the current
mapset.

Here is an example of how to use these routines. Note that the programmer must handle
the NULL return properly:

char *mapset;
char name[50];

mapset = G_ask_sites_old("Enter site list file to be processed", name);
if (mapset == NULL)

exit(0);

12.12.2. OpeningSite List Files

The following routines open site list files:

§12 GIS Library

- 128 - - 128 -

FILE *
G_fopen_sites_new(name) open a new site list file

char *name;

Creates an empty site list filename in the current mapset and opens it for writing.

Returns an open file descriptor if successful. Otherwise, returns NULL.

FILE *
G_fopen_sites_old(name, mapset) open an existing site list file

char *name;
char *mapset;

Opens the site list filename in mapsetfor reading.

Returns an open file descriptor if successful. Otherwise, returns NULL.

12.12.3. Readingand Writing Site List Files

G_get_site(fd, east, north, desc) read site list file

FILE *fd;
double *east, *north;
char **desc;

This routine setseastandnorth for the next "point" from the site list file open on
file descriptorfd (as returned byG_fopen_sites_old(p. 128)), anddescis set to point
to the description of the site.

Returns: 1 if a site was found; -1 if there were no more sites.

For example:

double east, north;
char *desc;
FILE *fd;

fd = G_fopen_site_old (name, mapset);
while (G_get_site (fd, &east, &north, &desc) > 0)

printf ("%lf %lf %s\n", east, north, desc);

Note: descpoints to static memory, so each call overrides the description from the
previous call.

§12 GIS Library

- 129 - - 129 -

G_put_site(fd, east, north, desc) write site list file

FILE *fd;
double east, north;
char *desc;

Writes theeast and north coordinates and site descriptiondesc to the site file
opened on file descriptorfd (as returned byG_fopen_sites_new(p. 128)).

12.13. GeneralPlotting Routines

The following routines form the foundation of a general purpose line and polygon
plotting capability.

G_bresenham_line(x1, y1, x2, y2, point) Bresenham line algorithm

int x1, y1 ;
int x2, y2 ;
int (*point)() ;

Draws a line fromx1,y1 to x2,y2 using Bresenham’s algorithm. A routine to plot
points must be provided, as is defined as:

point(x, y) plot a point at x,y

This routine does not require a previous call toG_setup_plot(p. 129) to function
correctly, and is independent of all following routines.

G_setup_plot(t, b, l, r, Move, Cont) initialize plotting routines

double t, b, l, r ;
int (*Move)();
int (*Cont)();

Initializes the plotting capability. This routine must be called once before calling
theG_plot_*() routines described below.

The parameterst, b, l, r are the top, bottom, left, and right of the output x,y
coordinate space.They are not integers, but doubles to allow for subpixel
registration of the input and output coordinate spaces.The input coordinate space is
assumed to be the current GRASS region, and the routines supports both planimetric
and latitude- longitude coordinate systems.

Move and Cont are subroutines that will draw lines in x,y space.They will be
called as follows:

§12 GIS Library

- 130 - - 130 -

Move(x, y) move to x,y (no draw)
Cont(x, y) draw from previous position

to x,y. Cont() is responsible
for clipping

G_plot_line (east1, north1, east2, north2) plot line between latlon coordinates

double east1, north1, east2, north2 ;

A l ine fromeast1,north1to east2,north2 is plotted in output x,y coordinates (e.g.
pixels for graphics.)This routine handles global wrap-around for latitude-longitude
databases.

SeeG_setup_plot(p. 129) for the required coordinate initialization procedure.

G_plot_polygon(east, north, n) plot filled polygon with n vertices

double *east, *north ;
int n ;

The polygon, described by then vertices east,north, is plotted in the output x,y
space as a filled polygon.

SeeG_setup_plot(p. 129) for the required coordinate initialization procedure.

G_plot_where_en(x, y, east, north) x,y to east,north

int x, y ;
double *east, *north ;

The pixel coordinatesx,y are converted to map coordinateseast,north.

SeeG_setup_plot(p. 129) for the required coordinate initialization procedure.

G_plot_where_xy(east, north, x, y) east,north to x,y

double east, north ;
int *x, *y ;

The map coordinateseast,northare converted to pixel coordinatesx,y.

SeeG_setup_plot(p. 129) for the required coordinate initialization procedure.

§12 GIS Library

- 131 - - 131 -

G_plot_fx (f, east1, east2) plot f(east1) to f(east2)

double (*f)() ;
double east, east2 ;

The functionf(east) is plotted fromeast1to east2. The functionf(east)must return
the map northing coordinate associated with east.

SeeG_setup_plot(p. 129) for the required coordinate initialization procedure.

12.14. Temporary Files
Often it is necessary for programs to use temporary files to store information that is only
useful during the program run. After the program finishes, the information in the
temporary file is no longer needed and the file is removed. Commonlyit is required that
temporary file names be unique from invocation to invocation of the program. It would
not be good for a fixed name like "/tmp/mytempfile" to be used. If the program were run
by two users at the same time, they would use the same temporary file.

The following routine generates temporary file names which are unique within the
program and across all GRASS programs.

char *
G_tempfile () returns a temporary file name

This routine returns a pointer to a string containing a unique file name that can be
used as a temporary file within the program.Successive calls to G_tempfile() will
generate new names.

Only the file name is generated. The file itself is not created. To create the file, the
program must use standard UNIX functions which create and open files, e.g., creat()
or fopen().

The programmer should take reasonable care to remove (unlink) the file before the
program exits. However, GRASS database management will eventually remove all
temporary files created by G_tempfile() that have been left behind by the programs
which created them.

Note. The temporary files are created in the GRASS database rather than under /tmp.
This is done for two reasons. Thefirst is to increase the likelihood that enough disk is
available for large temporary files since /tmp may be a very small file system.The
second is so that abandoned temporary files can be automatically removed (but see the
warning below).

Warning. The temporary files are named, in part, using the process id of the program.
GRASS database management will remove these files only if the program which created
them is no longer running. However, this feature has a subtle trap. Programs which create

§12 GIS Library

- 132 - - 132 -

child processes (using the UNIX fork()34 routine) should let the child call G_tempfile().
If the parent does it and then exits, the child may find that GRASS has removed the
temporary file since the process which created it is no longer running.

12.15. CommandLine Parsing

The following routines provide a standard mechanism for command line parsing. Use of
the provided set of routines will standardize GRASS commands that expect command
line arguments, creating a family of GRASS programs that is easy for users to learn.As
soon as a GRASS user familiarizes himself with the general form of command line input
as defined by the parser, it will greatly simplify the necessity of remembering or at least
guessing the required command line arguments for any GRASS command.

It is strongly recommended that GRASS programmers use this set of routines for all
command line parsing.With their use, the programmer is freed from the burden of
generating user interface code for every command. The parser will limit the programmer
to a pre-defined look and feel, but limiting the interface is well worth the shortened user
learning curve.

12.15.1. Description

The GRASS parser is a collection of five subroutines which use two structures that are
defined in the GRASS "gis.h" header file. These structures allow the programmer to
define the options and flags that make up the valid command line input of a GRASS
command.

The parser routines behave in one of three ways:

(1) If no command line arguments are entered by the user, the parser searches for a
completely interactive version of the command. If the interactive version is found,
control is passed over to this version. Ifnot, the parser will prompt the user for all
programmer-defined options and flags. This prompting conforms to the same
standard for every GRASS command that uses the parser routines.

(2) If command line arguments are entered but they are a subset of the options and flags
that the programmer has defined as required arguments, three things happen.The
parser will pass an error message to the user indicating which required options
and/or flags were missing from the command line, the parser will then display a
complete usage message for that command, and finally the parser cancels execution

34 See alsoG_fork(p. 150).

§12 GIS Library

- 133 - - 133 -

of the command.

(3) If all necessary options and flags are entered on the command line by the user, the
parser executes the command with the given options and flags.

12.15.2. Structures

The parser routines described below use two structures as defined in the GRASS "gis.h"
header file.

This is a basic list of members of the Option and Flag structures.A comprehensive
description of all elements of these two structures and their possible values can be found
in §12.15.5 Full Structure Members Description[p. 140].

12.15.2.1.Option structure

These are the basic members of the Option structure.

struct Option *opt; /* to declare a command line option */

Structure Member Description of Member
opt->key Option name that user will use
opt->description Optiondescription that is shown to the user
opt->type Variable type of the user’s answer to the option
opt->required Isthis option required on the command line? (Boolean)

12.15.2.2.Flag structure

These are the basic members of the Flag structure.

struct Flag *flag; /* to declare a command line flag */

Structure Member Description of Member
flag->key Single letter used for flag name
flag->description Flagdescription that is shown to the user

§12 GIS Library

- 134 - - 134 -

12.15.3. Parser Routines

Associated with the parser are five routines that are automatically included in the GRASS
Gmakefile process. The Gmakefile process is documented in§11 Compiling and
Installing GRASS Programs[p. 57].

struct Option *
G_define_option() returns Option structure

Allocates memory for the Option structure and returns a pointer to this memory (of
typestruct Option *).

struct Flag *
G_define_flag() return Flag structure

Allocates memory for the Flag structure and returns a pointer to this memory (of
typestruct Flag *).

G_parser (argc, argv) parse command line

int argc;
char *argv[];

The command line parametersargv and the number of parametersargc from the
main() routine are passed directly toG_parser(). G_parser() accepts the
command line input entered by the user, and parses this input according to the input
options and/or flags that were defined by the programmer.

G_parser() returns 0 if successful.If not successful, a usage statement is displayed
that describes the expected and/or required options and flags and a non-zero value is
returned.

G_usage() command line help/usage message

Calls toG_usage() allow the programmer to print the usage message at any time.
This will explain the allowed and required command line input to the user. This
description is given according to the programmer’s definitions for options and flags.
This function becomes useful when the user enters options and/or flags on the
command line that are syntactically valid to the parser, but functionally invalid for
the command (e.g. an invalid file name.)

For example, the parser logic doesn’t directly support grouping options. If two
options be specified together or not at all, the parser must be told that these options
are not required and the programmer must check that if one is specified the other
must be as well. If this additional check fails, thenG_parser(p. 134) will succeed, but
the programmer can then callG_usage() to print the standard usage message and
print additional information about how the two options work together.

§12 GIS Library

- 135 - - 135 -

G_disable_interactive () turns off interactive capability

When a user calls a command with no arguments on the command line, the parser
will enter its own standardized interactive session in which all flags and options are
presented to the user for input.A call to G_disable_interactive() disables the
parser’s interactive promprting.

12.15.4. Parser Programming Examples

The use of the parser in the programming process is demonstrated here. Both a basic step
by step example and full code example are presented.

12.15.4.1.Step by Step Use of the Parser

These are the four basic steps to follow to implement the use of the GRASS parser in a
GRASS command:

(1) Allocatememory for Flags and Options:

Flags and Options are pointers to structures allocated through the parser routines
G_define_option(p. 134) and G_define_flag(p. 134) as defined in §12.15.3 Parser
Routines[p. 134].

#include "gis.h" ; /* The standard GRASS include file */

struct Option *opt ; /* Establish an Option pointer for each option */
struct Flag *flag ; /* Establish a Flag pointer for each option */

opt = G_define_option() ; /* Request a pointer to memory for each option */
flag = G_define_flag() ; /* Request a pointer to memory for each flag */

(2) Definemembers of Flag and Option structures:

The programmer should define the characteristics of each option and flag desired as
outlined by the following example:

opt->key ="option"; /* The name of this option is "option". */
opt->description ="Option test"; /* The option description is "Option test" */
opt->type =TYPE_STRING; /*The data type of the answer to the option */
opt->required =YES; /* This option *is* required from the user */

flag->key =’t ’; /* Single letter name for flag */
flag->description ="Flag test"; /* The flag description is "Flag test" */

§12 GIS Library

- 136 - - 136 -

Note. There are more options defined later in§12.15.5.1 Complete Structure
Members Table [p. 140].

(3) Call the parser :

main(argc,argv) char*argv[]; /* command line args passed into main() * /
G_parser(argc,argv); /* Returns 0 if successful, non-zero otherwise */

(4) Extractinginformation from the parser structures:

printf("For the option \"%s\" you chose: <%s>\n", opt->description, opt->answer);
printf("The flag \"-%s\" is %s set.\n", flag->key, flag->answer ? "" : "not");

(5) Runningthe example program

Once such a program has been compiled (for example to the default executable file
a.out, execution will result in the following user interface scenarios.

Lines that begin with# imply user entered commands on the command line.

a.out help

This is a standard user call for basic help information on the program.The
command line options (in this case, "help") are sent to the parser via
G_parser(p. 134). Theparser recognizes the "help" command line option and returns
a list of options and/or flags that are applicable for the specific command. Note how
the programmer provided option and flag information is captured in the output.

a.out [-t] option=name

Flags:
-t Flagtest

Parameters:
option Optiontest

Now the following command is executed:

a.out -t

This command line does not contain the required option.Note that the output
provides this information along with the standard usage message (as already shown
above.)

Required parameter <option> not set (Option test).

Usage:

§12 GIS Library

- 137 - - 137 -

a.out [-t] option=name

Flags:
-t Flagtest

Parameters:
option Optiontest

The following commands are correct and equivalent. Theparser provides no error
messages and the program executes normally:

a.out option=Hello -t
a.out -t option=Hello

For the option "Option test" you chose: Hello
The flag "-t" is set.

If this specific command has no fully interactive version (a user interface that does
not use the parser), the parser will prompt for all programmer-defined options and/or
flags.

User input is initalics, default answers are displayed in square brackets [].

a.out

OPTION: Optiontest
key: option

required: YES

enter option >Hello

You hav echosen:
option=Hello

Is this correct? (y/n) [y]y

FLAG: Set the following flag?
Flag test? (y/n) [n]n

You chose: <Hello>
The flag is not set

12.15.4.2.Full Program Example

The following code demonstrates some of the basic capabilities of the parser. To compile
this code, create this Gmakefile and run thegmake command (see§11 Compiling and
Installing GRASS Programs[p. 57]).

sample: sample.o
$(CC) $(LDFLAGS) -o $@ sample.o $(GISLIB)

§12 GIS Library

- 138 - - 138 -

The sample.c code follows. You might experiment with this code to familiarize yourself
with the parser.

Note. This example includes some of the advanced structure members described in
§12.15.5.1 Complete Structure Members Table [p. 140].

§12 GIS Library

- 139 - - 139 -

#include "gis.h"

main(argc , argv)
int argc ;
char *argv ;

{
struct Option *opt ;
struct Option *coor ;
struct Flag *flag ;
double X , Y ;
int n ;

opt =G_define_option();
opt->key ="debug" ;
opt->description ="Debug level" ;
opt->type =TYPE_STRING ;
opt->required =NO ;
opt->answer ="0" ;

coor =G_define_option();
coor->key ="coordinate" ;
coor->key_desc ="x,y" ;
coor->description ="One or more coordinates" ;
coor->type =TYPE_STRING ;
coor->required =YES ;
coor->multiple =YES ;

/* Note that coor->answer is not given a default value. */

flag =G_define_flag();
flag->key =’v ’ ;
flag->description ="Verbose execution" ;

/* Note that flag->answer is not given a default value. */

if (G_parser(argc , argv))
exit(-1);

printf("For the option \"%s\" you chose: <%s>\n", opt->description, opt->answer);
printf("The flag \"-%s\" is: %s set\n", flag->key, flag->answer ? "" : "not");

printf("You specified the following coordinates:\n");
for (n=0 ; coor->answers[n] != NULL ; n+=2)
{

G_scan_easting (coor->answers[n], &X , G_projection());
G_scan_northing (coor->answers[n+1] , &Y , G_projection());
printf("%.31f,%.21f\n", X , Y);

}
}

§12 GIS Library

- 140 - - 140 -

12.15.5. FullStructur e Members Description

There are many members to the Option and Flag structures. The following tables and
descriptions summarize all defined members of both the Option and Flag structures.

An in-depth summary of the more complex structure members is presented in§12.15.5.2
Description of Complex Structure Members[p. 142].

12.15.5.1.Complete Structure Members Table

struct Flag
structure member C type required default descriptionand example
key char YES none Key char used on command line

flag->key = ’f’ ;
description char* Y ES none String describing flag meaning

flag->description = "run in fast mode" ;
answer char NO NULL Default and parser-returned flag states.

struct Option
structure member C type required default descriptionand example
key char * YES none Ke y word used on command line.

opt->key = "map" ;

type int YES none Option type:

TYPE_STRING
TYPE_INTEGER
TYPE_DOUBLE
opt->type = TYPE_STRING ;

description char* Y ES none String describing option

opt->description = "Map name" ;

answer char* NO NULL Default and parser-returned answer to
an option.

opt->answer = "defaultmap" ;

§12 GIS Library

- 141 - - 141 -

struct Option
structure member C type required default descriptionand example
key_desc char* NO NULL Single word describing the key.

Commas in this string denote to the
parser that several comma-separated
arguments are expected from the user as
one answer. For example, if a pair of
coordinates is desired, this element
might be defined as follows.

opt->key_desc = "x,y" ;

multiple int NO NO Indicates whether the user can provide
multiple answers or not. YES and NO
are defined in "gis.h" and should be
used (NO is the default.) Multiple is
used in conjunction with the answers
structure member below.

opt->multiple = NO ;

answers NO NULL Multiple parser-returned answers to an
option.

N/A

required int NO NO Indicates whether user MUST provide
the option on the command line.YES
and NO are defined in "gis.h" and
should be used (NO is the default.)

opt->required = YES ;

options char* NO NULL Approved values or range of values.

opt->options = "red,blue,white" ;

For integers and doubles, the
following formatis available:

opt->options = "0-1000" ;

gisprompt char* NO NULL Interactive prompt guidance. There are
three comma separated parts to this
argument which guide the use of the
standard GRASS file name prompting
routines.

opt->gisprompt = "old,cell,raster" ;

checker char*() NO NULL Routine to check the answer to an option

opt->checker = my_routine() ;

§12 GIS Library

- 142 - - 142 -

12.15.5.2.Description of Complex Structure Members

What follows are explanations of possibly confusing structure members. It is intended to
clarify and supplement the structures table above.

12.15.5.2.1.Answer member of the Flag and Option structures.

The answer structure member serves two functions for GRASS commands that use the
parser.

(1) To set the default answer to an option:

If a default state is desired for a programmer-defined option, the programmer may
define the Option structure member "answer" before callingG_parser(p. 134) in his
program. Afterthe G_parser(p. 134) call, the answer member will hold this preset
default value if the user didnot enter an option that has the default answer member
value.

(2) To obtain the command-line answer to an option or flag:After a call to
G_parser(p. 134), the answer member will contain one of two values:

(a) If the user provided an option, and answered this option on the command line,
the default value of the answer member (as described above) is replaced by the
user’s input.

(b) If the user provided an option, but didnot answer this option on the command
line, the default is not used. The user may use the default answer to an option
by withholding mention of the option on the command line. But if the user
enters an option without an answer, the default answer member value will be
replaced and set to a NULL value byG_parser(p. 134).

As an example, please review the use of answer members in the structures implemented
in §12.15.4.2 Full Program Example[p. 137].

12.15.5.2.2.Multiple and Answers Members

The functionality of the answers structure member is reliant on the programmer’s
definition of the multiple structure member. If the multiple member is set to NO, the
answer member is used to obtain the answer to an option as described above.

If the multiple structure member is set to YES, the programmer has toldG_parser(p. 134)
to capture multiple answers. Multiple answers are separated by commas on the command
line after an option.

§12 GIS Library

- 143 - - 143 -

Note. G_parser(p. 134) does not recognize any character other than a comma to delimit
multiple answers.

After the programmer has set up an option to receive multiple answers, these the answers
are stored in the answers member of the Option structure. The answers member is an
array that contains each individual user-entered answer. The elements of this array are
the type specified by the programmer using the type member. The answers array contains
however many comma-delimited answers the user entered, followed (terminated) by a
NULL array element.

For example, here is a sample definition of an Option using multiple and answers
structure members:

opt->key ="option" ;
opt->description ="option example" ;
opt->type =TYPE_INTEGER ;
opt->required =NO ;
opt->multiple =YES ;

The above definition would ask the user for multiple integer answers to the option.If in
response to a routine that contained the above code, the user entered "option=1,3,8,15" on
the command line, the answers array would contain the following values:

answers[0] == 1
answers[1] == 3
answers[2] == 8
answers[3] == 15
answers[4] == NULL

12.15.5.2.3.key_desc Member

The key_desc structure member is used to define the format of a single command line
answer to an option.A programmer may wish to ask for one answer to an option, but this
answer may not be a single argument of a type set by the type structure member. If the
programmer wants the user to enter a coordinate, for example, the programmer might
define an Option as follows:

opt->key ="coordinate" ;
opt->description ="Specified Coordinate" ;
opt->type =TYPE_INTEGER ;
opt->required =NO ;
opt->key_desc ="x,y"

§12 GIS Library

- 144 - - 144 -

opt->multiple =NO ;

The answer to this option would not be stored in the answer member, but in the answers
member. If the user entered "coordinate=112,225" on the command line in response to a
routine that contains the above option definition, the answers array would have the
following values after the call toG_parser(p. 134):

answers[0] == 112
answers[1] == 225
answers[2] == NULL

Note that "coordinate=112" would not be valid, as it does not contain both components of
an answer as defined by the key_desc structure member.

If the multiple structure member were set to YES instead of NO in the example above,
the answers are stored sequentially in the answers member. For example, if the user
wanted to enter the coordinates (112,225), (142,155), and (43,201), his response on the
command line would be "coordinate=112,225,142,155,43,201". Note that
G_parser(p. 134) recognizes only a comma for both the key_desc member, and for
multiple answers.

The answers array would have the following values after a call toG_parser(p. 134):

answers[0] == 112 answers[1]= = 225
answers[2] == 142 answers[3]= = 155
answers[4] == 43 answers[5] == 201
answers[6] == NULL

Note. In this case as well, neither "coordinate=112" nor "coordinate=112,225,142"
would be valid command line arguments, as they do not contain even pairs of coordinates.
Each answer’s format (as described by the key_desc member) must be fulfilled
completely.

The overall function of the key_desc and multiple structure members is very similar. The
key_desc member is used to specify the number ofrequired components of a single
option answer (e.g. a multi-valued coordinate.) The multiple member tells
G_parser(p. 134) to ask the user for multiple instances of the compound answer as defined
by the format in the key_desc structure member.

Another function of the key_desc structure member is to explain to the user the type of
information expected as an answer. The coordinate example is explained above.

The usage message that is displayed byG_parser(p. 134) in case of an error, or by
G_usage(p. 134) on programmer demand, is shown below. The Option "option" for the

§12 GIS Library

- 145 - - 145 -

commanda.outdoes not have its key_desc structure member defined.

Usage:
a.out option=name

The use of "name" is aG_parser(p. 134) standard. If the programmer defines the
key_desc structure member before a call toG_parser(p. 134), the value of the key_desc
member replaces "name". Thus, if the key_desc member is set to "x,y" as was used in an
example above, the following usage message would be displayed:

Usage:
a.out option=x,y

The key_desc structure member can be used by the programmer to clarify the usage
message as well as specify single or multiple required components of a single option
answer.

12.15.5.2.4.gisprompt Member

The gisprompt Option structure item requires a bit more description. The three comma-
separated (no spaces allowed) sub-arguments are defined as follows:

First argument :
"old" results in a call to the GRASS library subroutineG_ask_old(p. 75), "new" to
G_ask_new(p. 75), "any" to G_ask_any(p. 76), and "mapset" to
G_ask_in_mapset(p. 75).

Second argument :
This is identical to the "element" argument in the above subroutine calls. It specifies
a directory inside the mapset that may contain the user’s response.

Third argument :
Identical to the "prompt" argument in the above subroutine calls. This is a string
presented to the user that describes the type of data element being requested.

Here are two examples:

gisprompt arguments Resultingcall

"new,cell,raster" G_ask_new("", buffer, "cell", "raster")
"old,dig,vector" G_ask_old("",buffer, "dig", "vector")

§12 GIS Library

- 146 - - 146 -

12.15.6. CommonQuestions

"How is automatic prompting turned off?"

GRASS 4.0 introduced a new method for driving GRASS interactive and non-
interactive programs as described in§11 Compiling and Installing GRASS Programs
[p. 57]. Here is a short overview.

For most programs a user runs a front-end program out of the GRASS bin directory
which in turn looks for the existence of standard, alpha, and contributed interactive
and non-interactive versions of the program. If an interactive version exists and the
user provided no command line arguments, then that version is executed.

In such a situation, the parser’s default interaction will never be seen by the user. A
programmer using the parser is able to avoid the front-end’s default search for a
fully interactive version of the command by placing a call to
G_disable_interactive(p. 135) before callingG_parser(p. 134) (see§12.15.3 Parser
Routines[p. 134] for details.)

"Can the user mix options and flags?"

Yes. Optionsand flags can be given in any order.

"In what order does the parser present options and flags?"

Flags and options are presented by the usage message in the order that the
programmer defines them using calls toG_define_option(p. 134) and
G_define_flag(p. 134).

"How does a programmer query for coordinates?"

For any user input that requires a set of arguments (like a pair of map coordinates,)
the programmer specifies the number of arguments in the key_desc member of the
Option structure.For example, if opt->key_desc was set to "x,y", the parser will
require that the user enter a pair of arguments separated only by a comma.See the
source code for the GRASS commands r.drain or r.cost for examples.

"Is a user required to use full option names?"

No! Usersare required to type in only as many characters of an option name as is
necessary to make the option choice unambiguous. If, for example, there are two
options, "input=" and "output=", the following would be valid command line
arguments:

§12 GIS Library

- 147 - - 147 -

command i=map1 o=map2
command in=map1 out=map2

"Are options standardized at all?"

Yes. Thereare a few conventions. Optionswhich identify a single input map are
usually "map=", not "raster=" or "vector=". Inthe case of an input and output map
the convention is: "input=xx output=yy". By passing the ’help’ option to existing
GRASS commands, it is likely that you will find other conventions. Thedesire is to
make it as easy as possible for the user to remember (or guess correctly) what the
command line syntax is for a given command.

12.16. StringManipulation Functions
This section describes some routines which perform string manipulation.Strings have
the usual C meaning: a NULL terminated array of characters.

These next 3 routines copy characters from one string to another.

char *
G_strcpy (dst, src) copy strings

char *dst, *src;

Copies thesrc string todst up to and including the NULL which terminates thesrc
string. Returnsdst.

char *
G_strncpy (dst, src, n) copy strings

char *dst, *src;
int n;

Copies at mostn characters from thesrc string todst. If src contains less thann
characters, then only those characters are copied.A NULL byte is added at the end
of dst. This implies thatdst should be at leastn+1 bytes long. Returnsdst.

Note. This routine varies from the UNIX strncpy() in that G_strncpy() ensures that
dst is NULL terminated, while strncpy() does not.

§12 GIS Library

- 148 - - 148 -

char *
G_strcat (dst, src) concatenate strings

char *dst, *src;

Appends thesrc string to the end of thedst string, which is then NULL terminated.
Returnsdst.

These next 2 routines remove unwanted white space from a single string.

char *
G_squeeze(s) remove unnecessary white space

char *s;

Leading and trailing white space is removed from the strings and internal white
space which is more than one character is reduced to a single space character.
White space here means spaces, tabs, linefeeds, newlines, and formfeeds.Returnss.

G_strip (s) remove leading/training white space

char *s;

Leading and trailing white space is removed from the strings. White space here
means only spaces and tabs. There is no return value.

This next routine copies a string to allocated memory.

char *
G_store(s) copy string to allocated memory

This routine allocates enough memory to hold the strings, copiess to the allocated
memory, and returns a pointer to the allocated memory.

These 2 routines convert between upper and lower case.

char *
G_tolcase(s) convert string to lower case

char *s;

Upper case letters in the strings are converted to their lower case equivalent.
Returnss.

§12 GIS Library

- 149 - - 149 -

char *
G_toucase(s) convert string to upper case

char *s;

Lower case letters in the strings are converted to their upper case equivalent.
Returnss.

And finally a routine which gives a printable version of control characters.

char *
G_unctrl (c) printable version of control character

unsigned char c;

This routine returns a pointer to a string which contains an English-like
representation for the characterc. This is useful for nonprinting characters, such as
control characters. Control characters are represented by ctrl-C, e.g., control A is
represented by ctrl-A.0177 is represented by DEL/RUB. Normalcharacters remain
unchanged.

This routine is useful in combination withG_intr_char(p. 152) for printing the user’s
interrupt character :

char G_intr_char();
char *G_unctrl();

printf("Your interrupt character is %s\n", G_unctrl(G_intr_char()));

Note. G_unctrl()uses a hidden static buffer which is overwritten from call to call.

12.17. EnhancedUNIX Routines
A number of useful UNIX library routines have side effects which are sometimes
undesirable. The routines here provide the same functions as their corresponding UNIX
routine, but with different side effects.

12.17.1. Runningin the Background

The standard UNIX fork() routine creates a child process which is a copy of the parent
process. Thefork() routine is useful for placing a program into the background. For
example, a program that gathers input from the user interactively, but knows that the
processing will take a long time, might want to run in the background after gathering all
the input. It would fork() to create a child process, the parent would exit() allowing the
child to continue in the background, and the user could then do other processing.

However, there is a subtle problem with this logic. The fork() routine does not protect

§12 GIS Library

- 150 - - 150 -

child processes from keyboard interrupts even if the parent is no longer running.
Ke yboard interrupts will also kill background processes that do not protect themselves.35

Thus a program which puts itself in the background may never finish if the user interrupts
another program which is running at the keyboard.

The solution is to fork() but also put the child process in a process group which is
different from the keyboard process group. G_fork() does this.

G_fork () create a protected child process

This routine creates a child process by calling the UNIX fork() routine. It also
changes the process group for the child so that interrupts from the keyboard do not
reach the child. It does not cause the parent to exit().

G_fork() returns what fork() returns: -1 if fork() failed; otherwise 0 to the child,
and the process id of the new child to the parent.

Note. Interrupts are still active for the child. Interrupts sent using thekill command,
for example, will interrupt the child.It is simply that keyboard-generated interrupts
are not sent to the child.

12.17.2. Partially Interruptible System Call

The UNIX system() call allows one program, the parent, to execute another UNIX
command or program as a child process, wait for that process to complete, and then
continue. Theproblem addressed here concerns interrupts. During the standard system()
call, the child process inherits its responses to interrupts from the parent.This means that
if the parent is ignoring interrupts, the child will ignore them as well. If the parent is
terminated by an interrupt, the child will be also.

However, in some cases, this may not be the desired effect. In a menu environment where
the parent activates menu choices by running commands using the system() call, it would
be nice if the user could interrupt the command, but not terminate the menu program
itself. The G_system() call allows this.

35 Programmers who use /bin/sh know that programs run in the background (using & on the
command line) are not automatically protected from keyboard interrupts.To protect a command
that is run in the background, /bin/sh users must donohup command&. Programmerswho use
the /bin/csh (or other variants) do not know, or forget that the C-shell automatically protects
background processes from keyboard interrupts.

§12 GIS Library

- 151 - - 151 -

G_system(command) run a shell level command

The shell level command is executed. Interrupt signals for the parent program are
ignored during the call. Interrupt signals for thecommand are enabled. The
interrupt signals for the parent are restored to their previous settings upon return.

G_system()returns the same value as system(), which is essentially the exit status
of thecommand. See UNIX manual system(1) for details.

12.18. Miscellaneous
A number of general purpose routines have been provided.

char *
G_date() current date and time

Returns a pointer to a string which is the current date and time.The format is the
same as that produced by the UNIXdatecommand.

G_gets(buf) get a line of input (detect ctrl-z)

char *buf;

This routine does agets() from stdin intobuf. It exits if end-of-file is detected.If
stdin is a tty (i.e., not a pipe or redirected) then ctrl-z is detected.

Returns 1 if the read was successful, or 0 if ctrl-z was entered.

Note. This is very useful for allowing a program to reprompt when a program is
restarted after being stopped with a ctrl-z.If this routine returns 0, then the calling
program should reprint a prompt and callG_gets() again. For example:

char buf[1024];

do {
printf("Enter some input: ") ;

} w hile (! G_gets(buf)) ;

§12 GIS Library

- 152 - - 152 -

char *
G_home() user’s home directory

Returns a pointer to a string which is the full path name of the user’s home directory.

char
G_intr_char () return interrupt char

This routine returns the user’s keyboard interrupt character. This is the character
that generates the SIGINT signal from the keyboard.

See alsoG_unctrl(p. 149) for converting this character to a printable format.

G_percent(n, total, incr) print percent complete messages

int n;
int total;
int incr;

This routine prints a percentage complete message to stderr. The percentage
complete is (n/ total)*100, and these are printed only for eachincr percentage. This
is perhaps best explained by example:

include <stdio.h>
int row;
int nrows;

nrows = 1352; /* 1352 is not a special value - example only */
fprintf (stderr, "Percent complete: ");
for (row = 0; row < nrows; row++)

G_percent (row, nrows, 10);

This will print completion messages at 10% increments; i.e., 10%, 20%, 30%, etc.,
up to 100%. Each message does not appear on a new line, but rather erases the
previous message. After 100%, a new line is printed.

char *
G_program_name() return program name

This routine returns the name of the program as set by the call toG_gisinit(p. 70).

§12 GIS Library

- 153 - - 153 -

char *
G_whoami () user’s name

Returns a pointer to a string which is the user’s login name.

G_yes(question, default) ask a yes/no question

char *question;
int default;

This routine prints aquestion to the user, and expects the user to respond either yes
or no. (Invalid responses are rejected and the process is repeated until the user
answers yes or no.)

The default indicates what the RETURN key alone should mean. Adefault of 1
indicates that RETURN means yes, 0 indicates that RETURN means no, and -1
indicates that RETURN alone is not a valid response.

Thequestionwill be appended with "(y/n) ", and, ifdefault is not -1, with "[y] " or
"[n] ", depending on thedefault.

G_yes() returns 1 if the user said yes, and 0 if the user said no.

12.19. DeletedRoutines
The following routines have been deleted from the GIS Library:

G_parse_command()
G_parse_command_usage();
G_set_parse_command_usage();

Replaced byG_parser(p. 134) andG_usage(p. 134).

G_make_histo_grey_scale()

Replaced byG_make_histogram_eq_colors(p. 116).

12.20. GISLibrary Data Structures
Some of the data structures, defined in the "gis.h" header file and used by routines in this
library, are described in the sections below.

§12 GIS Library

- 154 - - 154 -

12.20.1. structCell_head

The raster header data structure is used for two purposes. Itis used for raster header
information for map layers. It also used to hold region values. The structure is:

struct Cell_head
{

int format; /* numberof bytes per cell */
int compressed; /* compressed(1)or not compressed(0) */
int rows, cols; /* numberof rows and columns */
int proj; /* projection */
int zone; /* zone */
double ew_res; /* east-west resolution */
double ns_res; /* north-southresolution */
double north; /* northernedge */
double south; /* southernedge */
double east; /* easternedge */
double west; /* westernedge */

};

The format and compressedfields apply only to raster headers.The format field
describes the number of bytes per raster data value and thecompressedfield indicates if
the raster file is compressed or not. The other fields apply both to raster headers and
regions. Thegeographic boundaries are described bynorth, south, eastandwest. The
grid resolution is described byew_res and ns_res. The cartographic projection is
described byproj and the related zone for the projection byzone. The rows and cols
indicate the number of rows and columns in the raster file, or in the region. See§5.3
Raster Header Format [p. 26] for more information about raster headers, and§9.1 Region
[p. 49] for more information about regions.

The routines described in§12.10.1 Raster Header File[p. 106] use this structure.

12.20.2. structCategories

TheCategoriesstructure contains a title for the map layer, the largest category in the map
layer, an automatic label generation rule for missing labels, and a list of category labels.

The structure is declared:struct Categories.

This structure should be accessed using the routines described in§12.10.2 Raster
Category File[p. 108].

§12 GIS Library

- 155 - - 155 -

12.20.3. structColors

The color data structure holds red, green, and blue color intensities for raster categories.
The structure has become so complicated that it will not be described in this manual.

The structure is declared:struct Colors.

The routines described in§12.10.3 Raster Color Table [p. 111] must be used to store and
retrieve color information using this structure.

12.20.4. structHistory

TheHistory structure is used to document raster files. The information contained here is
for the user. It is not used in any operational way by GRASS. The structure is:

define MAXEDLINES 25
define RECORD_LEN 80

struct History
{

char mapid[RECORD_LEN];
char title[RECORD_LEN];
char mapset[RECORD_LEN];
char creator[RECORD_LEN];
char maptype[RECORD_LEN];
char datsrc_1[RECORD_LEN];
char datsrc_2[RECORD_LEN];
char keywrd[RECORD_LEN];
int edlinecnt;
char edhist[MAXEDLINES][RECORD_LEN];

};

The mapid andmapsetare the raster file name and mapset,title is the raster file title,
creator is the user who created the file,maptypeis the map type (which should always
be "raster"),datasrc_1anddatasrc_2describe the original data source,keywrd is a one-
line data description andedhistcontainsedlinecnt lines of user comments.

The routines described in§12.10.4 Raster History File [p. 116] use this structure. However,
there is very little support for manipulating the contents of this structure. The
programmer must manipulate the contents directly.

Note. Some of the information in this structure is not meaningful.For example, if the
raster file is renamed, or copied into another mapset, themapid and mapset will no
longer be correct. Also thetitle does not reflect the true raster file title. The true title is
maintained in the category file.

Warning. This structure has remained unchanged since the inception of GRASS.There

§12 GIS Library

- 156 - - 156 -

is a good possibility that it will be changed or eliminated in future releases.

12.20.5. structRange

TheRangestructure contains the minimum and maximum values which occur in a raster
file.

The structure is declared:struct Range.

The routines described in§12.10.5 Raster Range File [p. 117] should be used to access this
structure.

12.21. Loadingthe GIS Library
The library is loaded by specifying $(GISLIB) in the Gmakefile. Thefollowing example
is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(GISLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB)

$(GISLIB): # in case the library changes

See§11 Compiling and Installing GRASS Programs [p. 57] for a complete discussion of
Gmakefiles.

§12 GIS Library

- 157 - - 157 -

Chapter 13

Vector Library

13.1. Introduction
TheVector Library provides the GRASS programmer with routines to process the binary
vector files. It is assumed that the reader has read§4 Database Structure [p. 15] for a
general description of GRASS databases, and§6 Vector Maps[p. 33] for details about
vector file formats in GRASS.

The routines in theVector Library are presented in functional groupings, rather than in
alphabetical order. The order of presentation will, it is hoped, provide a better
understanding of how the library is to be used, as well as show the interrelationships
among the various routines. Note that a good way to understand how to use these
routines is to look at the source code for GRASS programs which use them.1

Note. All routines and global variables in this library, documented or undocumented,
start with one of the following prefixes Vect_ or V1_ or V2_ or dig_.2 To avoid name
conflicts, programmers should not create variables or routines in their own programs
which use this prefix.3

An alphabetic index is provided in§25.4 Appendix D. Index to Vector Library[p. 299].

13.1.1. IncludeFiles

The following file contains definitions and structures required by some of the routines in
this library. The programmer should therefore include this file in any code that uses this
library:4

1 Some of these programs arev.in.ascii, v.out.ascii, v.to.rast, d.vect, p.map,andv.patch.
2 All names beginning with V#_ (where # is any primary number) are also reserved for future

use.
3 Warning. There are also four additional global variables and/or routines which do NOT

begin with these prefixes:debugf, Lines_In_Memory, Mem_Line_Ptr,andMem_curr_position.
4 The GRASS compilation process, described in§11 Compiling and Installing GRASS

Programs[p. 57], automatically tells the C compiler how to find this and other GRASS header files.

§13 Vector Library

- 158 - - 158 -

include "Vect.h"

13.1.2. Vector Arc Types

A complete discussion of GRASS vector terminology can be found in§6.1 What is a
Vector Map Layer?[p. 33] and the reader should review that section.Briefly, vector data
are stored as arcs representing linear, area, or point features.These arc types are coded as
LINE, AREA, and DOT respectively, (and are #defined in the file "dig_defines.h", which
is automatically included by the file "Vect.h").

13.1.3. Levels of Access

There are two lev els of read access to these vector files:

Level One provides simple access to the arc information contained in the vector files.
There is no access to category or topology information at this level.5

Level Two provides full access to all the information contained in the vector file and its
support files, including line, category, node, and area information.This level requires
more from the programmer, more memory, and longer startup time.6

Note. Higher levels of access are planned, so when checking success return codes for a
particular level of access (when calling Vect_open_old()for example), the programmer
should use >= instead of == for compatibility with future releases.

13.2. Changesin 4.0 from 3.0
The 4.0 Vector Library changed significantly from theDig Library used with GRASS
3.1. Below is an overview of why the changes were made, and how to program using the
newVect Library.

But also see§13.9 Loading the Vector Library[p. 170].
5 The category information is available through the dig_att library, but there are no data

structures to link them to the spatial features at this level.
6 The routines in this library which processarcs are named using the word line. They should

be named using the word arc instead. Since that would require modifying a lot of existing code,
the names have not been changed.

§13 Vector Library

- 159 - - 159 -

13.2.1. Problem

The Digit Library was a collage of subroutines created for developing the map
development programs. Few of these subroutines were actually designed as a user access
library. They required individuals to assume too much responsibility and control over
what happened to the data file.Thus when it came time to change vector data file formats
for GRASS 4.0, many programs also required modification.

By using the FILE * structure as the tag for files, there was no means of expansion since
the FILE * structure is not modifiable by GRASS.For example, there was no way to
open supporting files since all that was passed in to dig_init() was a FILE * which had no
file name associated with it.

The two different access levels for 3.0 vector files provided very different ways of calling
the library; they offered little consistency for the user.

The Digit Library was originally designed to only have one file open for read or write at a
time. Althoughit was possible in some cases to get around this, one restriction was the
globalheadstructure. Sincethere was only one instance of this, there could only be one
copy of that information, and thus, only one open vector file.

13.2.2. Solution

The solution to these problems was to design a new user library as an interface to the
vector data files. This new library was designed to provide a simple consistent interface,
which hides as much of the details of the data format as possible. It also can be extended
for future enhancements without the need to change existing programs.

13.2.3. Approach

A new library VECTLIB has been created. It provides routines for opening, closing,
reading, and writing vector files, as well as several support functions. The Digit Library
has been removed, so that all existing programs will have to be converted to use the new
library. Those routines that existed in the Digit Library and were not affected by these
changes continue to exist in unmodified form, and are now included in the VECTLIB.
Most of the commonly used routines have been discarded, and replaced by the new
Vector routines.

The token that is used to identify each map is theMap_infostructure. Thisstructure was
used by level two functions in GRASS 3.1.It maintains all information about an
individual open file. This structure must be passed to most Vector subroutines.

§13 Vector Library

- 160 - - 160 -

Theheadstructure has gone away, as has the global instance of it which was also called
head. All programs which used this global structure must now create their own local
version of it. The structure that replacedstruct headis struct dig_head.

There are still two lev els of interface to the vector files (future releases may include
more). Level one provides access only to arc (i.e. polyline) information and to the type of
line (AREA, LINE, DOT). Level two provides access to polygons (areas), attributes, and
network topology. There is now only one subroutine to open a file for read,
Vect_open_old()and one for write, Vect_open_new(). Vect_open_old()attempts to
open a vector file at the highest possible level of access. Itwill return the number of the
level at which it opened.Vect_open_new() alwaysopens at level 1 only.

If you require that a file be opened at a lower level (e.g. one), you can call the routine
Vect_set_open_level(1); Vect_open_old()will then either open at level one or fail. If
you instead require the highest level access possible, you should not use
Vect_set_open_level(), but instead check the return value of Vect_open_old()to make
sure it is greater than or equal to the lowest level at which you need access. This allows
for future levels to work without need for program change.

13.2.4. Implementation

There are two macros set up for use in the Gmakefile to support the Vector library:

EXTRA_CFLAGS = $(VECT_INCLUDE)
must exist in the Gmakefile for any program which uses the Vector library. NOTE:
GRASS 3.1 required the line-I$(DIG_INCLUDE) ; do NOT use -I with
VECT_INCLUDE .

$(VECTLIB)
is to be used on the link statement to include the vector library.7 This basically
replaces the$(DIGLIB) macro from 3.1. Currently this macro represents two
different libraries which are in directories:src/mapdev/Vlibandsrc/mapdev/diglib.
These will probably change in the future and are given only for aid in looking up
include files or functions.

The basic format of a program that reads a vector file is:

#include "Vect.h" /*new include file */

struct Map_info Map; /* Map info */
struct line_pnts *Points; /* Poly-Line data */

G_gisinit (argv[0]); /* init GIS lib */

7 Because there are two libraries involved and there are some cross-dependencies, it may
occasionally be necessary to specify $(VECTLIB) twice on the link statement in order to resolve
all references.

§13 Vector Library

- 161 - - 161 -

if (0 > Vect_open_old (&Map, name, mapset)) /* open file */
G_fatal_error ("Cannot open vector file");

Points = Vect_new_line_struct (\h’|209350u’);

while (0 < Vect_read_next_line (&Map, Points)) /* loop reading */
{ / * each line */

/* do something with Points */
}

Vect_destroy_line_struct (Points); /* remove allocation */
Vect_close (&Map); /* close up */

All Vect_ routines work in the same way on any lev el of access unless otherwise
noted. Routinesthat are designed for one level of access or another have the naming
convention V#_ where# is an integer (currently 1 or 2).For example: V2_line_att
() is only valid with level 2 or higher access, and will return the attribute number
for a specified line.

13.3. Openingand closing vector maps

Vect_open_old(Map, name, mapset) open existing vector map

struct Map_info *Map;
char *name, *mapset;

This routine opens the vector mapname in mapsetfor reading. It returns the level
of successful open, or a negative value on failure.

Vect_open_new(Map, name) open new vector map

struct Map_info *Map;
char *name;

This routine opens the vector mapname in the current mapset for writing.It returns
the level of successful open which must be one, or a negative value on failure.

§13 Vector Library

- 162 - - 162 -

Vect_set_open_level (level) specify level for opening map

int level;

This routine allows you to specify at whichlevel the map is to be opened.It is
recommended that it only be used to force opening at level one(1). Thereis no
return value.

Vect_close(Map) close a vector map

struct Map_info *Map;

This routine closes an open vector map and cleans up the structures associated with
it. It MUST be called before exiting the program.When used in conjunction with
Vect_open_new(p. 161), it will cause the final writing of the vector header before
closing the vector map.The header data is in the structureMap->head, which also
changed in 4.0 to be an instance of the structure (struct dig_head head) instead of a
pointer (struct dig_head *head).

13.4. Readingand writing vector maps

Vect_read_next_line(Map, Points) read next vector line

struct Map_info *Map;
struct line_pnts *Points;

This is the primary routine for reading through a vector map.It simply reads the
next line from the map into thePoints structure. Thisroutine should not be used in
conjunction with any other read_line routine. Return value is type of line, or

-2 on EOF
-1 on Error (generally out of memory)

This routine is modified by:

Vect_rewind(p. 163)
Vect_set_constraint_region(p. 163)
Vect_set_constraint_type(p. 163)

This routine normally only reads lines that are "alive" (as opposed to dead or
deleted) from the vector map. This can be overridden using
Vect_set_constraint_type(Map,-1).

§13 Vector Library

- 163 - - 163 -

Vect_rewind (Map) re wind vector map for re-reading

struct Map_info *Map;

This routine will reset the read pointer to the beginning of the map. This only
affects the routineVect_read_next_line(p. 162).

Vect_set_constraint_region(Map, n, s, e, w) set restricted region to read vector arcs from

struct Map_info *Map;
double n, s, e, w;

This routine will set a restriction on reading only those lines which fall entirelyor
partially in the specified rectangular region. Vect_read_next_line(p. 162) is currently
the only routine affected by this, and it does NOT currently cause line clipping.

Constraints affect only theMap specified. They do not affect any other Maps that
may be open.

Vect_set_constraint_type(Map, type) specify types of arcs to read

struct Map_info *Map;
int type;

This routine will set a restriction on reading only those lines which match thetypes
specified. Thiscan be any combination of types bitwise OR’ed together. For
example: LINE | AREAwould exclude any DOT (or future NEAT) linetypes.

Vect_read_next_line(p. 162) is currently the only routine affected by this.

If type is set to -1, all lines will be read including deleted ordead lines. An
example of this exists inv.out.ascii, where it is desirable to include all lines, (ie. not
exclude deleted lines).

Constraints affect only theMap specified. They do not affect any other Maps that
may be open.

§13 Vector Library

- 164 - - 164 -

Vect_remove_constraints(Map) unset any vector read constraints

struct Map_info *Map;

Removes all constraints currently affectingMap.

long
Vect_write_line (Map, type, Points) write out arc to vector map

struct Map_info *Map;
int type;
struct line_pnts *Points;

This routine will write out a line to a vector map which has previously been opened
for write byVect_open_new(p. 161). Thetype of line is one of: AREA, LINE, DOT

It returns the offset into the file where the line started. If this number is negative or
0, there was an error.

V1_read_line(Map, Points, offset) read vector arc by specifying offset

struct Map_info *Map;
struct line_pnts *Points;
long offset;

This routine will read a line from the vector map at the specifiedoffset in the file.
This function is available at level 1 or higher.

Return value is the same asVect_read_next_line(p. 162).

V2_read_line(Map, Points, line) read vector arc by specifying line id

struct Map_info *Map;
struct line_pnts *Points;
int line;

This routine will read a line from the vector map at the specified line index in the
map. Referto V2_num_lines(p. 167) for number of lines in the map. This function is
available at level 2 or higher.

Return value is the same asVect_read_next_line(p. 162).

§13 Vector Library

- 165 - - 165 -

13.5. DataStructures

struct line_pnts *
Vect_new_line_struct() create new initialized line points structure

This routine MUST be used to initialize any and all line_pnts structures.You cannot
simply create a line_pnts structure and pass its address to routines.It must first be
initialized. Thecorrect procedure is:

struct line_pnts *Points;

Points = Vect_new_line_struct();

This routine will print an error message and exit with an error on out of memory
condition.

Vect_destroy_line_struct(Points) deallocate line points structure space

struct line_pnts *Points;

This routine will free any memory created for a line_pnts structure.You can use
this when you are done with a line_pnts struct or when you need to free up unused
memory. The structure must have been created byVect_new_line_struct(p. 165).

13.6. DataConversion

Vect_copy_xy_to_pnts(Points, x, y, n) convert xy arrays to line_pnts structure

struct line_pnts *Points;
double *x, *y;
int n;

Since all Vector library routines require the use of the line_pnts structure, and many
programs out there work with X and Y arrays of points, this routine was to created
to copy n data pairs fromx,y arrays to a line_pnts structurePoints. It handles all
memory management.

§13 Vector Library

- 166 - - 166 -

Vect_copy_pnts_to_xy(Points, x, y, n) convert line_pnts structure to xy arrays

struct line_pnts *Points;
double *x, *y;
int *n;

Since all Vector library routines require the use of the line_pnts structure, and many
programs out there work with X and Y arrays of points, this routine was to created
to copy data from a line_pnts structurePoints into user suppliedx,y arrays. Thex,y
arrays MUST each be large enough to holdPoints.n_points doubles or memory
corruption will occur. No bounds checking is done. Upon returnn will contain the
number of points copied.

Vect_copy_head_data(from, to) copy vector header struct data

struct dig_head *from, *to;

This routine should be used to copy data from one dig_head structto another. For
example, if a 3.1 program used to fill in a local dig_head struct and then called
dig_write_head_binary() (which no longer exists), you would now call
Vect_copy_head_data (local_head, &Map.head)to copy the data into the Map
structure which would then be written out whenVect_close(p. 162) was called.This
routine must used because there are now other fields in the head structure which
applications programmers should not touch, and this program copies only those
fields which are available to the programmer.

13.7. Miscellaneous

Vect_get_area_points(Map, area, Points) get defining points for area polygon

struct Map_info *Map;
int area;
struct line_pnts *Points;

This routine replacesdig_get_area().It will fill in the Points structure with the list
of points which describe an area in clockwise order.
Note. This function, works only for level 2 or higher.

It returns the number of points or -1 on error.

§13 Vector Library

- 167 - - 167 -

V2_num_lines(Map) get number of arcs in vector map

struct Map_info *Map;

Return total number of lines in the vectorMap.

Note. The line indexes are numbers from 1 to n, where n is the number of lines in
the vector map, as returned by this routine.

V2_num_areas(Map) get number of areas in vector map

struct Map_info *Map;

Return total number of areas in the vectorMap.

Note. The area indexes are numbers from 1 to n, where n is the number of areas in
the vector map, as returned by this routine.

V2_line_att (Map, line) get attribute number of arc

struct Map_info *Map;
int line;

Given arc index n, return its attribute number.

Returns 0 if not labeled or on error.

V2_area_att(Map, area) get attribute number of area

struct Map_info *Map;
int area;

Given area index n, return its attribute number.

Returns 0 if not labeled or on error.

§13 Vector Library

- 168 - - 168 -

V2_get_area(Map, n, pa) get area info from id

struct Map_info *Map;
int n;
P_AREA **pa;

Given area index n, the P_AREA information for the area is read into a private
structure. Apointer to this structure is placed in pa. The pointer pa is valid until the
next call to this routine. Note that *pa does not need to point to anything on entry.

Returns 0 if found, or negative on error.

V2_get_area_bbox(Map, area, n, s, e, w) get bounding box of area

struct Map_info *Map;
int area;
double *n, *s, *e, *w;

Given area index n, set n (north, s (south), e (east), and w (west) to the values of the
bounding box for the area.

Returns 0 if ok, or -1 on error.

V2_get_line_bbox(Map, line, n, s, e, w) get bounding box of arc

struct Map_info *Map;
int line;
double *n, *s, *e, *w;

Given arc index n, set n (north, s (south), e (east), and w (west) to the values of the
bounding box for the arc.

Returns 0 if ok, or -1 on error.

§13 Vector Library

- 169 - - 169 -

Vect_print_header (Map) print header info to stdout

struct Map_info *Map;

This routine replaces dig_print_header(), and simply displays selected information
from the header. Namely organization, map name, source date, and original scale.

Vect_level (Map) get open level of vector map

struct Map_info *Map;

This routine will return the number of the level at which aMap is opened at or -1 if
Map is not opened.8

13.8. Routinesthat remain from GRASS 3.1

dig_point_to_area(Map, x, y) find which area point is in

struct Map_info *Map;
double x, y;

Returns the index of the area containing the pointx,y, or 0 if none found.

double
dig_point_in_area(Map, x, y, pa) is point in area?

struct Map_info *Map;
double x, y;
P_AREA *pa;

Given a filled P_AREA structurepa, determine if x,y is within the area.The
structurepa can be filled withV2_get_area(p. 168).

Returns 0.0 ifx,y is not in the area, the positive minimum distance to the nearest
area edge ifx,y is inside the area, or -1.0 on error.

8 The levels correspond to the 3.1 level 1 and level 2 accesses.

§13 Vector Library

- 170 - - 170 -

dig_point_to_line (Map, x, y, type) find which arc point is closest to

struct Map_info *Map;
double x, y;
char type;

Returns the index of the arc which is nearest to the pointx,y. The pointx,y must be
within the arc’s bounding box.Settype to a combination of LINE, AREA, or DOT
(eg. LINE | AREA), or (char) -1 if you want to search all arc types.

dig_check_dist(Map, n, x, y, d) find distance of point to line

struct Map_info *Map;
int n;
double x, y;
double *d;

Computesd, the square of the minimum distance from pointx,y to arcnR.

Returns the number of the segment that was closest, or -1 on error. The segment
number, in combination withV2_read_line(p. 164) can be used to determine the
endpoints of the closest line-segment in the arc.

13.9. Loadingthe Vector Library
The library is loaded by specifying $(VECTLIB) in the Gmakefile. The following
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile using $(VECTLIB)

OBJ = main.o sub1.o sub2.o
EXTRA_CFLAGS = $(VECT_INCLUDE)

$(BIN_MAIN_CMD)/pgm: $(OBJ) $(VECTLIB) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(VECTLIB) $(GISLIB)

$(VECTLIB): # in case the library changes

Note. EXTRA_CFLAGS tells the C compiler where additional #include files are
located. This is necessary since the required # include files do not currently live in the
normal GRASS # include directory. Notice that -I must not be provided before the
$(VECT_INCLUDE)
Note. Because $(VECTLIB) currently references two distinct libraries, on occasion it
may be necessary to specify it twice on the link command because of library cross-
references.

§13 Vector Library

- 171 - - 171 -

See§11 Compiling and Installing GRASS Programs [p. 57] for a complete discussion of
Gmakefiles.

§13 Vector Library

- 172 - - 172 -

- 173 - - 173 -

Chapter 14

Imagery Library

14.1. Introduction
The Imagery Library was created for version 3.0 of GRASS to support integrated image
processing directly in GRASS. It contains routines that provide access to thegroup
database structure which was also introduced in GRASS 3.0 for the same purpose.1

It is assumed that the reader has read§4 Database Structure [p. 15] for a general
description of GRASS databases,§8 Image Data: Groups [p. 43] for a description of
imagery groups, and§5 Raster Maps[p. 23] for details about map layers in GRASS.

The routines in theImagery Library are presented in functional groupings, rather than in
alphabetical order. The order of presentation will, it is hoped, provide a better
understanding of how the library is to be used, as well as show the interrelationships
among the various routines. Note that a good way to understand how to use these
routines is to look at the source code for GRASS programs which use them.2

Most routines in this library require that the header file "imagery.h" be included in any
code using these routines.3 Therefore, programmers should always include this file when
writing code using routines from this library:

include "imagery.h"

This header file includes the "gis.h" header file as well.

Note. All routines and global variables in this library, documented or undocumented,
start with the prefixI_. To avoid name conflicts, programmers should not create variables
or routines in their own programs which use this prefix.

1 Since this is a new library, it is expected to grow. It is hoped that image analysis functions will
be added to complement the database functions already in the library.

2 See§8.4 Imagery Programs[p. 47] for a list of some imagery programs.
3 The GRASS compilation process, described in§11 Compiling and Installing GRASS

Programs[p. 57], automatically tells the C compiler how to find this and other GRASS header files.

§14 Imagery Library

- 174 - - 174 -

An alphabetic index is provided in§25.4 Appendix E. Index to Imagery Library [p. 301].

14.2. Group Processing
The group is the key database structure which permits integration of image processing in
GRASS.

14.2.1. Prompting for a Group

The following routines interactively prompt the user for a group name in the current
mapset.4 In each, theprompt string will be printed as the first line of the full prompt
which asks the user to enter a group name.If prompt is the empty string "", then an
appropriate prompt will be substituted. The name that the user enters is copied into the
group buffer.5 These routines have a built-in ’list’ capability which allows the user to get
a list of existing groups.

The user is required to enter a valid group name, or else hit the RETURN key to cancel
the request. If the user enters an invalid response, a message is printed, and the user is
prompted again. If the user cancels the request, 0 is returned; otherwise, 1 is returned.

I_ask_group_old(prompt, group) prompt for an existing group

char *prompt;
char *group;

Asks the user to enter the name of an existinggroup in the current mapset.

I_ask_group_new(prompt, group) prompt for new group

char *prompt;
char *group;

Asks the user to enter a name for agroup which does not exist in the current
mapset.

4 This library only works with groups in the current mapset. Other mapsets, even those in the
user’s mapset search path, are ignored.

5 The size ofgroup should be large enough to hold any GRASS file name. Most systems allow
file names to be quite long. It is recommended thatnamebe declaredchar group[50].

§14 Imagery Library

- 175 - - 175 -

I_ask_group_any(prompt, group) prompt for any valid group name

char *prompt;
char *group;

Asks the user to enter a valid group name. Thegroup may or may not exist in the
current mapset.

Note. The user is not warned if thegroup exists. The programmer should use
I_find_group(p. 175) to determine if thegroup exists.

Here is an example of how to use these routines. Note that the programmer must handle
the 0 return properly:

char group[50];

if (! I_ask_group_any ("Enter group to be processed", group))
exit(0);

14.2.2. FindingGroups in the Database

Sometimes it is necessary to determine if a given group already exists. The following
routine provides this service:

I_find_group (group) does group exist?

char *group;

Returns 1 if the specifiedgroup exists in the current mapset; 0 otherwise.

14.2.3. REFFile

These routines provide access to the information contained in the REF file for groups and
subgroups, as well as routines to update this information.They use theRef structure,
which is defined in the "imagery.h" header file; see§14.4 Imagery Library Data
Structures[p. 180].

The contents of the REF file are read or updated by the following routines:

§14 Imagery Library

- 176 - - 176 -

I_get_group_ref (group, ref) read group REF file

char *group;
struct Ref *ref;

Reads the contents of the REF file for the specifiedgroup into theref structure.

Returns 1 if successful; 0 otherwise (but no error messages are printed).

I_put_group_ref (group, ref) write group REF file

char *group;
struct Ref *ref;

Writes the contents of theref structure to the REF file for the specifiedgroup.

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. This routine will create thegroup, if it does not already exist.

I_get_subgroup_ref(group, subgroup, ref) read subgroup REF file

char *group;
char *subgroup;
struct Ref *ref;

Reads the contents of the REF file for the specifiedsubgroup of the specifiedgroup
into theref structure.

Returns 1 if successful; 0 otherwise (but no error messages are printed).

I_put_subgroup_ref (group, subgroup, ref) write subgroup REF file

char *group;
char *subgroup;
struct Ref *ref;

Writes the contents of theref structure into the REF file for the specifiedsubgroup
of the specifiedgroup.

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. This routine will create thesubgroup, if it does not already exist.

These next routines manipulate theRef structure:

§14 Imagery Library

- 177 - - 177 -

I_init_group_ref (ref) initialize Ref structure

struct Ref *ref;

This routine initializes theref structure for other library calls which require aRef
structure. This routine must be called before any use of the structure can be made.

Note. The routinesI_get_group_ref(p. 176) and I_get_subgroup_ref(p. 176) call this
routine automatically.

I_add_file_to_group_ref(name, mapset, ref) add file name to Ref structure

char *name;
char *mapset;
struct Ref *ref;

This routine adds the filenameandmapsetto the list contained in theref structure,
if it is not already in the list. Theref structure must have been properly initialized.

This routine is used by programs, such asi.maxlik, to add to the group new raster
files created from files already in the group.

Returns the index into the file array within theref structure for the file after
insertion; see§14.4 Imagery Library Data Structures[p. 180].

I_transfer_group_ref_file (src, n, dst) copy Ref lists

struct Ref *src;
int n;
struct Ref *dst;

This routine is used to copy file names from oneRef structure to another. The name
and mapset for filen from thesrc structure are copied into thedst structure (which
must be properly initialized).

For example, the following code copies oneRef structure to another :

struct Ref src,dst;
int n;

/* some code to get information intosrc */
.
.
.

I_init_group_ref (&dst);
for (n = 0; n < src.nfiles; n++)

I_transfer_group_ref_file (&src, n, &dst);

This routine is used byi.pointsto create the REF file for a subgroup.

§14 Imagery Library

- 178 - - 178 -

I_free_group_ref (ref) free Ref structure

struct Ref *ref;

This routine frees memory allocated to theref structure.

14.2.4. TARGET File

The following two routines read and write the TARGET file.

I_get_target (group, location, mapset) read target information

char *group;
char *location;
char *mapset;

Reads the target location and mapset from the TARGET file for the specified
group.

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

This routine is used byi.points and i.rectify and probably should not be used by
other programs.

Note. This routine doesnot validate the target information.

I_put_target (group, location, mapset) write target information

char *group;
char *location;
char *mapset;

Writes the targetlocation andmapsetto the TARGET file for the specifiedgroup.

Returns 1 if successful; 0 otherwise (but no error messages are printed).

This routine is used byi.target and probably should not be used by other programs.

Note. This routine doesnot validate the target information.

14.2.5. POINTSFile

The following routines read and write the POINTS file, which contains the image
registration control points. This file is created and updated by the programi.points, and
read byi.rectify.

§14 Imagery Library

- 179 - - 179 -

These routines use theControl_Points structure, which is defined in the "imagery.h"
header file; see§14.4 Imagery Library Data Structures[p. 180].

Note. The interface to theControl_Points structure provided by the routines below is
incomplete. Aroutine to initialize the structure is needed.

I_get_control_points(group, cp) read group control points

char *group;
struct Control_Points *cp;

Reads the control points from the POINTS file for thegroup into thecp structure.

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. An error message is printed if the POINTS file is invalid, or does not exist.

I_new_control_point (cp, e1, n1, e2, n2, status) add new control point

struct Control_Points *cp;
double e1, n1;
double e2, n2;
int status;

Once the control points have been read into thecp structure, this routine adds new
points to it. The new control point is given by e1 (column) andn1 (row) on the
image, and thee2 (east) andn2 (north) for the target database. The value ofstatus
should be 1 if the point is a valid point; 0 otherwise.6

I_put_control_points (group, cp) write group control points

char *group;
struct Control_Points *cp;

Writes the control points from thecp structure to the POINTS file for the specified
group.

Note. Points incp with a negativestatusare not written to the POINTS file.

6 Use of this routine implies that the point is probably good, sostatusshould be set to 1.

§14 Imagery Library

- 180 - - 180 -

14.3. Loadingthe Imagery Library
The library is loaded by specifying $(IMAGERYLIB) in the Gmakefile. Thefollowing
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(IMAGERYLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(IMAGERYLIB) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(IMAGERYLIB) $(GISLIB)

$(IMAGERYLIB): # in case the library changes
$(GISLIB): # in case the library changes

Note. This library must be loaded with $(GISLIB) since it uses routines from that
library. See§12 GIS Library[p. 69] for details on that library.

See§11 Compiling and Installing GRASS Programs [p. 57] for a complete discussion of
Gmakefiles.

14.4. ImageryLibrary Data Structures
Some of the data structures in the "imagery.h" header file are described below.

14.4.1. structRef

The Ref structure is used to hold the information from the REF file for groups and
subgroups. The structure is:

§14 Imagery Library

- 181 - - 181 -

struct Ref
{

int nfiles; /* numberof REF files */
struct Ref_Files
{

char name[30]; /* REF file name */
char mapset[30]; /* REF file mapset */

} * file;
struct Ref_Color
{

unsigned char *table; /* color table for min-max values */
unsigned char *index; /* datatranslation index * /
unsigned char *buf; /* data buffer for reading color file */
int fd; /* for image i/o */
CELL min, max; /* min,maxCELL values */
int n; /* index into Ref_Files */

} r ed, grn, blu;

} ;

The Ref structure hasnfiles (the number of raster files),file (the name and mapset of
each file), andred,grn,blu (color information for the group or subgroup7).

There is no function interface to thenfiles andfile elements in the structure. This means
that the programmer must reference the elements of the structure directly.8 The name and
mapset for thei th file arefile[i].name, andfile[i].mapset.

For example, to print out the names of the raster files in the structure:

int i;
struct Ref ref;

.

.

.
/* some code to get the REF file for a group intoref */

.

.

.
for (i = 0; i < ref.nfiles; i++)

printf ("%s in %s\n", ref.file[i].name, ref.file[i].mapset);

14.4.2. structControl_Points

The Control_Pointsstructure is used to hold the control points from the group POINTS
file. Thestructure is:

7 The red,grn,blu elements are expected to change as the imagery code develops. Do not
reference them. Pretend they do not exist.

8 Thenfiles andfile elements are not expected to change in the future.

§14 Imagery Library

- 182 - - 182 -

struct Control_Points
{

int count; /* numberof control points */
double *e1; /* imageeast (column) */
double *n1; /* imagenorth (row) */
double *e2; /* target east */
double *n2; /* target north */
int *status; /* statusof control point */

} ;

The number of control points iscount. Control pointi is e1[i], n1[i], e2[i], n2[i], and
its status isstatus[i].

§14 Imagery Library

- 183 - - 183 -

Chapter 15

Raster Graphics Library

15.1. Introduction
The Raster Graphics Library provides the programmer with access to the GRASS
graphics devices. All video graphics calls are made through this library (directly or
indirectly). No standard/portable GRASS video graphics program drives any video
display directly. This library provides a powerful, but limited number of graphics
capabilities to the programmer. The tremendous benefit of this approach is seen in the
ease with which GRASS graphics applications programs port to new machines or
devices. Becauseno device-dependent code exists in application programs, virtually all
GRASS graphics programs port without modification.Each graphics device must be
provided a driver (or translator program).At run-time, GRASS graphics programs
rendezvous with a user-selected driver program. Two significant prices are paid in this
approach to graphics: 1) graphics displays run significantly slower, and 2) the
programmer does not have access to fancy (and sometimes more efficient) resident library
routines that have been specially created for the device.

This library uses a couple of simple concepts. First, there is the idea of a current screen
location. Thereis nothing which appears on the graphics monitor to indicate the current
location, but many graphic commands begin their graphics at this location.It can, of
course, be set explicitly. Second, there is always a current color. Many graphic
commands will do their work in the currently chosen color.

The programmer always works in the screen coordinate system.Unlike many graphics
libraries developed to support CAD, there is no concept of a world coordinate system.
The programmer must address graphics requests to explicit screen locations. This is
necessary, especially in the interest of fast raster graphics.

The upper left hand corner of the screen is the origin.The actual pixel rows and columns
which define the edge of the video surface are returned with calls toR_screen_left(p. 186),
R_screen_rite(p. 186), R_screen_bot(p. 186), andR_screen_top(p. 186).

Note. All routines and global variables in this library, documented or undocumented,
start with the prefixR_. To avoid name conflicts, programmers should not create

§15 Raster Graphics Library

- 184 - - 184 -

variables or routines in their own programs which use this prefix.

An alphabetic index is provided in§25.4 Appendix G. Index to Raster Graphics Library
[p. 305].

15.2. Connectingto the Driver
Before any other graphics calls can be made, a successful connection to a running and
selected graphics driver must be made.

R_open_driver () initialize graphics

Initializes connection to current graphics driver. Refer to GRASS User’s Manual
entries on thed.mon command. Ifconnection cannot be made, the application
program sends a message to the user stating that a driver has not been selected or
could not be opened.Note that only one application program can be connected to a
graphics driver at once.

After all graphics have been completed, the driver should be closed.

R_close_driver () terminate graphics

This routine breaks the connection with the graphics driver opened by
R_open_driver().

15.3. Colors
GRASS is highly dependent on color for distinguishing between different categories. No
graphic patterning is supported in any automatic way. There are two color modes.Fixed
color refers to set and immutable color look-up tables on the hardware device. In some
cases this is necessary because the graphics device does not contain programmer
definable color look-up tables (LUT). Floating colors use the LUTs of the graphics device
often in an interactive mode with the user. The basic impact on the user is that under the
fixed mode, multiple maps can be displayed on the device with apparently no color
interference between maps.Under float mode, the user may interactively manipulate the
hardware color tables (using programs such asd.colors). Otherthan the fact that in float
mode no more colors may be used than color registers available on the user’s chosen
driver, there are no other programming repercussions.

§15 Raster Graphics Library

- 185 - - 185 -

R_color_table_fixed() select fixed color table

Selects a fixed color table to be used for subsequent color calls.It is expected that
the user will follow this call with a call to erase and reinitialize the entire graphics
screen.

Returns 0 if successful, non-zero if unsuccessful.

R_color_table_float() select floating color table

Selects a float color table to be used for subsequent color calls. It is expected that
the user will follow this call with a call to erase and reinitialize the entire graphics
screen.

Returns 0 if successful, non-zero if unsuccessful.

Colors are set using integer values in the range of 0-255 to set thered, green,andblue
intensities. Infloat mode, these values are used to directly modify the hardware color
look-up tables and instantaneously modify the appearance of colors on the monitor. In
fixed mode, these values modify secondary look-up tables in the devices driver program
so that the colors involved point to the closest available color on the device.

R_reset_color(red, green, blu, num) define single color

unsigned char red, green, blue ;
int num ;

Sets color numbernum to the intensities represented byred, green,andblue.

R_reset_colors(min,max,red,green,blue) define multiple colors

int min, max ;
unsigned char *red, *green, *blue ;

Sets color numbersmin throughmax to the intensities represented in the arraysred,
green,andblue.

R_color (color) select color

int color ;

Selects thecolor to be used in subsequent draw commands.

§15 Raster Graphics Library

- 186 - - 186 -

R_standard_color(color) select standard color

int color ;

Selects the standardcolor to be used in subsequent draw commands. Thecolor
value is best retrieved using D_translate_color(p. 207). See§16 Display Graphics
Library [p. 195].

R_RGB_color (red,green,blue) select color

int red, green, blue ;

When in float mode (seeR_color_table_float(p. 185)), this call selects the color most
closely matched to thered, green, and blue intensities requested. These values
must be in the range of 0-255.

15.4. BasicGraphics
Several calls are common to nearly all graphics systems. Routines exist to determine
screen dimensions, as well as routines for moving, drawing, and erasing.

R_screen_bot() bottom of screen

Returns the pixel row number of the bottom of the screen.

R_screen_top() top of screen

Returns the pixel row number of the top of the screen.

R_screen_left() screen left edge

Returns the pixel column number of the left edge of the screen.

R_screen_rite() screen right edge

Returns the pixel column number of the right edge of the screen.

R_move_abs(x,y) move current location

int x, y;

Move the current location to the absolute screen coordinatex,y. Nothing is drawn
on the screen.

§15 Raster Graphics Library

- 187 - - 187 -

R_move_rel (dx,dy) move current location

int dx, dy;

Shift the current screen location by the values indx anddy:

Newx = Oldx + dx;
Newy = Oldy + dy;

Nothing is drawn on the screen.

R_cont_abs(x,y) draw line

int x, y;

Draw a line using the current color, selected viaR_color(p. 185), from the current
location to the location specified byx,y. The current location is updated tox,y.

R_cont_rel (dx,dy) draw line

int dx, dy;

Draw a line using the current color, selected viaR_color(p. 185), from the current
location to the relative location specified bydx and dy. The current location is
updated:

Newx = Oldx + dx;
Newy = Oldy + dy;

R_box_abs(x1,y1,x2,y2) fill a box

int x1,y1;
int x2,y2;

A box is drawn in the current color using the coordinatesx1,y1 and x2,y2 as
opposite corners of the box. The current location is updated tox2,y2.

R_box_rel (dx,dy) fill a box

int dx, dy;

A box is drawn in the current color using the current location as one corner and the
current location plusdx and dy as the opposite corner of the box. The current
location is updated:

Newx = Oldx + dx;
Newy = Oldy + dy;

§15 Raster Graphics Library

- 188 - - 188 -

R_erase() erase screen

Erases the entire screen to black.

R_flush () flush graphics

Send all pending graphics commands to the graphics driver. This is done
automatically when graphics input requests are made.

R_stabilize() synchronize graphics

Send all pending graphics commands to the graphics driver and cause all pending
graphics to be drawn (provided the driver is written to comply). This routine does
more thanR_flush(p. 188) and in many instances is the more appropriate routine fo
the two to use.

15.5. Poly Calls
In many cases strings of points are used to describe a complex line, a series of dots, or a
solid polygon. Absolute and relative calls are provided for each of these operations.

R_polydots_abs(x,y,num) draw a series of dots

int *x, *y;
int num;

Pixels at thenum absolute positions in thex andy arrays are turned to the current
color. The current position is left updated to the position of the last dot.

R_polydots_rel(x,y,num) draw a series of dots

int *x, *y;
int num;

Pixels at thenum relative positions in thex andy arrays are turned to the current
color. The first position is relative to the starting current location; the succeeding
positions are then relative to the previous position. The current position is updated to
the position of the last dot.

§15 Raster Graphics Library

- 189 - - 189 -

R_polygon_abs(x,y,num) draw a closed polygon

int *x, *y;
int num;

Thenum absolute positions in thex andy arrays outline a closed polygon which is
filled with the current color. The current position is left updated to the position of
the last point.

R_polygon_rel(x,y,num) draw a closed polygon

int *x, *y;
int num;

The num relative positions in thex andy arrays outline a closed polygon which is
filled with the current color. The first position is relative to the starting current
location; the succeeding positions are then relative to the previous position.The
current position is updated to the position of the last point.

R_polyline_abs(x,y,num) draw an open polygon

int *x, *y;
int num;

The num absolute positions in thex and y arrays are used to generate a
multisegment line (often curved). Thisline is drawn with the current color. The
current position is left updated to the position of the last point.

Note. It is not assumed that the line is closed, i.e., no line is drawn from the last
point to the first point.

R_polyline_rel (x,y,num) draw an open polygon

int *x, *y;
int num;

Thenum relative positions in thex andy arrays are used to generate a multisegment
line (often curved). Thefirst position is relative to the starting current location; the
succeeding positions are then relative to the previous position. The current position
is updated to the position of the last point. This line is drawn with the current color.

Note. No line is drawn between the last point and the first point.

15.6. RasterCalls
GRASS, being principally a raster-based data system, requires efficient drawing of raster
information to the display device. Thesecalls provide that capability.

§15 Raster Graphics Library

- 190 - - 190 -

R_raster (num,nrows,withzero,raster) draw a raster

int num, nrows, withzero ;
int *raster ;

Starting at the current position, thenum colors represented in theraster array are
drawn for nrows consecutive pixel rows. Thewithzero flag is used to indicate
whether 0 values are to be treated as a color (1) or should be ignored (0).If ignored,
those screen pixels in these locations are not modified.This option is useful for
graphic overlays.

R_set_RGB_color(red,green,blue) initialize graphics

unsigned char red[256], green[256], blue[256] ;

The three 256 member arrays,red, green,andblue, establish look-up tables which
translate the raw image values supplied inR_RGB_raster(p. 190) to color intensity
values which are then displayed on the video screen.These two commands are
tailor-made for imagery data coming off sensors which give values in the range of
0-255.

R_RGB_raster (num,nrows,red,green,blue,withzero) draw a raster

int num, nrows, withzero ;
unsigned char *red, *green, *blue ;

This is useful only in fixed color mode (seeR_color_table_fixed(p. 185)). Startingat
the current position, thenum colors represented by the intensities described in the
red, green,andblue arrays are drawn fornrows consecutive pixel rows. The raw
values in these arrays are in the range of 0-255. They are used to map into the
intensity maps which were previously set with R_set_RGB_color(p. 190). The
withzero flag is used to indicate whether 0 values are to be treated as a color (1) or
should be ignored (0). If ignored, those screen pixels in these locations are not
modified. Thisoption is useful for graphic overlays.

15.7. Text
These calls provide access to built-in vector fonts which may be sized and clipped to the
programmer’s specifications.

§15 Raster Graphics Library

- 191 - - 191 -

R_set_window(top,bottom,left,right) set text clipping frame

int top, bottom, left, right ;

Subsequent calls toR_text(p. 192) will have text strings clipped to the screen frame
defined bytop, bottom, left, right.

R_font (font) choose font

char *font ;

Set current font tofont. Av ailable fonts are:

Font Name Description

cyrilc cyrillic

gothgbt GothicGreat Britain triplex

gothgrt GothicGerman triplex

gothitt GothicItalian triplex

greekc Greekcomplex

greekcs Greekcomplex script

greekp Greekplain

greeks Greeksimplex

italicc Italiancomplex

italiccs Italiancomplex small

italict Italiantriplex

romanc Romancomplex

romancs Romancomplex small

romand Romanduplex

romanp Romanplain

romans Romansimplex

romant Romantriplex

scriptc Scriptcomplex

scripts Scriptsimplex

R_text_size(width, height) set text size

int width, height ;

Sets text pixel width and height towidth andheight.

§15 Raster Graphics Library

- 192 - - 192 -

R_text (text) write text

char *text ;

Writes text in the current color and font, at the current text width and height,
starting at the current screen location.

R_get_text_box(text, top, bottom, left, right) get text extents

char *text ;
int *top, *bottom, *left, *right ;

The extent of the area enclosing thetext is returned in the integer pointerstop,
bottom, left, andright. No text is actually drawn. Thisis useful for capturing the
text extent so that the text location can be prepared with proper background or
border.

15.8. UserInput
The raster library provides mouse (or other pointing device) input from the user. This can
be accomplished with a pointer, a rubber-band line or a rubber-band box.Upon pressing
one of three mouse buttons, the current mouse location and the button pressed are
returned.

R_get_location_with_pointer(nx,ny,button) get mouse location using pointer

int *nx, *ny, *button ;

A cursor is put on the screen at the location specified by the coordinate found at the
nx,ny pointers. Thiscursor tracks the mouse (or other pointing device) until one of
three mouse buttons are pressed.Upon pressing, the cursor is removed from the
screen, the current mouse coordinates are returned by thenx andny pointers, and
the mouse button (1 for left, 2 for middle, and 3 for right) is returned in thebutton
pointer.

R_get_location_with_line(x,y,nx,ny,button) get mouse location using a line

int x, y;
int *nx, *ny, *button ;

Similar to R_get_location_with_pointer(p. 192) except the pointer is replaced by a
line which has one end fixed at the coordinate identified by thex,y values. The
other end of the line is initialized at the coordinate identified by thenx,ny pointers.
This end then tracks the mouse until a button is pressed. The mouse button (1 for
left, 2 for middle, and 3 for right) is returned in thebutton pointer.

§15 Raster Graphics Library

- 193 - - 193 -

R_get_location_with_box(x,y,nx,ny,button) get mouse location using a box

int x, y;
int *nx, *ny, *button ;

Identical to R_get_location_with_line(p. 192) except a rubber-band box is used
instead of a rubber-band line.

15.9. Loadingthe Raster Graphics Library
The library is loaded by specifying $(RASTERLIB) in the Gmakefile. Thefollowing
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(RASTERLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(RASTERLIB) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(RASTERLIB) $(GISLIB)

$(RASTERLIB): #in case the library changes
$(GISLIB): # in case the library changes

Note. This library must be loaded with $(GISLIB) since it uses routines from that
library. See§12 GIS Library[p. 69] for details on that library.

This library is usually loaded with the $(DISPLAYLIB). See §16 Display Graphics
Library [p. 195] for details on that library.

See§11 Compiling and Installing GRASS Programs [p. 57] for a complete discussion of
Gmakefiles.

§15 Raster Graphics Library

- 194 - - 194 -

- 195 - - 195 -

Chapter 16

Display Graphics Library

16.1. Introduction
This library provides a wide assortment of higher level graphics commands which in turn
use the graphics raster library primitives. It is highly recommended that this section be
used to understand how some of the GRASS graphics commands operate.Such
programs like d.vect, d.graph,andd.rastdemonstrate how these routines work together.
The routines fall into four basic sets: 1) frame1 creation and management, 2) coordinate
conversion routines, 3) specialized efficient raster display routines, and 4) assorted
miscellaneous routines like pop-up menus and line clipping.

Note. All routines and global variables in this library, documented or undocumented,
start with the prefixD_. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic index is provided in§25.4 Appendix F. Index to Display Graphics Library
[p. 303].

16.2. Library Initialization
The following routine performs a required setup procedure. Its use is encouraged and
simplifies the use of this library.

1 In previous versions of GRASS, these were called graphic windows. To reduce ambiguity for
users, these are now called graphicframes. However, for backward compatiblity (and general
programmer confusion) the routines described here still retain their original names - the word
"window" is still used in the naming of these routines.

§16 Display Graphics Library

- 196 - - 196 -

D_setup(clear) initialize/create a frame

int clear

This routine performs a series of initialization steps for the current frame.It also
creates a full screen frame if there is no current frame. Theclear flag, if set to 1,
tells this routine to clear any information associated with the frame: graphics as well
as region information.

This routine relieves the programmer of having to perform the following idiomatic
function call sequence:

struct Cell_head region;
char name[128];
int T,B,L,R;

/* get current frame, create full_screen frame if no current frame */
if (D_get_cur_wind(name)) {

T = R_screen_top();
B = R_screen_bot();
L = R_screen_left();
R = R_screen_rite();
strcpy (name, "full_screen");
D_new_window(name, T, B, L, R);

}

if (D_set_cur_wind(name)) G_fatal_error("Current graphics frame not available") ;
if (D_get_screen_window(&T, &B, &L, &R)) G_fatal_error("Getting graphics coordinates") ;

/* clear the frame, if requested to do so */
if (clear) {

D_clear_window();
R_standard_color(D_translate_color("black"));
R_box_abs(L, T, R, B);

}

/* Set the map region associated with graphics frame */
G_get_set_window (®ion);
if (D_check_map_window(®ion)) G_fatal_error("Setting graphics coordinates") ;
if(G_set_window (®ion) < 0) G_fatal_error ("Invalid graphics region coordinates");

/* Determine conversion factors */
if (D_do_conversions(®ion, T, B, L, R)) G_fatal_error("Error calculating graphics-region conversions") ;

/* set text clipping, for good measure, and set a starting location */
R_set_window(T, B, L, R);
R_move_abs(0,0);
D_move_abs(0,0);

§16 Display Graphics Library

- 197 - - 197 -

16.3. FrameManagement
The following set of routines create, destroy, and otherwise manage graphic frames.

D_new_window(name, top, bottom, left, right) create new graphics frame

char *name ;
int top, bottom, left, right ;

Creates a new framename with coordinatestop, bottom, left, andright. If name
is the empty string "" (i.e., ∗name = = 0), the routine returns a unique string in
name.

D_set_cur_wind(name) set current graphics frame

char *name ;

Selects the framenameto be the current frame.The previous current frame (if there
was one) is outlined in grey. The selected current frame is outlined in white.

D_get_cur_wind(name) identify current graphics frame

char *name ;

Captures the name of the current frame in stringname.

D_show_window(color) outlines current frame

int color ;

Outlines current frame in color. Appropriate colors are found in
$GISBASE/src/D/libes/colors.h2 and are spelled with lowercase letters.

D_get_screen_window(top, bottom, left, right) retrieve current frame coordinates

int *top, *bottom, *left, *right ;

Returns current frame’s coordinates in the pointerstop, bottom, left, andright.

2 $GISBASE is the directory where GRASS is installed.See§10.1 UNIX Environment[p. 53]

for details.

§16 Display Graphics Library

- 198 - - 198 -

D_check_map_window(region) assign/retrieve current map region

struct Cell_head *region ;

Graphics frames can have GRASS map regions associated with them.This routine
passes the mapregion to the current graphics frame.If a GRASS region is already
associated with the graphics frame, its information is copied intoregion for use by
the calling program.Otherwise region is associated with the current graphics
frame.

Note this routine is called byD_setup(p. 196).

D_reset_screen_window(top, bottom, left, right) resets current frame position

int top, bottom, left, right ;

Re-establishes the screen position of a frame at the location specified bytop,
bottom, left, andright.

D_timestamp() give current time to frame

Timestamp the current frame.This is used primarily to identify which frames are on
top of other, specified frames.

D_erase_window() erase current frame

Erases the frame on the screen using the currently selected color.

D_remove_window () remove a frame

Removes any trace of the current frame.

D_clear_window() clears information about current frame

Removes all information about the current frame. This includes the map region and
the frame content lists.

16.4. FrameContents Management
This special set of graphics frame management routines maintains lists of frame contents.

§16 Display Graphics Library

- 199 - - 199 -

D_add_to_list(string) add command to frame display list

char *string ;

Adds string to list of screen contents.By convention, string is a command string
which could be used to recreate a part of the graphics contents. This should be done
for all screen graphics except for the display of raster maps.The
D_set_cell_name(p. 199) routine is used for this special case.

D_set_cell_name(name) add raster map name to display list

char *name ;

Stores the raster3 mapname in the information associated with the current frame.

D_get_cell_name(name) retrieve raster map name

char *name ;

Returns thenameof the raster map associated with the current frame.

D_clear_window() clear frame display lists

Removes all display information lists associated with the current frame.

16.5. CoordinateTr ansformation Routines
These routines provide coordinate transformation information. GRASS graphics
programs typically work with the following three coordinate systems:

Coordinate system Origin

Array upperleft (NW)
Display screen upper left (NW)
Earth lower left (SW)

Display screen coordinates are the physical coordinates of the display screen and are
referred to asx andy. Earth region coordinates are from the GRASS database regions
and are referred to aseast and north. Array coordinates are the columns and rows
relative to the GRASS region and are referred to ascolumnandrow.

The routineD_do_conversions(p. 200) is called to establish the relationships between
these different systems. Then a wide variety of accompanying calls provide access to
conversion factors as well as conversion routines.

3 As with the change fromwindow to frame, GRASS 4.0 changed word usage fromcell to
raster. For compatibility with existing code, the routines have not changed their names.

§16 Display Graphics Library

- 200 - - 200 -

D_do_conversions (region, top, bottom, left, right) initialize conversions

struct Cell_head *region ;
int top, bottom, right, left ;

The relationship between the earthregion and thetop, bottom, left, and right
screen coordinates is established, which then allows conversions between all three
coordinate systems to be performed.

Note this routine is called byD_setup(p. 196).

In the following routines, a value in one of the coordinate systems is converted to the
equivalent value in a different coordinate system.The routines are named based on the
coordinates systems involved. Displayscreen coordinates are represented byd, array
coordinates bya, and earth coordinates byu (which used to stand for UTM).

double
D_u_to_a_row (north) earth to array (north)

double north ;

Returns a row value in the array coordinate system when provided the
correspondingnorth value in the earth coordinate system.

double
D_u_to_a_col(east) earth to array (east)

double east ;

Returns acolumn value in the array coordinate system when provided the
correspondingeastvalue in the earth coordinate system.

double
D_a_to_d_row (row) array to screen (row)

double row ;

Returns ay value in the screen coordinate system when provided the corresponding
ro w value in the array coordinate system.

§16 Display Graphics Library

- 201 - - 201 -

double
D_a_to_d_col(column) array to screen (column)

double column ;

Returns an x value in the screen coordinate system when provided the
correspondingcolumn value in the array coordinate system.

double
D_u_to_d_row (north) earth to screen (north)

double north ;

Returns ay value in the screen coordinate system when provided the corresponding
north value in the earth coordinate system.

double
D_u_to_d_col(east) earth to screen (east)

double east ;

Returns an x value in the screen coordinate system when provided the
correspondingeastvalue in the earth coordinate system.

double
D_d_to_u_row (y) screen to earth (y)

double y ;

Returns a north value in the earth coordinate system when provided the
correspondingy value in the screen coordinate system.

double
D_d_to_u_col(x) screen to earth (x)

double x ;

Returns an east value in the earth coordinate system when provided the
correspondingx value in the screen coordinate system.

§16 Display Graphics Library

- 202 - - 202 -

double
D_d_to_a_row (y) screen to array (y)

double y ;

Returns a row value in the array coordinate system when provided the
correspondingy value in the screen coordinate system.

double
D_d_to_a_col(x) screen to array (x)

double x ;

Returns acolumn value in the array coordinate system when provided the
correspondingx value in the screen coordinate system.

int
D_reset_color(data, r, g, b) reset raster color value

CELL data ;
int r, g, b ;

Modifies the hardware colormap, provided that the graphics are not using fixed more
colors. Thehardware color register corresponding to the raster data value is set to
the combined values of r,g,b. This routine may only be called after a call to
D_set_colors(p. 203). D_reset_color(p. 202) is for use by programs such as d.colors.

Returns 1 if the hardware colormap was updated, 0 if not.A 0 value will result if
either a fixed color table transition is in effect, or because the data is not in the color
range set by the callD_set_colors(p. 203).

int
D_check_colormap_size(min,max,ncolors) verify a range of colors

CELL min, max ;
int *ncolors ;

This routine determines if the range of colors fits into the hardware colormap. If it
does, then the colors can be loaded directly into the hardware colormap and color
toggling will be possible. Otherwise a fixed lookup scheme must be used, and color
toggling will not be possible.

If the colors will fit, ncolors is set to the required number of colors (computed as
max-min+2) and 1 is returned.Otherwisencolors is set to the number of hardware
colors and 0 is returned.

§16 Display Graphics Library

- 203 - - 203 -

void
D_lookup_colors(data, n, colors) change to hardware color

CELL *data ;
int n ;
struct Colors *colors ;

The n data values are changed to their corresponding hardware color number. The
colors structure must be the same one that was passed toD_set_colors(p. 203).

void
D_color (cat, colors) select raster color for line

CELL cat ;
struct Colors #colors ;

D_color specifies a raster color to use for line drawing. SeeR_color(p. 185) for a
related routine.

16.6. RasterGraphics
The display of raster graphics is very different from the display of vector graphics.While
vector graphics routines can efficiently make use of world coordinates, the efficient
rendering of raster images requires the programmer to work within the coordinate system
of the graphics device. Theseroutines make it easy to do just that. The application of
these routines may be inspected in such commands asd.rast, r.combineand r.weight
which display graphics results to the screen.

D_set_colors(colors) establish raster colors for graphics

struct Colors *colors;

This routine sets the colors to be used for raster graphics. Thecolors structure must
be either be read usingG_read_colors(p. 111) or otherwise prepared using the
routines described in§12.10.3 Raster Color Table[p. 111].

Return values are 1 if the colors will fit into the hardware color map; 0 otherwise (in
which case a fixed color approximation based on these colors will be applied).
These return codes are not error codes, just information.

Note. Due to the way this routine behaves, it isnot correct to assume that a raster
category value can be used to index the color registers. The routines
D_lookup_colors(p. 203) or D_color(p. 203) must be used for that purpose.

§16 Display Graphics Library

- 204 - - 204 -

D_cell_draw_setup(top, bottom, left, right) prepare for raster graphics

int top, bottom, left, right ;

The raster display subsystem establishes conversion parameters based on the screen
extent defined bytop, bottom, left, and right, all of which are obtainable from
D_get_screen_window(p. 197) for the current frame.

D_draw_cell (row, raster, colors) render a raster row

int row ;
CELL *raster ;
struct Colors *colors;

The ro w gives the map array row. The raster array provides the categories for each
raster value in that row. Thecolors structure must be the same as the one passed to
D_set_colors(p. 203).

This routine is called consecutively with the information necessary to draw a raster
image from north to south.No rows can be skipped. All screen pixel rows which
represent the current map array row are rendered. The routine returns the map array
row which is needed to draw the next screen pixel row.

D_set_overlay_mode (flag) configure raster overlay mode

int flag ;

This routine determines ifD_draw_cell(p. 204) draws in overlay mode (locations
with category 0 are left untouched) or not (colored with the color for category 0).
Setflag to 1 (TRUE) for overlay mode; 0 (FALSE) otherwise.

D_raster (raster, n, repeat, colors) low level raster plotting

CELL *raster;
int n, repeat;
struct Colors *colors;

This low-level routine plots raster data. Theraster array hasn values. The raster is
plotted repeat times, one row below the other. The colors structure must be the
same one passed toD_set_colors(p. 203).

Note. This routine does not perform resampling or placement.D_draw_cell(p. 204)
does resampling and placement and then calls this routine to do the actual plotting.

Here is an example of how these routines are used to plot a raster map. The input
parameters are the raster map name and mapset and an overlay flag.

#include "gis.h"
plot_raster_map(name,mapset,overlay)

char *name, *mapset;

§16 Display Graphics Library

- 205 - - 205 -

int overlay;
{

struct Colors colors;
CELL *raster;
int row, fd, top, bottom, left, right;

/* perform plotting setup */
D_setup(!overlay);
D_get_screen_window(&top, &bottom, &left, &right);
if (D_cell_draw_setup(&top, &bottom, &left, &right)) {ERROR}
raster = G_allocate_cell_buf();

/* open raster map, read and set the colors */
if((fd = G_open_cell (name, mapset)) < 0) {ERROR}
if(G_read_colors (name, mapset), &colors) < 0) {ERROR}
D_set_colors(&colors);

/* plot */
D_set_overlay_mode(overlay);
for(row=0; row >= 0;) {

if (G_get_map_row(fd, raster, row) < 0) {ERROR}
row = D_draw_cell(row, raster, &colors);

}
G_close_cell(fd);
G_free_colors(&colors);
free(raster);

}

16.7. Window Clipping
This section describes a routine which is quite useful in many settings. Window clipping
is used for graphics display and digitizing.

D_clip (s, n, w, e, x, y, c_x, c_y) clip coordinates to window

double s, n, w, e;
double *x1, *y1, *x2, *y2 ;

A l ine represented by the coordinatesx1,y1 and x2,y2 is clipped to the window
defined bys (south), n (north), w (west), ande (east). Notethat the following
constraints must be true:

w < e
s < n

Thex1 andx2 are values to be compared tow ande. They1 andy2 are values to be
compared tos andn.

Thex1 andx2 values returned lie betweenw ande. They1 andy2 values returned
lie betweens andn.

§16 Display Graphics Library

- 206 - - 206 -

16.8. Pop-up Menus

D_popup (bcolor, tcolor, dcolor, top, left, size, options) pop-up menu

int bcolor ;
int tcolor ;
int dcolor ;
int left, top ;
int size ;
char *options[] ;

This routine provides a pop-up type menu on the graphics screen.The bcolor
specifies the background color. The tcolor is the text color. The dcolor specifies
the color of the line used to divide the menu items.The top and left specify the
placement of the top left corner of the menu on the screen.0,0 is at the bottom left
of the screen, and 100,100 is at the top right.The size of the text is given as a
percentage of the vertical size of the screen.The options array is a NULL
terminated array of character strings. The first is a menu title and the rest are the
menu options (i.e., options[0] is the menu title, and options[1], options[2], etc., are
the menu options). The last option must be the NULL pointer.

The coordinates of the bottom right of the menu are calculated based on thetop left
coordinates, thesize,the number ofoptions, and the longest option text length.If
necessary, the menu coordinates are adjusted to make sure the menu is on the
screen.

D_popup()does the following:

1 Current screen contents under the menu are saved.

2 Area is blanked with the background color and fringed with the text color.

3 Menu options are drawn using the current font.

4 User uses the mouse to choose the desired option.

5 Menu is erased and screen is restored with the original contents.

6 Number of the selected option is returned to the calling program.

16.9. Colors

D_reset_colors(colors) set colors in driver

struct Colors *colors;

Turns color information provided in thecolors structure into color requests to the
graphics driver. These colors are for raster graphics, not lines or text. See§12.10.3
Raster Color Table[p. 111] for GIS Library routines which use this structure.

§16 Display Graphics Library

- 207 - - 207 -

D_translate_color(name) color name to number

char *name ;

Takes a color name in ascii and returns the color number for that color. Returns 0 if
color is not known. The color number returned is for lines and text, not raster
graphics.

16.10. DeletedRoutines
The following routines have been deleted from the DISPLAY Library:

D_parse_command()
D_usage();

Replaced byG_parser(p. 134) andG_usage(p. 134).

D_reset_colors()

Replaced byD_reset_color(p. 202) andD_set_colors(p. 203).

D_draw_cell_row()
D_overlay_cell_row()

Replaced byD_draw_cell(p. 204) andD_set_overlay_mode(p. 204).

16.11. Loadingthe Display Graphics Library
The library is loaded by specifying $(DISPLAYLIB), $(RASTERLIB) and $(GISLIB) in
the Gmakefile. Thefollowing example is a complete Gmakefile which compiles code
that uses this library:

Gmakefile for $(DISPLAYLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(DISPLAYLIB) $(RASTERLIB) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(DISPLAYLIB) \

$(RASTERLIB) $(GISLIB)

$(DISPLAYLIB): # in case the library changes
$(RASTERLIB): #in case the library changes
$(GISLIB): # in case the library changes

Note. This library uses routines in $(RASTERLIB).See§15 Raster Graphics Library
[p. 183] for details on that library. Also $(RASTERLIB) uses routines in $(GISLIB).See
§12 GIS Library[p. 69] for details on that library.

§16 Display Graphics Library

- 208 - - 208 -

See§11 Compiling and Installing GRASS Programs [p. 57] for a complete discussion of
Gmakefiles.

16.12. Vector Graphics / Plotting Routines
This section describes routines in GISLIB and the DISPLAYLIB libraries to support
plotting of vector data. The best source for an example of how they are used is the
GRASSd.vectmodule.

16.12.1. DISPLAYLIB routines

D_setup(clear) graphics frame setup

int clear ;

Performs a full setup for the current graphics frame:1) Makes sure there is a
current graphics frame (will create a full-screen one, if not); 2) Sets the region
coordinates so that the graphics frame and the active program region agree (may
change active program region to do this); and 3) performs graphic frame/region
coordinate conversion initialization.

If clear is true, the frame is cleared (same as runningd.erase.) Otherwise,it is not
cleared.

D_set_clip_window(top, bottom, left, right) set clipping window

int top, bottom, left, right ;

Sets the clipping window to the pixel window that corresponds to the current
database region. Thisis the default.

D_set_clip_window_to_map_window() set clipping window to map window

Sets the clipping window to the pixel window that corresponds to the current
database region. Thisis the default.

§16 Display Graphics Library

- 209 - - 209 -

D_cont_abs(x, y) line to x,y

int x, y ;

Draws a line from the current position to pixel locationx,y.
Any part of the line that falls outside the clipping window is not drawn. Note. The

new position isx,y, ev en if it f alls outside the clipping window.

Returns 0 if the line was contained entirely in the clipping window, 1 if the line had
to be clipped to draw it.

D_cont_rel (x, y) line to x,y

int x, y ;

Equivalent to D_cont_abs(p. 209)(curx+x, cury+y) wherecurx,cury is the current
pixel location.

D_move_abs(x, y) move to pixel

int x, y ;

Move without drawing to pixel locationx,y, ev en if it f alls outside the clipping
window.

D_move_rel (x, y) move to pixel

int x, y ;

Equivalent to D_move_abs(p. 209)(curx+x, cury+y) wherecurx,cury is the current
pixel location.

§16 Display Graphics Library

- 210 - - 210 -

- 211 - - 211 -

Chapter 17

Lock Library

17.1. Introduction
This library provides an advisory locking mechanism. It is based on the idea that a
process will write a process id into a file to create the lock, and subsequent processes will
obey the lock if the file still exists and the process whose id is written in the file is still
running.

17.2. LockRoutine Synopses

lock_file (file, pid) create a lock

char *file;
int pid;

This routine decides if the lock can be set and, if so, sets the lock.If file does not
exist, the lock is set by creating the file and writing thepid (process id) into thefile.
If file exists, the lock may still be active, or it may have been abandoned. To
determine this, an integer is read out of the file. This integer is taken to be the
process id for the process which created the lock. If this process is still running, the
lock is still active and the lock request is denied. Otherwise the lock is considered to
have been abandoned, and the lock is set by writing thepid into thefile.

Return codes:

1 ok, lock request was successful
0 sorry, another process already has the file locked

-1 error. could not create the file
-2 error. could not read the file
-3 error. could not write the file

§17 Lock Library

- 212 - - 212 -

unlock_file (file) remove a lock

char *file;

This routine releases the lock by unlinkingfile. This routine does NOT check to see
that the process unlocking the file is the one which created the lock.The file is
simply unlinked. Programsshould of course unlock the lock if they created it.
(Note, however, that the mechanism correctly handles abandoned locks.)

Return codes:

1 ok. lock file was removed
0 ok. lock file was never there

-1 error. lock file remained after attempt to remove it.

17.3. Useand Limitations
It is worth noting that the process id used to lock the file does not have to be the process
id of the process which actually creates the lock. It could be the process id of a parent
process. The GRASS start-up shells, for example, invoke an auxiliary "locking" program
that is told the file name and the process id to use.The start-up shells simply use a
hidden file in the user’s home directory as the lock file,1 and their own process id as the
locking pid, but let the auxiliary program actually do the locking (since the lock must be
done by a program, not a shell script). The only consideration is that the parent process
not exit and abandon the lock.

Warning. Locking based on process ids requires that all processes which access the lock
file run on the same cpu. It will not work under a network environment since a process id
alone (without some kind of host identifier) is not sufficient to identify a process.

17.4. Loadingthe Lock Library
The library is loaded by specifying $(LOCKLIB) in the Gmakefile. The following
example is a complete Gmakefile which compiles code that uses this library:

1 This file is .gislock.

§17 Lock Library

- 213 - - 213 -

Gmakefile for $(LOCKLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(LOCKLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(LOCKLIB)

$(LOCKLIB): # in case the library changes

See§11 Compiling and Installing GRASS Programs [p. 57] for a complete discussion of
Gmakefiles.

§17 Lock Library

- 214 - - 214 -

- 215 - - 215 -

Chapter 18

Rowio Library

18.1. Introduction
Sometimes it is necessary to process large files which contain data in a matrix format and
keep more than one row of the data in memory at a time.For example, suppose a
program were required to look at five rows of data of input to produce one row of output
(neighborhood function). It would be necessary to allocate five memory buffers, read five
rows of data into them, and process the data in the five buffers. Thenthe next row of data
would be read into the first buffer, overwriting the first row, and the five buffers would
again be processed, etc. This memory management complicates the programming
somewhat and is peripheral to the function being developed.

The Rowio Library routines handle this memory management. These routines need to
know the number of rows of data that are to be held in memory and how many bytes are
in each row. They must be given a file descriptor open for reading. In order to abstract the
file i/o from the memory management, the programmer also supplies a subroutine which
will be called to do the actual reading of the file. The library routines efficiently see to it
that the rows requested by the program are in memory.

Also, if the row buffers are to be written back to the file, there is a mechanism for
handling this management as well.

Note. All routines and global variables in this library, documented or undocumented,
start with the prefixro wio_. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

§18 Rowio Library

- 216 - - 216 -

An alphabetic index is provided in§25.4 Appendix H. Index to Rowio Library [p. 307].

18.2. Rowio Routine Synopses
The routines in theRowio Library are described below. They use a data structure called
RO WIO which is defined in the header file "rowio.h" that must be included in any code
using these routines:1

include "rowio.h"

ro wio_setup(r, fd, nrows, len, getrow, putrow) configure rowio structure

RO WIO *r;
int fd, nrows, len;
int (*getrow)();
int (*putrow)();

Rowio_setup()initializes the ROWIO structurer and allocates the required memory
buffers. Thefile descriptorfd must be open for reading. The number of rows to be
held in memory isnrows. The length in bytes of each row is len. The routine
which will be called to read data from the file isgetrow() and must be provided by
the programmer. If the application requires that the rows be written back into the
file if changed, the file descriptorfd must be open for write as well, and the
programmer must provide aputr ow() routine to write the data into the file. If no
writing of the file is to occur, specify NULL for putr ow().

Return codes:

1 ok
-1 thereis not enough memory for buffer allocation

Thegetrow() routine will be called as follows:

getrow (fd, buf, n, len)

int fd;
char *buf;
int n, len;

When called,getrow() should read data for row n from file descriptorfd into buf
for len bytes. It should return 1 if the data is read ok, 0 if not.

1 The GRASS compilation process, described in§11 Compiling and Installing GRASS
Programs[p. 57], automatically tells the C compiler how to find this and other GRASS header files.

§18 Rowio Library

- 217 - - 217 -

Theputr ow() routine will be called as follows:

putrow (fd, buf, n, len)

int fd;
char *buf;
int n, len;

When called,putr ow() should write data for row n to file descriptorfd from buf for
len bytes. Itshould return 1 if the data is written ok, 0 if not.

char *
ro wio_get(r, n) read a row

RO WIO *r;
int n;

Rowio_get()returns a buffer which holds the data for row n from the file associated
with ROWIO structurer. If the row requested is not in memory, the getrow()
routine specified inrowio_setup(p. 216) is called to read row n into memory and a
pointer to the memory buffer containing the row is returned. Ifthe data currently in
the buffer had been changed byrowio_put(p. 218), theputr ow() routine specified in
rowio_setup(p. 216) is called first to write the changed row to disk. If row n is
already in memory, no disk read is done. The pointer to the data is simply returned.

Return codes:

NULL n is negative, or
getrow() returned 0 (indicating an error condition).

!NULL pointer to buffer containing rown.

ro wio_forget (r, n) forget a row

RO WIO *r;
int n;

Rowio_forget()tells the routines that the next request for row n must be satisfied by
reading the file, even if the row is in memory.

For example, this routine should be called if the buffer returned byrowio_get(p. 217)
is later modified directly without also writing it to the file.See §18.3 Rowio
Programming Considerations[p. 218].

§18 Rowio Library

- 218 - - 218 -

ro wio_fileno (r) get file descriptor

RO WIO *r;

Rowio_fileno()returns the file descriptor associated with the ROWIO structure.

ro wio_release(r) free allocated memory

RO WIO *r;

Rowio_release()frees all the memory allocated for ROWIO structurer. It does not
close the file descriptor associated with the structure.

ro wio_put (r, buf, n) write a row

RO WIO *r;
char *buf;
int n;

Rowio_put()writes the buffer buf, which holds the data for row n, into the ROWIO
structurer. If the row requested is currently in memory, the buffer is simply copied
into the structure and marked as having been changed. It will be written out later.
Otherwise it is written immediately. Note that when the row is finally written to
disk, theputr ow() routine specified inrowio_setup(p. 216) is called to write row n to
the file.

ro wio_flush (r) force pending updates to disk

RO WIO *r;

Rowio_flush()forces all rows modified byrowio_put(p. 218) to be written to the file.
This routine must be called before closing the file or releasing the rowio structure if
rowio_put()has been called.

18.3. Rowio Programming Considerations
If the contents of the row buffer returned by rowio_get()are modified, the programmer
must either write the modified buffer back into the file or call rowio_forget(). If this is
not done, the data for the row will not be correct if requested again. The reason is that if
the row is still in memory when it is requested a second time, the new data will be
returned. If it is not in memory, the file will be read to get the row and the old data will be
returned. If the modified row data is written back into the file, these routines will behave
correctly and can be used to edit files. If it is not written back into the file, rowio_forget()
must be called to force the row to be read from the file when it is next requested.

Rowio_get()returns NULL if getrow() returns 0 (indicating an error reading the file), or
if the row requested is less than 0.The calling sequence for rowio_get()does not permit
error codes to be returned. If error codes are needed, they can be recorded by getrow() in
global variables for the rest of the program to check.

§18 Rowio Library

- 219 - - 219 -

18.4. Loadingthe Rowio Library
The library is loaded by specifying $(ROWIOLIB)2 in the Gmakefile. Thefollowing
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(ROWIOLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(ROWIOLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(ROWIOLIB)

$(ROWIOLIB): # in case the library changes

See§11 Compiling and Installing GRASS Programs [p. 57] for a complete discussion of
Gmakefiles.

2 This variable was NOT defined in releases 3.0 and 3.0A.Edit the file
$GISBASE/src/CMD/make.mid and add the lineROWIOLIB= $(LIBDIR)/ r owio.a at the bottom
of the file.

§18 Rowio Library

- 220 - - 220 -

- 221 - - 221 -

Chapter 19

Segment Library

19.1. Introduction
Large data files which contain data in a matrix format often need to be accessed in a
nonsequential or random manner. This requirement complicates the programming.
Methods for accessing the data are to:

(1) readthe entire data file into memory and process the data as a two-dimensional
matrix,

(2) performdirect access i/o to the data file for every data value to be accessed, or

(3) readonly portions of the data file into memory as needed.

Method (1) greatly simplifies the programming effort since i/o is done once and data
access is simple array referencing.However, it has the disadvantage that large amounts
of memory may be required to hold the data. The memory may not be available, or if it is,
system paging of the program may severely degrade performance. Method (2) is not
much more complicated to code and requires no significant amount of memory to hold
the data. But the i/o involved will certainly degrade performance. Method (3) is a
mixture of (1) and (2). Memory requirements are fixed and data is read from the data file
only when not already in memory. Howev er the programming is more complex.

The routines provided in this library are an implementation of method (3). They are based
on the idea that if the original matrix were segmented or partitioned into smaller matrices
these segments could be managed to reduce both the memory required and the i/o.Data
access along connected paths through the matrix, (i.e., moving up or down one row and
left or right one column) should benefit.

In most applications, the original data is not in the segmented format. The data must be
transformed from the nonsegmented format to the segmented format. This means reading
the original data matrix row by row and writing each row to a new file with the
segmentation organization. This step corresponds to the i/o step of method (1).

Then data can be retrieved from the segment file through routines by specifying the row

§19 Segment Library

- 222 - - 222 -

and column of the original matrix. Behind the scenes, the data is paged into memory as
needed and the requested data is returned to the caller.

Note. All routines and global variables in this library, documented or undocumented,
start with the prefixsegment_. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic index is provided in§25.4 Appendix I. Index to Segment Library[p. 309].

19.2. SegmentRoutines
The routines in theSegment Library are described below, more or less in the order they
would logically be used in a program. They use a data structure called SEGMENT which
is defined in the header file "segment.h" that must be included in any code using these
routines:1

include "segment.h"

The first step is to create a file which is properly formatted for use by theSegment
Library routines:

segment_format(fd, nrows, ncols, srows, scols, len) format a segment file

int fd, nrows, ncols, srows, scols, len;

The segmentation routines require a disk file to be used for paging segments in and
out of memory. This routine formats the file open for write on file descriptorfd for
use as a segment file.A segment file must be formatted before it can be processed
by other segment routines. The configuration parametersnrows, ncols, srows,
scols,and len are written to the beginning of the segment file which is then filled
with zeros.

The corresponding nonsegmented data matrix, which is to be transferred to the
segment file, isnrows by ncols. The segment file is to be formed of segments
which aresrows by scols. The data items have lengthlen bytes. For example, if the
data type isint, len is sizeof(int).

Return codes are: 1 if ok; else -1 could not seek or writefd, or -3 illegal
configuration parameter(s).

The next step is to initialize a SEGMENT structure to be associated with a segment file
formatted bysegment_format(p. 222).

1 The GRASS compilation process, described in§11 Compiling and Installing GRASS
Programs[p. 57], automatically tells the C compiler how to find this and other GRASS header files.

§19 Segment Library

- 223 - - 223 -

segment_init(seg, fd, nsegs) initialize segment structure

SEGMENT *seg;
int fd, nsegs;

Initializes the seg structure. Thefile on fd is a segment file created by
segment_format(p. 222) and must be open for reading and writing.The segment file
configuration parametersnrows, ncols, srows, scols,and len, as written to the file
by segment_format(p. 222), are read from the file and stored in theseg structure.
Nsegsspecifies the number of segments that will be retained in memory. The
minimum value allowed is 1.

Note. The size of a segment isscols*srows*lenplus a few bytes for managing each
segment.

Return codes are: 1 if ok; else -1 could not seek or read segment file, or -2 out of
memory.

Then data can be written from another file to the segment file row by row:

segment_put_row (seg, buf, row) write row to segment file

SEGMENT *seg;
char *buf;
int row;

Transfers nonsegmented matrix data, row by row, into a segment file.Seg is the
segment structure that was configured from a call tosegment_init(p. 223). Buf
should containncols*len bytes of data to be transferred to the segment file. Row
specifies the row from the data matrix being transferred.

Return codes are: 1 if ok; else -1 could not seek or write segment file.

Then data can be read or written to the segment file randomly:

segment_get(seg, value, row, col) get value from segment file

SEGMENT *seg;
char *value;
int row, col;

Provides random read access to the segmented data. It getslen bytes of data into
value from the segment filesegfor the correspondingro w andcol in the original
data matrix.

Return codes are: 1 if ok; else -1 could not seek or read segment file.

§19 Segment Library

- 224 - - 224 -

segment_put(seg, value, row, col) put value to segment file

SEGMENT *seg;
char *value;
int row, col;

Provides random write access to the segmented data. It copieslen bytes of data
from value into the segment structuresegfor the correspondingro w andcol in the
original data matrix.

The data is not written to disk immediately. It is stored in a memory segment until
the segment routines decide to page the segment to disk.

Return codes are: 1 if ok; else -1 could not seek or write segment file.

After random reading and writing is finished, the pending updates must be flushed to
disk:

segment_flush(seg) flush pending updates to disk

SEGMENT *seg;

Forces all pending updates generated bysegment_put(p. 224) to be written to the
segment fileseg. Must be called after the final segment_put()to force all pending
updates to disk. Must also be called before the first call tosegment_get_row(p. 224).

Now the data in segment file can be read row by row and transferred to a normal
sequential data file:

segment_get_row (seg, buf, row) read row from segment file

SEGMENT *seg;
char *buf;
int row;

Transfers data from a segment file, row by row, into memory (which can then be
written to a regular matrix file). Seg is the segment structure that was configured
from a call tosegment_init(p. 223). Buf will be filled with ncols*len bytes of data
corresponding to thero w in the data matrix.

Return codes are: 1 if ok; else -1 could not seek or read segment file.

Finally, memory allocated in the SEGMENT structure is freed:

§19 Segment Library

- 225 - - 225 -

segment_release(seg) free allocated memory

SEGMENT *seg;

Releases the allocated memory associated with the segment fileseg. Does not close
the file. Does not flush the data which may be pending from previous
segment_put(p. 224) calls.

19.3. How to Use the Library Routines
The following should provide the programmer with a good idea of how to use the
Segment Library routines. The examples assume that the data is integer. The first step is
the creation and formatting of a segment file. A fi le is created, formatted and then closed:

fd = creat (file,0666);
segment_format (fd, nrows, ncols, srows, scols, sizeof(int));
close(fd)

The next step is the conversion of the nonsegmented matrix data into segment file format.
The segment file is reopened for read and write, initialized, and then data read row by row
from the original data file and put into the segment file:

int buf[NCOLS];
SEGMENT seg;

fd = open (file, 2);
segment_init (&seg, fd, nseg)

for (row = 0; row < nrows; row++)
{

<code to get original matrix data forrow into buf>

segment_put_row (&seg, buf, row);

}

Of course if the intention is only to add new values rather than update existing values, the
step which transfers data from the original matrix to the segment file, using
segment_put_row(), could be omitted, sincesegment_format(p. 222) will fill the segment
file with zeros.

The data can now be accessed directly usingsegment_get(p. 223). For example, to get the
value at a given row and column:

§19 Segment Library

- 226 - - 226 -

int value;
SEGMENT seg;

segment_get (&seg, &value, row, col);

Similarly segment_put(p. 224) can be used to change data values in the segment file:

int value;
SEGMENT seg;

value = 10;
segment_put (&seg, &value, row, col);

Warning. It is an easy mistake to pass a value directly to segment_put().The following
should be avoided:

segment_put (&seg, 10, row, col); /* this will not work*/

Once the random access processing is complete, the data would be extracted from the
segment file and written to a nonsegmented matrix data file as follows:

segment_flush (&seg);

for (row = 0; row < nrows; row++)
{

segment_get_row (&seg, buf, row);

<code to putbuf into a matrix data file forrow>

}

Finally, the memory allocated for use by the segment routines would be released and the
file closed:

segment_release (&seg);
close (fd);

Note. The Segment Library does not know the name of the segment file. It does not
attempt to remove the file. If the file is only temporary, the programmer should remove
the file after closing it.

§19 Segment Library

- 227 - - 227 -

19.4. Loadingthe Segment Library
The library is loaded by specifying $(SEGMENTLIB) in the Gmakefile. The following
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(SEGMENTLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(SEGMENTLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(SEGMENTLIB)

$(SEGMENTLIB): # in case the library changes

See§11 Compiling and Installing GRASS Programs [p. 57] for a complete discussion of
Gmakefiles.

§19 Segment Library

- 228 - - 228 -

- 229 - - 229 -

Chapter 20

Vask Library

20.1. Introduction
The Vask Library (visual-ask) provides an easy means to communicate with a user one
page at a time.That is, a page of text can be provided to the user with information and
question prompts. The user is allowed to move the cursor1 from prompt to prompt
answering questions in any desired order. Users’ answers are confined to the
programmer-specified screen locations.

This interface is used in many interactive GRASS programs.2 For the user, the Vask
Library provides a very consistent and simple interface. Itis also fairly simple and easy
for the programmer to use.

Note. All routines and global variables in this library, documented or undocumented,
start with the prefixV_. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic index is provided in§25.4 Appendix J. Index to Vask Library[p. 311].

20.2. Vask Routine Synopses
The routines in theVask Library are described below, more or less in the order they
would logically be used in a program.The Vask Library maintains a private data space
for recording the screen description.With the exception of V_call(), which does all the
screen painting and user interaction,vask routines only modify the screen description and
do not update the screen itself.

1 The functions in this library make use of the curses library and termcap descriptions.As
when using vi, the user must have the TERM variable set.

2 The GRASSg.regioncommand is a good example, as arer.reclassandr.mask.

§20 Vask Library

- 230 - - 230 -

V_clear () initialize screen description

This routine initializes the screen description information, and must be called before
each new screen layout description.

V_line (num, text) add line of text to screen

int num;
char *text;

This routine is used to place lines of text on the screen.Row is an integer value of
0-22 specifying the row on the screen where thetext is placed. The top row on the
screen is row 0.

Warning. V_line() does not copy the text to the screen description. It only saves
the text address. This implies that each call to V_line() must use a different text
buffer.

V_const(value, type, row, col, len) define screen constant

V_ques(value, type, row, col, len) define screen question

Ctype*value; (Ctypeis one of int, long, float, double, or char)
char type;
int row, col, len;

These two calls use the same syntax.V_const() and V_ques() specify that the
contents of memory at the address ofvalue are to be displayed on the screen at
location ro w, col for len characters. V_ques() further specifies that this screen
location is a prompt field. The user will be allowed to change the field on the screen
and thus change thevalue itself. V_const() does not define a prompt field, and thus
the user will not be able to change these values.

Value is a pointer to an int, long, float, double, or char string.Type specifies what
type value points to: ’i’ (int), ’l’ (long), ’f ’ (float), ’d’ (double), or ’s’ (character
string). Row is an integer value of 0-22 specifying the row on the screen where the
value is placed. The top row on the screen is row 0. Col is an integer value of 0-79
specifying the column on the screen where the value is placed. The leftmost column
on the screen is column 0.Len specifies the number of columns that the value will
use.

Note that the size of a character array passed to V_ques() must be at least one byte
longer than the length of the prompt field to allow for NULL termination.

Currently, you are limited to 20 constants and 80 variables.

Warning. These routines store the address ofvalue and not the value itself. This
implies that different variables must be used for different calls.Programmers will
instinctively use different variables with V_ques(), but it is a stumbling block for

§20 Vask Library

- 231 - - 231 -

V_const(). Also, the programmer must initializevalue prior to calling these
routines.3

V_float_accuracy(num) set number of decimal places

int num;

V_float_accuracy() defines the number of decimal places in which floats and
doubles are displayed or accepted.Num is an integer value defining the number of
decimal places to be used. This routine affects subsequent calls to V_const() and
V_ques(). Various inputs or displayed constants can be represented with different
numbers of decimal places within the same screen display by making different calls
to V_float_accuracy() before calls to V_ques() or V_const(). V_clear()resets the
number of decimal places to the default (which is unlimited).

V_call () interact with the user

V_call() clears the screen and writes the text and data values specified by V_line(),
V_ques()and V_const() to the screen. It interfaces with the user, collecting user
responses in the V_ques() fields until the user is satisfied.A message is
automatically supplied on line number 23, explaining to the user to enter an ESC
when all inputs have been supplied as desired.V_call() ends when the user hits
ESC and returns a value of 1 (but see V_intrpt_ok() below).

No error checking is done by V_call(). Instead,all variables used in V_ques() calls
must be checked upon return from V_call(). If the user has supplied inappropriate
information, the user can be informed, and the input prompted for again by further
calls to V_call().

V_intrpt_ok () allow ctrl-c

V_call() normally only allows the ESC character to end the interactive input
session. Sometimesit is desirable to allow the user to cancel the session.To
provide this alternate means of exit, the programmer can call V_intrpt_ok() before
V_call(). This allows the user to enter Ctrl-C, which causes V_call() to return a
value of 0 instead of 1.

A message is automatically supplied to the user on line 23 saying to use Ctrl-C to
cancel the input session. The normal message accompanying V_call() is moved up
to line 22.

Note. When V_intrpt_ok() is called, the programmer must limit the use of
V_line(), V_ques(),and V_const() to lines 0-21.

3 Technically value needs to be initialized before the call to V_call() since V_const() and
V_ques()only store the address ofvalue. V_call() looks up the values and places them on the
screen.

§20 Vask Library

- 232 - - 232 -

V_intrpt_msg (text) change ctrl-c message

char *text;

A call to V_intrpt_msg() changes the default V_intrpt_ok() message from
(OR <Ctrl-C> TO CANCEL) to (OR<Ctrl-C> TOmsg). Themessage is (re)set to
the default by V_clear().

20.3. AnExample Program
Following is the code for a simple program which will prompt the user to enter an integer,
a floating point number, and a character string.

define LEN 15
main()
{

int i ; /* the variables */
float f ;
char s[LEN] ;

i = 0 ; /* i nitialize the variables */
f = 0.0 ;
*s = 0 ;

V_clear(); /* clear vask info */

V_line(5, " Enter an Integer ") ; /* the text */
V_line(7, " Enter a Decimal ") ;
V_line(9, " Enter a character string ") ;

V_ques (&i, ’i’, 5, 30, 5) ; /* the prompt fields */
V_ques (&f, ’f’, 7, 30, 5) ;
V_ques (s,’s’, 9, 30, LEN - 1) ;

V_intrpt_ok(); /* allow ctrl-c */

if (!V_call()) /* display and get user input */
exit(1); /* exit if ctrl-c */

printf ("%d %f %s\n", i, f, s) ; /* ESC, so print results */
exit(0);

}

The user is presented with the following screen:

§20 Vask Library

- 233 - - 233 -

Enter an Integer 0_ _ _ _

Enter a Decimal 0.00 _

Enter a character string _ _ _ _ _ _ _ _ _

AFTER COMPLETING ALL ANSWERS, HIT <ESC> TO CONTINUE
(OR <Ctrl-C> TO CANCEL)

The user has several options.

<CR> moves the cursor to the next prompt field.

CTRL-K moves the cursor to the previous prompt field.

CTRL-H moves the cursor backward nondestructively within the field.

CTRL-L moves the cursor forward nondestructively within the field.

CTRL-A writes a copy of the screen to a file namedvisual_ask in the user’s
home directory.

ESC returnscontrol to the calling program with a return value of 1.

CTRL-C returnscontrol to the calling program with a return value of 0.

Displayable ascii characters typed by the user are accepted and displayed.Control
characters (other than those with special meaning listed above) are ignored.

20.4. Loadingthe Vask Library
Compilations must specify the vask, curses, and termcap libraries. The library is loaded
by specifying $(VASK) and $(VASKLIB) in the Gmakefile. Thefollowing example is a
complete Gmakefile which compiles code that uses this library:

§20 Vask Library

- 234 - - 234 -

Gmakefile for $(VASK)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(VASKLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(VASK)

$(VASKLIB): # in case the library changes

Note. The target pgm depends on the object files $(OBJ) and theVask Library
$(VASKLIB). This is done so that modifications to any of the $(OBJ) files or to the
$(VASKLIB) itself will force program reloading.However, the compile rule specifies
$(OBJ) and $(VASK), rather than $(OBJ) and $(VASKLIB). This is because $(VASK)
specifies both the UNIX curses and termcap libraries as well as $(VASKLIB).

See§11 Compiling and Installing GRASS Programs [p. 57] for a complete discussion of
Gmakefiles.

20.5. Programming Considerations
The order of movement from prompt field to prompt field is dependent on the ordering of
calls to V_ques(), not on the line numbers used within each call.

Information cannot be entered beyond the edges of the prompt fields.Thus, the user
response is limited by the number of spaces in the prompt field provided in the call to
V_ques(). Some interpretation of input occurs during the interactive information
gathering session. When the user enters <CR> to move to the next prompt field, the
contents of the current field are read and rewritten according to the value type associated
with the field. For example, nonnumeric responses (e.g., "abc") in an integer field will
get turned to a 0, and floating point numbers will be truncated (e.g., 54.87 will become
54).

No error checking (other than matching input with variable type for that input field) is
done by V_call(). Thismust be done, by the programmer, upon return from V_call().

Calls to V_line(), V_ques(), and V_const() store only pointers, not contents of memory.
At the time of the call to V_call(), the contents of memory at these addresses are copied
into the appropriate places of the screen description. Care should be taken to use distinct
pointers for different fields and lines of text. For example, the following mistake should
be avoided:

§20 Vask Library

- 235 - - 235 -

char text[100];

V_clear();

sprintf(text," Welcome to GRASS ");
V_line(3,text);
sprintf(text," which is a product of the US Army CERL ");
V_line(5,text);

V_call();

since this results in the following (unintended) screen:

which is a product of the US Army CERL

which is a product of the US Army CERL

AFTER COMPLETING ALL ANSWERS, HIT <ESC> TO CONTINUE
(OR <Ctrl-C> TO CANCEL)

Warning. Due to a problem in a routine within the curses library,4 the Vask routines use
the curses library in a somewhat unorthodox way. This avoided the problem within
curses, but means that the programmer cannot mix the use of theVask Library with direct
calls to curses routines.Any program using the Vask Library should not call curses
library routines directly.

4 Specifically, memory allocated by initscr() was not freed by endwin().

§20 Vask Library

- 236 - - 236 -

- 237 - - 237 -

Chapter 21

Digitizer/Mouse/Trackball Files (.dgt)

The following is derived from the manual for Line Trace Plus (LTPlus) by John Dabritz
and the Forest Service.The code for the digitizer drivers was taken from LTPlus and
modified. The’additions’ file describes what has been changed from the original LTPlus
version. Notethat LTPlus supports mice and trackballs as well as digitizers. These can
be ignored for v.digit, and herein, "digitizer" will be used to correspond to digitizers,
mice, and trackballs.

This chapter is relevant for the GRASS v4.1 version ofv.digit only. The GRASS v4.0
version of v.digit is now namedv.digit2 and is included in the GRASS v4.1 release.See
§22 Writing a Digitizer Driver[p. 251] for information on writing a digitizer forv.digit2.

21.1. Rulesfor Digitizer Configuration Files

The following are rules and restrictions for creating .dgt files.

1. Noline may exceed 95 characters in length.

2. Ina line, all characters following (and including) a pound sign (#) are considered
comments (ignored).To put a pound sign into a string not to be ignored, use a
\035. Any ascii character can be specified in this way: a backslash followed by a
3-digit (ascii decimal) number specifying the ascii decimal value of the character.

3. All other non-blank characters must be within brackets {} OR be one of the
following (which are followed by brackets):

setup
startrun
startpoint
startquery
stop

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 238 - - 238 -

query
format

These represent the groups of information used to initiate, gather, and stop input
from a graphics input device (digitizer, mouse, track-ball ect.). Only one (left or
right) bracket may be on a single line, although text and brackets may share a
line. See #?secton|digitizer.file.commands

4. Limits:

a) The file can have no more than 100 non-blank, non-comment lines.

b) Other limits are listed with their data type, below.

5. The legal l ines within brackets depend on the group to which the brackets
belong. ALL DATA LINES ARE DEPENDENT ON THE PARTICULAR
DEVICE. YOU MUST REFER TO THE TECHNICAL REFERENCE
MANUAL FOR THE PARTICULAR DEVICE (mouse/digitizer/track-ball) in
order to determine which parameters and which values need to be used.The
groups (setup, startrun, startpoint, startquery, stop, query , format) may be in any
order. Within the groups: startrun, startpoint, startquery, query, and stop the
order of command lines is important. These are the legal l ine formats for each
grouping:

21.2. DigitizerConfiguration File Commands

The following is an in-depth description of each command available in the .dgt digitizer
files.

21.2.1. Setup

This data is used to setup the communication link with the digitizer and is used during
interpretation of the digitizer data.

21.2.1.1.Serial Line Characteristics

baud = n This line is optional, default = 9600 if not specified. If

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 239 - - 239 -

specified, n must be one of : 300, 600, 1200, 1800,
2400, 4800 9600, or 19200.

parity = str str must be "odd", "even", or "none". This item is
optional, and defaults to none if not specified.

data_bits = n The number of data bits used (does NOT include
parity bits, if any). Choices= 5,6,7,8 (default = 8)

stop_bits = n The number of stop bits used on the serial line.
Choices are 1, or 2. Optional, default = 1.

buttons = n Number of buttons on digitizer cursor. This entry lets
v.digit know if digitizer keys are available for input.
Default is 0, so an entry must be made if the digitizer
cursor is to be used for input. If the value of buttons is
less than 5, keyboard keys will also be used for input.

buttonstart = n Number of the first key on the digitizer cursor.
Usually 0 or 1. Default is 0. This is strictly for
comunicating with the user. If you have arrow keys
on your puck, you can set buttonstart to whatever you
want.

buttonoffset = n Difference between 1 and the value sent by the lowest
digitizer button. In other words, if the digitizer keys
sent the values 0, 1, ..., n, buttonoffset would equal
one, if the button output already starts with one,
buttonoffset would be zero (the default value).
Although these are the two most common cases, it is
legal for buttonoffset to be any integer value. For
instance if your keys for some reason output the
values 16-32, it would be legal to use the value -15 as
the buttonoffset.

footswitch = 0 or 1 Does the digitizer have a footswitch? Zero for no, one
for yes.

digname = string Name of the digitizer.

description = string One line description of digitizer, format, etc.

button_up_char = c Character that indicates that no button is pressed.
Only appropriate if format is ascii and includes a
button press byte.

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 240 - - 240 -

21.2.1.2.Data Interpretation Characteristics

debounce = d [r] These values control the delay and repeat rate for a digitizer
or mouse button that is held down (who says you can’t hold
a good button down!) The first value (delay) specifies the
number of continuous reports with the same button press
which may be received before it is taken as a second button
press. Thesecond value, separated by a space, is the repeat
rate, which specifies the number of continuous reports
between further reports received which will be taken as
subsequent button presses.The second value (repeat rate)
is optional (default is 1/3 of the first value). A O for the
first value indicates an infinite delay. For this value
indicates an indefinite delay. For this value, only 1 key
press will be taken no matter how long a button is held
down. If no debounce values are listed, the default of 0s
will be used.

units_per_inch = n Helps to set sensitivity (on absolute type devices see next
item below) & map-inch size.dflt=1000. Notused for
relative type devices (mice), see below.

coordinates = str str must be ’absolute’ or ’relative’, dflt=absolute. In
general, mouse/trackball devices are relative, and digitizers
coordinates are absolute.

sign_type = aaa This indicates the sign type for binary formats: none (all +)
(default for absolute crds).0negative (o=neg, used for
some abs coords).1negative (1=neg, used for some abs
coords). 2s-complement(default for relative coords).

Note: for binary formats the sign bit should be coded as
highest bit number for a coordinate.

Note: for ascii formats, minus (-) sign is expected from the
raw device to indicate a negative number.

x_positive = dd This indicates the direction of x-positive coordinates. ddis
a sting which may have the value right or left.The default
is right. All digitizers and mice have x-positive to the right
as of this writing.

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 241 - - 241 -

y_positive = dd This indicates the direction of y-positive coordinates. ddis
a string which may have the value up or down. Thedefault
is up. The microsoft mouse is a digitizing device which
has y-positive coordinates to indicate a downward
movement.

digcursor = fname Specifies the cursor file to be used while this digitizer is in
use with LTPlus program. The digcursor file defines which
command each digitizer button generates. v.digit does not
need a cursor file, and ignores this line.

Note: Theorder of items is unimportant within the setup group.

21.2.1.3.Example of a Setup

setup
{

digname = Calcomp
description = Calcomp digitizer, ascii format 12
buttons = 16 # number of buttons on digitizer
buttonstart = 0 # number buttons start with
buttonoffset = 1 # offset to get buttons 1-15
baud = 9600
units_per_inch = 1000

}

21.2.2. Startrun,Startpoint, Startquery, Stop, Query

All of these allow the same operations, but are used at different times when
communicating with the digitizer/mouse. The START groupings are used to initialize the
digitizer each time communication is switched to that mode. The QUERY grouping is
used when (and if) the digitizer is queried/prompted to send data information. The STOP
grouping is used to stop digitizer output.All of these groupings are optional but at least
one start group must be included (to use the file with v.digit, the startquery group must be
included). If the digitizer is configured by default or switch settings to output data in the
desired form of a certain mode, it is desirable to include that start group anyway, with
some innocuous action (such as sending a carriage return) as the only action. If a start
group is not included for a given mode, the program assumes that the digitizer is unable
to operate in that mode.

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 242 - - 242 -

There may be no more than 40 operations within each start group or the stop group.
There may be no more than 10 operations in the query group.

21.2.2.1.Operations

send = aaaa This allows the sending of any ascii string to the digitizer (at the
current baud rate and parity).

read = n This tells the program to read n bytes from the digitizer before
trying to read again (gives up trying to read after 1 second).
This is for reading digitizer prompts during start & stop groups
and is NOT used for querying the digitizer, unless a non-data
string is to be read (like a prompt character).

wait = n wait n seconds (decimal seconds allowed) before next
communication with the digitizer. Many computers are quicker
than digitizers and need to allow time for the digitizer to change
baud rate before resuming communication.Maximum
resolution for wait is 0.001 second.

baud = n This allows changing of baud rate which was set during setup
and is normally not used otherwise. If only 1 baud rate is used,
then it is put in the setup group only. This is the normal case
for most digitizers.

21.2.2.2.Notes.

Control, extention, space, and all other characters can be specified in sent strings by using
the backslash followed by the ascii decimal value to be sent (up to 3 digits).Example:
send=/027 (indicates the escape character).

The lines/commands communicating with the digitizer will be executed in the SAME
ORDER as they are in the start/stop/query grouping. Order is very important.Wait
commands may be necessary to give the digitizer time to execute the command sent.
Wait commands may need to be added/changed when the main programs is run on a
faster cpu (in order to give the digitizer enough time to keep up).

A maximum of 40 non-comment lines can be in a start, stop, or query group.

All characters to be sent must be specified, including carriage return (\013) and linefeed
(\010).

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 243 - - 243 -

Each time a QUERY group is executed, a 0.001 second wait is done automatically after
all query group commands. This allows time for the graphics input device to send a
packet of information before the serail line is read by the program.

v.digit requires that a STARTQUERY group exists.

21.2.2.3.Example of Start Groupings

startrun
{
send = \027%R
baud = 2400
wait = 0.6
read = 3
wait = 0.1
send = \027%S

}

startpoint
{

send = \027%ˆ12\013# set output format to format 12
send = \027%P\013 # set to run mode

}

startquery
{

send = \027%ˆ12\013# set output format to format 12
send = \027%R\013 # set to run mode
send = \027%Q!\013 # set prompt character to ’!’ and

put in prompt mode
}

21.2.2.4.Example of a Query Grouping

query
{

send = !\013 # send prompt
}

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 244 - - 244 -

21.2.2.5.Example of a Stop Grouping

stop
{ send = \027%K

wait = 0.1
send = \027%*

}

21.2.3. Format

This data is used each time a packet of information from the digitizer is interpreted.This
group must be one of 2 types; ascii or binary. The digitizer file MUST contain a format
group (either ascii or binary).

Ascii format groups have only 1 line:

ascii = format_string

Binary format groups have one line for each byte in the form:

byteN = format_string Where N is the byte number, (1 or greater) or
byte No = format_string (similar to above for
OPTIONAL bytes). Note. The program
assumes the optional bytes containing ONLY
button press information (no x or y
information).

The legal format strings depend on the type (ascii or byteN).

21.2.3.1.ASCII format strings

ASCII format strings have these characteristics:

1. Thereare no imbedded blanks.
2. Legal characters are:

x denotes 1 character of the x-coordinate value (sign included).
y denotes 1 character of the y-coordinate value (sign included).

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 245 - - 245 -

b denotes 1 character of button information.
p denotes 1 character of button press information (up or down).
, denotes the comma character (used to sync data if present).
c denotes a carriage return (optionally specified)
l denotes a line-feed (optionally specified)
? denotes any other character of information (including blanks).

21.2.3.2.Notes

The sign (+ or -) should be coded as part of the x or y value.

The specifications of the carriage-return and linefeed are totally optional.They will be
ignored whether they are specified or not.Their only use is to separate one ascii
grouping of incoming data from another. Any combination of carriage-returns and/or
linefeeds will serve this purpose in any case os ascii format use.

21.2.3.3.Example of ASCII Format Grouping

format
{

ascii =?xxxxx,yyyyy,??bcl
}

21.2.3.4.Binary Format String

Binary format strings have these characteristics.

0. byteNoform is used only for bytes which are sometimes, but not always
sent by the digitizing devices. Thesebyte(s) must be at the end of the
grouping/packet. For example, the Logitech Mouseman sends an
optional 4th bytes only when the middle button is pressed.Very few
digitizing devices use optional bytes.

1. 8 bits are specified with at least 1 blank between bit groupings, even f
fewer bits are used. Fill the left (high) bits with ? if necessary.

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 246 - - 246 -

2. Legal characters are:

xN denotesbit N of the x-coordinate value (low-order bit is 0, maximum bit
allowed is 30) (include sign bit as highest bit used)

yN denotes bit N of the y-coordinate value (low-order bit is 0, maximum bit
allowed is 30) (include sign bit as highest bit used)

bN denotes bit N of button press value (low-order bit is 0, maximum bit
allowed is 7).

p denotes button press bit (will be 1 if button is pressed, 0 otherwise).

0 denotes bit is always zero (used for sync bit).

1 denotes bit is always one (used for sync bit).

? denoted any other information (bit not used).

21.2.3.5.Notes

There cannot be more than 100 lines of byten = in the format group.

Sign bits (if any) should be coded as the highest bit number for a given coordinate.

Parity bits (if in the lowest 8 bits), and fill bits (if fewer than 8 bits used) should be coded
as ?. No bits above the lowest 8 should be specified ar all (sometimes there is a 9th parity
bit).

0s and 1s are used for syncing the input, and should all occur in the same bit column.

21.2.3.6.Examples of a Binary Format Grouping

Example with odd or even parity and 7 data bits.

format
{
byte1 = ? 1 ? ? ? ? ? ?
byte2 = ? 0 ? b4 b3 b2 b1 b0
byte3 = ? 0 x5 x4 x3 x2 x2 x0

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 247 - - 247 -

byte4 = ? 0 x11 x10 x9 x8 x7 x6
byte5 = ? 0 x16 x17 x15 x14 x13 x12
byte6 = ? 0 y5 y4 y3 y2 y1 y0
byte7 = ? 0 y11 y10 y9 y8 y7 y6
byte8 = ? 0 y16 y17 y15 y14 y13 y12

}

or

Example with 8 data bits (with or without parity.)

format
{
byte1 = 1 p b3 b2 b1 b0 x15 x14
byte2 = 0 x13 x12 x11 x10 x9 x8 x7
byte3 = 0 x6 x5 x4 x3 x2 x1 x0
byte4 = 0 ? ? ? x16 y16 y15 y14
byte5 = 0 y13 y12 y11 y10 y9 y8 y7
byte6 = 0 y6 y5 y4 y3 y2 y1 y0

}

21.3. Examplesof Complete Files

The following are complete examples of digitizer files.

21.3.1. Example1

setup
{

digname = Calcomp
description = Calcomp digitizer, ascii format 5
buttonoffset = 1
buttons = 16
buttonstart = 0
baud = 9600
units_per_inch = 1000

}

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 248 - - 248 -

startrun
{

send = \027%ˆ5\013# set to format 5
send = \027%R\013

}

startpoint
{

send = \027%ˆ5\013# set to format 5
send = \027%P\013

}

startquery
{

send = \027%ˆ5\013# set to format 5
send = \027%R\013
send = \027%Q!\013

}

query
{

send = !\013
}

stop
{

send = \027%H\013
}

format
{

ascii = xxxxx,yyyyy,??b
}

21.3.2. Example2

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 249 - - 249 -

setup
{
digname = Altek
description = altek digitizer, model AC30, binary output format 8
buttonoffset = 1 # button output starts at 0, we want 1
buttonstart = 0 # first button is numbered 0
buttons = 16 # number of buttons is 16
baud = 9600
parity = none
stop_bits = 1
sign_type = none
units_per_inch = 1000
coordinates = absolute
sign_type = none
}

startrun
{

send=S2\13 #set to run mode
send=F8\13 #set output format to 8
send=R6\13 #enter rate mode 6

}

startpoint
{

send = P\013 # set to point mode
send = F8\013# set output format to 8

}

startquery
{

send = S2\013# altek has no specific prompt mode, but may be
queried at any time, so set to run mode

send = F8\013# set output format to 8
}

query
{

send = V\013 # request data
}

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 250 - - 250 -

stop
{

send = \027\013# reset
}

format
{

byte1 = 1 p b3 b2 b1 b0 x15 x14
byte2 = 0 x13 x12 x11 x10 x9 x8 x7
byte3 = 0 x6 x5 x4 x3 x2 x1 x0
byte4 = 0 ? ? ? x16 y16 y15 y14
byte5 = 0 y13 y12 y11 y10 y9 y8 y7
byte6 = 0 y6 y5 y4 y3 y2 y1 y0

}

21.4. DigitizerFile Naming Conventions

The naming conventions for digitizers driver files is:

manufacturer name or abbreviation + model number of digitizer +
output format the digitizer is using + _ + number of keys on puck

For example, an Altek model 30 digitizer using format 8 with a 16 button puck would be:
al + 30 + f8 + _ + 16

Put it together and you have --> al30f8_16

You can optionally stick a .dgt extention on the end of the file name, e.g., al30f8_16.dgt

This is by no means required, but its a clear indicator as to the use of the digitizer file
which helps everyone in the long run.

Test your files thoroughly. When it works, tell other users about your file.This helps
ev eryone by reducing duplication of effort.

§21 Digitizer/Mouse/Trackball Files (.dgt)

- 251 - - 251 -

Chapter 22

Writing a Digitizer Dri ver

22.1. Introduction
This chapter is relevant only forv.digit2. For more information on configuration files for
the GRASS v4.1 v.digit, and an explanation ofv.digit and v.digit2, see §21
Digitizer/Mouse/Trackball Files (.dgt)[p. 237].

A digitizer device driver consists of a library of device-dependent functions that are
linked into digitizer programs. This chapter describes those functions that are needed to
create a digitizer device driver compatible with GRASS map development software.

Section§22.2 Writing the Digitizer Device Driver[p. 251] explains how digitizer drivers
are written, while section§22.3 Discussion of the Finer Points (Hints)[p. 259] describes
problems and pitfalls encountered during the development of the Altek driver.

22.2. Writing the Digitizer Device Driver
Source code for the digitizer drivers is kept in

$GISBASE/src/mapdev/digitizers1

Separate subdirectories contain the individual drivers. Whena new driver is written, it
should be placed here in a new subdirectory.

It is helpful to examine the source code for existing drivers located here, and to attend a
demonstration of the GRASS digitizing programv.digit, before developing a new driver.

1 $GISBASE is the directory where GRASS is installed.See§10.1 UNIX Environment[p. 53]

for details.

§22 Writing a Digitizer Dri ver

- 252 - - 252 -

22.2.1. Functionsthat must be Written

This section describes the device-dependent library functions that must be written.Each
of these functions must be present in the library. Function descriptions are organized by
file name. (The file names are those used by current GRASS digitizer drivers. File
names are printed in bold, along the left-hand margin of the page.)These files and
functions can be copied from one of the existing digitizer driver libraries and altered to
suit the needs of a particular driver.

Note. Although it is strongly recommended that the programmer use the file names listed
below (for reasons set forth in§22.2.3 Compiling the Device Driver[p. 258]), other files
names may be used instead.

dig_menu.h
This file contains the menu that is displayed while digitizing.The menu should
indicate the purpose of the buttons on the cursor for the particular digitizer. The
menu is stored indig_menu:

char *dig_menu[] ;

An example of how the Altek driver uses this function to create a menu is given
below:

define dig_menu_lines 16

char *dig_menu[] = {

" GRASS-DIGIT Version 3.0 Digitizing menu ",
" " ,
" ALTEK digitizer AMOUNT DIGITIZED ",
" Cursor keys: # Lines: ",
" <0> digitizepoint # Area edges: ",
" <1> quit digitizing ",
" <2> updatemonitor ",
" <3> togglepoint/stream mode Total points: ",
" " ,
" CURRENT DIGITIZER PARAMS. ",
" " ,
" " ,
" MODE TYPE ",
" point line ",
" stream areaedge ",
" "

} ;

Note. The menu must be exactly as it appears here, except that the text inbold may
be replaced by the appropriate text for the digitizer.

dig_curses.c
This file only contains #includes. Itis used to set up the digitizing menu in the
"dig_menu.h" file. This file must look like this:

§22 Writing a Digitizer Dri ver

- 253 - - 253 -

include <curses.h>

include "dig_menu.h"
include "../../digit/digit.h"
include "../../digit/menu.h"
include "../../libes/head.h"

include "../../digit/curses.c"

setup_driver.c
D_setup_driver (device)

char *device ;

This function opens the device (which is atty port) and initializes the digitizer.

Note. This function should not set the origin.The origin is set later by the function
D_setup_origin(p. 255).

dig_dev.c
D_get_scale(scale)

float *scale;

This function setsscale to the digitizer resolution in units of lines per inch.2 For
example, on a digitizer having a resolution of 1000 lines per inch,scalewould be set
to .001.

coll_pts.c
include "digit.h"
include "globals.h"

collect_points (mode, type, np, x, y)
int mode, type;
int *np ;
double **x, **y ;

This routine is called to collect points that represent a single vector (or arc) from the
digitizer.

The points should be collected into static arrays or dynamically allocated arrays,
transformed from digitizer coordinates to database coordinates using
transform_a_into_b(p. 257), and plotted on the graphics monitor using
plot_points(p. 257). Thenx andy are set to point to these arrays, andnp set to the
number of points collected.

2 Almost all digitizers describe their resolution in lines per inch (lpi). This is essentially
equivalent to pixels per inch, or dots per inch.

§22 Writing a Digitizer Dri ver

- 254 - - 254 -

The digitizingmode may be either STREAM or POINT: STREAM indicates that
the digitizer should collect a continuous stream of points; POINT indicates that the
digitizer should collect points under user control (i.e., each time the user presses a
button, the foot-switch, or a key on the keyboard). Thecollect_points() function
can be written to allow interactive toggling between the two modes during a single
call.

The type is set to AREA when the vector to be collected is an area edge, and to
LINE when it is is a linear feature.The type is of no interest tocollect_points()
itself, but is passed to the functionplot_points(p. 257), which draws lines on the
graphics monitor.

This function should return 1 if digitizing in STREAM mode occurred (i.e., either
becausemode was initially STREAM, or because the user changed to STREAM
mode), and 0 otherwise.3

Note. This routine is responsible for plotting the vector on the graphics monitor, but
it should do it responsibly. This means that while digitizing in POINT mode, the
line-segments should be plotted immediately; while digitizing in STREAM mode,
the points should be plotted only when the digitizing is finished, or when the user
toggles to POINT mode.

Note. If the cursor has buttons, they can be used to change the digitizingmode as
well as end the digitizing. If the digitizer has a foot-switch instead of buttons, the
foot-switch should be used to end the digitizing (toggling modes would not be
supported in this case). If the digitizer has neither buttons nor a foot-switch, then the
keyboard must be used, even in STREAM mode. (See GeoGraphics driver for code
that polls the keyboard.)

interface.c
This file contains a number of functions.The following functions return
information about digitizer capabilities:

D_cursor_buttons()
If the digitizer cursor buttons are to be used by the digitizing programs, there
must be at least five buttons. Thisfunction returns 1 if the cursor has five or
more buttons; otherwise, it returns 0.

D_foot_switch()
This function returns 1 if there is a usable foot-switch. It returns 0 if the
digitizer has no foot-switch.

Note. If there are five or more buttons on the cursor, the value returned by

3 STREAM mode indicates todigit that the resulting vector should be pruned.

§22 Writing a Digitizer Dri ver

- 255 - - 255 -

D_foot_switch() is ignored (i.e., it is assumed that there is no foot-switch).
SeeD_cursor_buttons(p. 254).

D_start_button()
This function tells the driver how the cursor buttons are labeled (i.e., the labels
that the user sees on the buttons). If the first button is labeled 1, then this
routine returns 1. If the first button is labeled 0, then this routine returns 0.

It should return -1 if the digitizer cursor buttons are not being used by the
driver. SeeD_cursor_buttons(p. 254).

For example, if the digitizer buttons are labeled 0-9, then this routine would
return 0. If the digitizer buttons are labeled 1-16, then this routine would
return 1.

The following routines perform digitizer configuration:

D_setup_origin()

This routine sets the digitizer’s origin (0,0). This routine should only return if
successful, and should return a value of 0.If it fails, an error message should
be sent to the terminal screen withWrite_info(p. 257), and the program
terminated with a call toclose_down(p. 256).

Note. Frequently, the location of the digitizer’s origin can be set to some
default value, without any input from the user. Otherwise, this routine must
ask the user to set the origin. The routineWrite_info(p. 257) should be used to
print instructions for the user. (Refer to the GeoGraphics digitizer driver,
which instructs users to set the origin in the lower left corner of the digitizing
tablet.)4

D_clear_driver()
This function clears any button presses on the digitizer that have been queued.
(Refer to§22.3 Discussion of the Finer Points (Hints)[p. 259] for an explanation
of why this is necessary.) This routine should only return if successful, and
should return a value of 0. If it fails, an error message should be sent to the
user with Write_info(p. 257), and the program terminated with a call to
close_down(p. 256).

The following two routines read the current digitizer coordinates:

4 Due to the design of the GeoGraphics digitizer, it is not possible to detect whether or not the
user properly sets the origin. If the origin is improperly set, the map will be improperly registered.

§22 Writing a Digitizer Dri ver

- 256 - - 256 -

D_read_raw (x, y)
double *x,*y ;

Gets the current location of the digitizer cursor, and places the digitizer
coordinates in the variablesx andy.

If a digitizer button was pressed, this routine returns the button’s value. The
return value must be in the range of 1 through 16. This means that if the first
button is labeled 0 this routine must add 1 to the button number that is
returned.

If no button was pressed, this routine returns 0.

Foot-switch. If the digitizer has a foot-switch, instead of cursor buttons, then
the foot-switch must be treated as if it were button 1. If the digitizer has
neither a foot-switch nor cursor buttons, then this routine should return 0.

D_ask_driver_raw (x, y)
double *x,*y ;

Waits for a button to be pressed and then gets the current location of the
digitizer cursor, and places the digitizer coordinates in the variablesx andy.

This routine returns the button’s value. Thereturn value must be in the range
of 1 through 16. This means that if the first button is labeled 0 this routine must
add 1 to the button number that is returned.

Foot-switch. If the digitizer has a foot-switch, instead of cursor buttons, then
the foot-switch must be treated as if it were button 1, and this routine should
wait for the foot-switch to be pressed.If the digitizer has neither a foot-switch
nor cursor buttons, then this routine should return 0without waiting.

22.2.2. FunctionsAv ailable For Use

There are functions which have already been written that can be called by the digitizer
driver. These are described below.

Note. These functions exist in libraries. The libraries that contain these functions are
described in§22.2.3 Compiling the Device Driver[p. 258].

close_down (status)
int status ;

This function gracefully exits the calling program. Call this function withstatusset
to -1 when an irrecoverable error has occurred (e.g., when the digitizer does not
respond, or returns an error). Otherwise, call this routine withstatusset to 0.

§22 Writing a Digitizer Dri ver

- 257 - - 257 -

plot_points (type, np, x, y, line_color, point_color)
int type, np;
double *x, *y ;
int line_color, point_color ;

This function is to be called bycollect_points(p. 253). It draws the vector defined by
the points in thex andy arrays on the graphics monitor. The number of points in the
vector isnp.

The plot_points() function expects to receive points fromcollect_points(p. 253) in
the coordinate system of the database. Digitizer coordinates can be translated to
database coordinates usingtransform_a_into_b(p. 257).

The type indicates whether the vector is an AREA or a LINE. AREA and LINE are
defined in the include file "dig_defines.h".

The line_color and point_color indicate whether the lines and points are to be
highlighted or erased.The constant CLR_HIGHLIGHT indicates highlighting, and
the constant CLR_ERASE indicates erase (CLR_HIGHLIGHT and CRL_ERASE
are defined in "globals.h").The colors actually used to highlight or to erase lines
and points are specified by the user indigit.

transform_a_into_b (Xraw, Yraw, X, Y)
double Xraw, Yraw ;
double *X, *Y ;

This function converts the digitizer coordinatesXraw,Yraw into the database
coordinatesX,Y. This function is used by the driver functioncollect_points(p. 253).

Note. The transformation rule used by this routine is generated bydigit when the
user registers the map to the database. The rule is already in place by the time
collect_points(p. 253) calls transform_a_into_b().

Write_inf o (line, message)
int line ;
char *message ;

This function prints amessagein the four line window at the bottom of the user’s
terminal indigit. The variableline must be a number 1 through 4, which represents
the line number inside the window. Themessagemust not exceed 76 characters and
should not contain \n.

§22 Writing a Digitizer Dri ver

- 258 - - 258 -

22.2.3. Compilingthe Device Driver

Programs (e.g.,digit) that use the digitizer driver functions are stored in libraries.When
the digitizer driver is compiled, it links with those different libraries and creates the
programs. Eachdriver should contain aGmakefilethat contains compilation instructions
for gmake.5 TheGmakefilefor the digitizer driver is complex. Ratherthan attempting to
construct a completely new Gmakefile, it is generally simpler to copy an existing
Gmakefilefrom another driver and modify it to meet the needs of the new digitizer driver.

The following libraries are needed by the digitizer driver when it is compiled:

$GISBASE/src/mapdev/digit/libdigit.a
$GISBASE/src/mapdev/libes/libtrans.a
$GISBASE/src/mapdev/lib/libdig.a
$LIBDIR/libdig_atts.a

Some include files (∗.h) must also be compiled into the driver. These files are located in
the following directories:

$GISBASE/src/mapdev/libes
$GISBASE/src/mapdev/lib

Compile the device driver by executing gmake. This will create thedigit program and
any other programs dependent on the digitizer driver code.

22.2.4. Testing the Device Driver

There are three crucial points at which thedigit program calls the digitizer driver. The
first occurs just afterdigit has prompted the user for a file name.Digit will try to open
the driver and initialize the digitizer; if this fails, it is becauseD_setup_driver(p. 253) has
failed. Thesecond occurs when the user registers the map to the digitizer. If the program
fails at this point, there is a problem with theD_read_raw(p. 256) function. Afinal test of
the driver is performed when thecollect_points(p. 253) function is called, which occurs
when vectors are being digitized.

Before testing any programs, review the Grass Installation Guideto ensure that the
digitizer is set up correctly. If more information is needed, read the file
$GISBASE/src/mapdev/README.

5 See§11 Compiling and Installing GRASS Programs [p. 57] for a discussion ofgmakeand
Gmakefiles.

§22 Writing a Digitizer Dri ver

- 259 - - 259 -

22.3. Discussionof the Finer Points (Hints)
This section offers several hints and pitfalls to avoid when writing the digitizer driver. It
has three subsections: Setting up the Digitizer, Program Logic, and Specific Driver Issues.

22.3.1. Settingup the Digitizer

The process of setting up a computer system and digitizer can be divided into three steps:

(1) Settingthe internal switches on the digitizer (hardware)
(2) Runninga cable between the digitizer and the computer (hardware)
(3) Settingup the serial port on the computer (software)

22.3.1.1.Setting the internal switches

The switches on the digitizer must be set so that the digitizer will run underrequest
or prompt mode, which means that the digitizer will only send output when it is
requested or prompted by the program. Thus, the program controls the timing of the
output from the digitizer and will only receive information when it is ready to
process it.Refer to the manual included with the digitizer for specific information
on its set-up.

Note. The digitizer must be able to use an RS232 serial interface and transmit
information only when prompted by the program.If the digitizer cannot transmit
information on command, then it cannot be used as a GRASS digitizer.

22.3.1.2.Running a cable between the digitizer and computer

A cable must be made to connect the digitizer to a RS232 serial port on the
computer. Different model computers, even when from the same maker, may
require different cable configurations.For example, one computer may need a
straight-through cable, while another computer may need pins 6, 8, and 20 looped
back on the computer side.A break-out box can be used to deduce digitizer cable
requirements and ensure that the digitizer is actually talking to the computer.

22.3.1.3.Configuring the serial port

The digitizer is plugged into a serial port (/ dev/ tty??) on the computer, which must
be configured for a digitizer to run on it.To set up thetty for the digitizer, turn that
tty’s getty off, and make thetty readable and writable by anyone.

A final suggestion: document the information that has been learned. The file
$GISBASE/ src/ mapdev/ digitizers/ altek/ INSTALL.ALTEK can be used as an
example. It contains the switch settings for the Altek, cable configurations, and

§22 Writing a Digitizer Dri ver

- 260 - - 260 -

other useful information. Such documentation is invaluable when another digitizer
is added, problems arise, or if the digitizer switch settings have to be changed
because other software is using the digitizer.

22.3.2. Program Logic

All digitizing programs follow the same basic steps, whether they test the digitizer, or
appear in a complex digitizing program like digit. The following sequence gives the
programmer a feel for how the digitizer driver is used by the calling programs.

(1) Link the program to the digitizer (open thetty)
(2) Setthetty to the appropriate state (ioctl calls)
(3) Initializethe digitizer (setting resolution, setting origin, ...)
(4) Askthe digitizer for data containing a set of coordinates
(5) Readthe data from the digitizer
(6) Interpretthe data into usable coordinates (x, y)
(7) Displaythe coordinates (x, y)
(8) Loopback for more data or until user wants to quit

In order to become familiar with the architecture of a digitizer driver, it is useful to write
a simple program to test the digitizer. If a digitizing problem arises, the diagnostic
program can help isolate the cause of the problem (hardware, software, cable, etc.).

22.3.3. SpecificDri ver I ssues

The writing of digitizer device drivers can be complex. Thissection explores four issues
in greater depth:

(1) Connectingto the digitizer
(2) Initializing and reading the digitizer
(3) Synchronizingthe digitizer and computer
(4) Digitizercursors with buttons

Connecting to the digitizer :
In GRASS, the computer communicates directly with the digitizer to which (through
the serial porttty) the digitizer is connected.The tty to which the digitizer is
connected is opened, read, and written to just like a file.

D_setup_driver(p. 253) will open thetty, set file permissions to read and write, and
set the running state of thetty. Some experimenting with the different line
disciplines (CBREAK, RAW) may be necessary to determine the best state for the
tty, but RAW seems to be the norm. Changing the running state of atty consists of
changing the structures associated with that particulartty and reflecting the changes
to the operating system by usingioctl (). Unfortunately, the information is stored
differently under different operating systems.

§22 Writing a Digitizer Dri ver

- 261 - - 261 -

GRASS digitizer drivers have been written under the System V (AT&T) and
Berkeley (UCB) UNIX operating systems.A major difference between these two
operating systems is the way they handle terminal interfaces (ttys). Terminal
information is contained in structures in <termio.h> under System V, and in
<sgtty.h> under Berkeley. In other words, the structures, and the names used in the
structures, will differ depending on the operating system.All tty related system-
dependent code has C preprocessor# ifdef SYSV6 statments around it in the existing
drivers. System-dependentcode is defined as either being under System V (SYSV)
or Berkeley. This issue will only arise when thetty to which the digitizer is
connected is being opened, usingD_setup_driver(p. 253).

Initializing and reading the digitizer :
The driver and the digitizer communicate by using the UNIXread() and write ()
functions. D_setup_driver(p. 253) sets up the digitizer software by writing command
strings to thetty. Since each digitizer is different, the digitizer’s user manual
frequently proves to be the only source of information on how to initialize and read
the digitizer.

Setting up a consistently good function to read the digitizer is the most difficult part
of writing the digitizer driver. The read() function, when reading from atty, may
not read as many characters as requested.For example, if six bytes are requested,
read() can return anywhere from zero to six bytes.

One approach is to request six bytes, and then, if the number of bytes actually read
is not six, issue anotherread(), this time asking only for the number of bytes
remaining. Inother words, if six bytes were requested but only two were received,
then another read for four bytes is issued. If that read returned one byte, then another
read is requested for three bytes, etc.This would continue until either all six bytes
were read, or a timeout occurred. This approach worked well in the Altek driver.

Another approach that was tried was to request six bytes, and then, if less than six
bytes were received, the bytes were thrown away, and another six bytes were
requested. This was repeated until the read returned six bytes. This approach
worked some of the time, but sometimes gav e unreliable coordinates, and was
abandoned. Otherdigitizer drivers have been written that read ascii characters from
the digitizer and usesscanf() to strip out the needed information.

The number of characters actually read to get one set of coordinates will depend on
the digitizer and on the information stated in the digitizer’s user manual.

Another problem, in the case of the Altek, is that the cursor is only active in certain
portions of the tablet.This means that either there will be no output, or a specific
flag will be on/off, until the cursor is within the active area of the tablet. Because no
external markings on the tablet delineate the active area, individuals commonly

6 SYSV is defined bygmake. See§11 Compiling and Installing GRASS Programs[p. 57].

§22 Writing a Digitizer Dri ver

- 262 - - 262 -

attempt to digitize within the tablet’s inactive area, leading them to the false
assumption that the digitizer is acting strangely. Depending on the digitizer, this
will have to be handled by fine tuning the reads and/or checking the status byte(s).

A word of warning - if thetty is not set up properly inD_setup_driver(p. 253), the
read() function can return confusing information (i.e., it may include garbage with
the data or be unable to read the number of characters specified).

Synchronizing the digitizer and computer :
Driver checking has been added to post-3.0 drivers, to warn the user when the driver
is out of sync with the digitizer. For example, the Altek has the high bit turnedon
in the first byte of the six bytes that are read. The driver checks to make sure that
the high byte is turnedon; if it is not, the digitizer and driver are out of sync.The
driver warns the user, resets the digitizer and then reinitializes the digitizer.

Digitizer cursors with buttons:
Drivers can be written to use the digitizer buttons or the keyboard for input while
digitizing. Wheredrivers use the digitizer buttons, some digitizers will queue up
any button hits. (This may depend on what running state the digitizer was set up
with when it was initialized.) This means that if a person pushes the digitizer cursor
buttons a number of times and then begins to digitize, the program must clear the
queue of button hits before beginning to digitize. Other digitizers will only say that
a button has been hit if the button has been hitand the digitizer has been prompted
for a coordinate.

§22 Writing a Digitizer Dri ver

- 263 - - 263 -

Chapter 23

Writing a Graphics Dri ver

23.1. Introduction
GRASS application programs which use graphics are written with theRaster Graphics
Library . At compilation time, no actual graphics device driver code is loaded.It is only
at run-time that the graphics requests make their way to device-specific code. At run-
time, an application program connects with a running graphicsdevice driver, typically
via system level first-in-first-out (fifo) files. Each GRASS site may have one or more of
these programs to choose from. They are managed by the programd.mon.

Porting GRASS graphics programs from device to device simply requires the creation of
a new graphics driver program. Oncecompleted and working, all GRASS graphics
programs will work exactly as they were designed without modification (or
recompilation). Thissection is concerned with the creation of a new graphics driver.

23.2. Basics
The various drivers have source code contained under the directory
$GISBASE/src/D/devices.1 This directory contains a separate directory for each driver,
e.g., SUNVIEW and MASS.In addition, the directorylib contains files of code which
are shared by the drivers. The directory GENERIC contains the beginnings of the
required subroutines and sampleGmakefile.

A new driver must provide code for this basic set of routines. Once working, the
programmer can choose to rewrite some of the generic code to increase the performance
of the new driver. Presented first below are the required routines.Suggested options for
driver enhancement are then described.

1 $GISBASE is the directory where GRASS is installed.See§10.1 UNIX Environment[p. 53]

for details.

§23 Writing a Graphics Driver

- 264 - - 264 -

23.3. BasicRoutines
Described here are the basic routines required for constructing a new GRASS graphics
driver. These routines are all found in the GENERIC directory. It is suggested that the
programmer create a new directory (e.g., MYDRIVER) into which all of the GENERIC
files are copied (i.e.,cp GENERIC/∗ MYDRIVER).

23.3.1. Open/CloseDevice

Graph_Set() initialize graphics

This routine is called at the start-up of a driver. Any code necessary to establish the
desired graphics environment is included here.Often this means clearing the
graphics screen, establishing connection with a mouse or pointer, setting drawing
parameters, and establishing the dimensions of the drawing screen. In addition, the
global integer variables SCREEN_LEFT, SCREEN_RIGHT, SCREEN_TOP,
SCREEN_BOTTOM, and NCOLORS must be set. Note that the GRASS software
presumes the origin to be in the upper left-hand corner of the screen, meaning:

SCREEN_LEFT < SCREEN_RIGHT
SCREEN_TOP < SCREEN_BOTTOM

You may need to flip the coordinate system in your device-specific code to support a
device which uses the lower left corner as the origin. These values must map
precisely to the screen rows and columns.For example, if the device provides
graphics access to pixel columns 2 through 1023, then these values are assigned to
SCREEN_LEFT and SCREEN_RIGHT, respectively.

NCOLORS is set to the total number of colors available on the device. Thismost
certainly needs to be more than 100 (or so).

Graph_Close() shut down device

Close down the graphics processing.This gets called only at driver termination
time.

23.3.2. Return Edge and Color Values

The four raster edge values set in theGraph_Set()routine above are retrieved with the
following routines.

§23 Writing a Graphics Driver

- 265 - - 265 -

Screen_left(index) return left pixel column value

Screen_rite(index) return right pixel column value

Screen_top(index) return top pixel row value

Screen_bot(index) return bottom pixel row value

int *index ;

The requested pixel value is returned inindex.

These next two routines return the number of colors.There is no good reason for both
routines to exist; chalk it up to the power of anachronism.

Get_num_colors(index) return number of colors

int *index ;

The number of colors is returned inindex.

get_num_colors() return number of colors

The number of colors is returned directly.

23.3.3. DrawingRoutines

The lowest level drawing routines are draw_line(), which draws a line between two
screen coordinates, and Polygon_abs() which fills a polygon.

draw_line (x1,y1,x2,y2) draw a line

int x1, y1, x2, y2 ;

This routine will draw a line in the current color fromx1,y1 to x2,y2.

Polygon_abs(x,y,n) draw filled polygon

int *x, *y ;
int n ;

Using then screen coordinate pairs represented by the values in thex andy arrays,
this routine draws a polygon filled with the currently selected color.

23.3.4. Colors

This first routine identifies whether the device allows the run-time setting of device color
look-up tables. If it can (and it should), the next two routines set and select colors.

§23 Writing a Graphics Driver

- 266 - - 266 -

Can_do() signals run-time color look-up table access

If color look-up table modification is allowed, then this routine must return 1;
otherwise it returns 0. If your device has fixed colors, you must modify the routines
in the lib directory which set and select colors. Most devices now allow the setting
of the color look-up table.

reset_color(number, red, green, blue) set a color

int number ;
unsigned char red, green, blue ;

The system’s color represented bynumber is set using the color component
intensities found in thered, green,andblue variables. Avalue of 0 represents 0%
intensity; a value of 255 represents 100% intensity.

color (number) select a color

int number ;

The current color is set tonumber. This number points to the color combination
defined in the last call toreset_color()that referenced this number.

23.3.5. MouseInput

The user provides input through the three following routines.

Get_location_with_box(cx,cy,wx,wy,button) get location with rubber box

int cx, cy ;
int *wx, *wy ;
int *button ;

Using mouse device, get a new screen coordinate and button number. Button
numbers must be the following values which correspond to the following software
meanings:

1 - left button
2 - middle button
3 - right button

A rubber-band box is used. One corner is fixed at thecx,cy coordinate. The
opposite coordinate starts out atwx,wy and then tracks the mouse.Upon button
depression, the current coordinate is returned inwx,wy and the button pressed is
returned inbutton.

§23 Writing a Graphics Driver

- 267 - - 267 -

Get_location_with_line(cx,cy,wx,wy,button) get location with rubber line

int cx, cy ;
int *wx, *wy ;
int *button ;

Using mouse device, get a new screen coordinate and button number. Button
numbers must be the following values which correspond to the following software
meanings:

1 - left button
2 - middle button
3 - right button

A rubber-band line is used. One end is fixed at thecx,cy coordinate. Theopposite
coordinate starts out atwx,wy and then tracks the mouse. Upon button depression,
the current coordinate is returned inwx,wy and the button pressed is returned in
button.

Get_location_with_pointer (wx,wy,button) get location with pointer

int *wx, *wy ;
int *button ;

Using mouse device, get a new screen coordinate and button number. Button
numbers must be the following values which correspond to the following software
meanings:

1 - left button
2 - middle button
3 - right button

A cursor is used which starts out atwx,wy and then tracks the mouse. Upon button
depression, the current coordinate is returned inwx,wy and the button pressed is
returned inbutton.

23.3.6. Panels

The following routines cooperate to save and restore sections of the display screen.

§23 Writing a Graphics Driver

- 268 - - 268 -

Panel_save (name, top, bottom, left, right) save a panel

char *name ;
int top, bottom, left, right ;

The bit display between the rows and cols represented bytop, bottom, left, and
right are saved. Thestring pointed to byname is a file name which may be used to
save the image.

Panel_restore(name) restore a panel

char *name ;

Place a panel saved in name (which is often a file) back on the screen as it was
when it was saved. Thememory or file associated withname is removed.

23.4. OptionalRoutines
All of the above must be created for any new driver. The GRASSRasterlib, which
provides the application program routines which are passed to the driver via the fifo files,
contains many more graphics options. There are actually about 44.Above, we hav e
described 19 routines, some of which do not have a counterpart in theRasterlib. For
GRASS 3.0, the basic driver library was expanded to accommodate all of the graphics
subroutines which could be accomplished at a device-dependent level using the 19
routines described above. This makes driver writing quite easy and straightforward. A
price that is paid is that the resulting driver is probably slower and less efficient than it
might be if more of the routines were written in a device-dependent way. This section
presents a few of the primary target routines that you would most likely consider
rewriting for a new driver.

It is suggested that the driver writer copy entire files from the lib area that contain code
which shall be replaced. In the loading of libraries during the compilation process, the
entire file containing an as yet undefined routine will be loaded.For example, say a file
"ab.c" contains subroutines a() and b(). Even if the programmer has provided subroutine
a()elsewhere, at load time, the entire file "ab.c" will be loaded to get subroutine b(). The
compiler will likely complain about a multiply defined external. To avoid this situation,
do not break routines out of their files for modification; modify the entire file.

§23 Writing a Graphics Driver

- 269 - - 269 -

Raster_int (n, nrows, array, withzeros, type) raster display

int n ;
int nrows ;
unsigned int *array ;
int withzeros ;
int type ;

This is the basic routine for rendering raster images on the screen.Application
programs construct images row by row, sending the completed rasters to the device
driver. The default Raster_int() in lib draws the raster through repetitive calls to
color() anddraw_line(). Often a 20x increase in rendering speed is accomplished
through low-level raster calls. The raster is found in thearray pointer. It contains
color information forn colors and should be repeated fornrows rows. Each
successive row falls under the previous row. (Depending on the complexity of the
raster and the number of rows, it is sometimes advantageous to render the raster
through low-level box commands.)The withzeros flag indicates whether the zero
values should be treated as color 0 (withzeros= =1) or as invisible (withzeros==0).
Finally, type indicates that the raster values are already indexed to the hardware
color look-up table (type==0), or that the raster values are indexed to GRASS colors
(which must be translated through a look-up table) to hardware look-up table colors
(type= =1).

Further details on this routine and related routinesRaster_chr(), andRaster_def()
are, of course, found in the definitive documentation: the source code.

§23 Writing a Graphics Driver

- 270 - - 270 -

- 271 - - 271 -

Chapter 24

Writing a Paint Dri ver

24.1. Introduction
The paint system, which produces hardcopy maps for GRASS, is able to support many
different types of color printers. This is achieved by placing all device-dependent code in
a separate program called a device driver. Application programs, written using a library
of device-independent routines, communicate with the device driver using the UNIX pipe
mechanism. Thedevice driver translates the device-independent requests into graphics
for the device.

A paint driver has two parts: a shell script and an executable program. The executable
program is responsible for translating device-independent requests into graphics on the
printer. The shell script is responsible for setting some UNIX environment variables that
are required by the interface, and then running the executable program.

The user first selects a printer using thep.selectprogram. Theselected printer is stored in
the GRASS environment variable PAINTER.1 Then the user runs one of the application
programs. Theprincipal paint applications that produce color output arep.mapwhich
generates scaled maps, andp.chart which produces a chart of printer colors.The
application looks up the PAINTER and runs the related shell script as a child process.
The shell script sets the required environment variables and runs the executable. The
application then communicates with the driver via pipes.

24.2. Creating a Source Directory for the Driver Code
The source code forpaintdrivers lives in

$GISBASE/src/paint/Drivers2

Each driver has its own subdirectory containing the source code for the executable

1 See§10.2 GRASS Environment[p. 54].
2 $GISBASE is the directory where GRASS is installed.See§10.1 UNIX Environment[p. 53]

for details.

§24 Writing a Paint Driver

- 272 - - 272 -

program, the shell script, and aGmakefile with rules that tell the GRASSgmake
command how to compile the driver.3

24.3. ThePaint Dri ver Executable Program
A paint device driver program consists of a set of routines (defined below) that perform
the device-dependent functions. These routines must be written for each device to be
supported.

24.3.1. PrinterI/O Routines

The following routines open the printer port and perform low-level i /o to the printer.

Popen (port) open the printer port

char *port;

Open the printerport for output. If theport is a tty,perform any necessarytty
settings (baud rate, xon/xoff, etc.) required. No data should be written to theport.

The port will be the value of the UNIX environment variable MAPLP,4 if set, and
NULL otherwise. It is recommended that device drivers use theport that is passed
to them so thatpainthas a consistent logic.

The baud rate should not be hardcoded intoPopen(). It should be set in the driver
shell as the UNIX environment variable BAUD. Popen() should determine the
baud rate from this environment variable.

Pout (buf, n) write to printer

unsigned char *buf;
int n;

Output the data inbuf. The number of bytes to send isn. This is a low-level
request. Noprocessing of the data is to be done. Output is simply to be sent as is to
the printer.

It is not required that data passed to this routine go immediately to the printer. This
routine can buffer the output, if desired.

It is recommended that this routine be used to send all output to the printer.

3 See §11 Compiling and Installing GRASS Programs [p. 57] for details on the GRASS
compilation process.

4 This, and other, environment variables are set in the driver shell script which is described in
§24.4 The Device Driver Shell Script[p. 277].

§24 Writing a Paint Driver

- 273 - - 273 -

Poutc (c) write a character to printer

unsigned char c;

Sends the characterc to the printer. This routine can be implemented as follows:

Poutc(c) unsigned char c;
{

Pout(c, 1);
}

Pouts (s) write a string to printer

unsigned char *s;

Sends the character strings to the printer. This routine can be implemented as
follows:

Pouts(s) unsigned char *s;
{

Pout(s, strlen(s));
}

Pflush () flush pending output

Flush any pending output to the printer. Does not close the port.

Pclose() close the printer port

Flushes any pending output to the printer and closes the port.

Note. The above routines are usually not device dependent. In most cases the printer is
connected either to a serialtty port or to a parallel port.The paint driver library5

contains versions of these routines which can be used for output to either serial or parallel
ports. Exceptionsto this are thepreview driver, which sends its output to the graphics
monitor, and theNULL driver which sends debug output to stderr.

24.3.2. Initialization

The following routine will be called afterPopen(p. 272) to initialize the printer :

5 See§24.6 Paint Driver Library[p. 280].

§24 Writing a Paint Driver

- 274 - - 274 -

Pinit () initialize the printer

Initializes the printer. Sends whatever codes are necessary to get the printer ready
for printing.

24.3.3. Alpha-NumericMode

The following two routines allow the printer to be used for normal text printing:

Palpha () place printer in text mode

Places the printer in alpha-numeric mode.In this mode, the driver should only
honorPtext(p. 274) calls.

Ptext (text) print text

char *text;

Prints thetext string on the printer.

The text will not normally have nonprinting characters (i.e., control codes, tabs,
linefeeds, returns, etc.) in it. Such characters in thetext should be ignored or
suppressed if they do occur. If the printer requires any linefeeds or carriage returns,
this routine should supply them.

Note. If the printer does not have support for text in the hardware, it must be simulated.
Theshinko635printer does not have text, and the code from that driver can be used.

24.3.4. GraphicsMode

The following routines perform raster color graphics:

Praster () place printer in graphics mode

Places the printer in raster graphics mode. This implies that subsequent requests will
be related to generating color images on the printer.

§24 Writing a Paint Driver

- 275 - - 275 -

Pnpixels(nrows, ncols) report printer dimensions

int *nrows;
int *ncols;

The variablencolsshould be set to the number of pixels across the printer page.If
the driver is combining physical pixels into larger groupings (e.g., 2x2 pixels) to
create more colors, thenncolsshould be set to the number of these larger pixels.

The variablenrows should be set to 0.A non-zero value means that the output
media does not support arbitrarily long output andp.mapwill scale the output to fit
into a window nrows x ncols. The only driver which should set this to a non-zero
value is thepreview driver, which sends its output to the graphics screen.

Ppictsize(nrows, ncols) defined picture size

int nrows;
int ncols;

Prepare the printer for a picture withnrows and ncols. The number of columns
ncolswill not exceed the number of columns returned byPnpixels(p. 275).6

There is no limit on the number of rows nrows that will be requested.p.map
assumes that the printer paper is essentially infinite in length. Some printers (e.g.,
thermal printers like the shinko635) only allow a limited number of rows, after
which they leave a gap before the output can begin again. It is up to the driver to
handle this. The output will simply have gaps in it. The user will cut out the gaps
and tape the pieces back together.

Pdata (buf, n) send raster data to printer

unsigned char *buf;
int n;

Output the raster data inbuf. The number of bytes to send isn, which will be the
ncols as specified in the previous call toPpictsize(p. 275). Thevalues inbuf will be
printer color numbers, one per pixel.

Note that the color numbers inbuf have full color information encoded into them
(i.e., red, green, and blue). Some printers (e.g., inkjet) can output all the colors on a
row by row basis. Others(e.g., thermal) must lay down a full page of one color,
then repeat with another color, etc. Drivers for these printers will have to capture
the raster data into temporary files and then make three passes through the captured
data, one for each color.

6 The programmer should, of course, code defensively. If the number of columns is too large,
the driver should exit with an error message.

§24 Writing a Paint Driver

- 276 - - 276 -

Prle (buf, n) send rle raster data to printer

unsigned char *buf;
int n;

Output the run-length encoded raster data inbuf. The data is in pairs:color, count,
wherecolor is the raster color to be sent, andcount is the number of times the
color is to be repeated (with acount of 0 meaning 256). The number of pairs isn.

Of course, all the counts should add up toncols as specified in the previous call to
Ppictsize(p. 275). If the printer can handle run-length encoded data, then the data can
be sent either directly or with minimal manipulation. Otherwise, it must be
converted into standard raster form before sending it to the printer.

24.3.5. ColorInformation

Thepaint system expects that the printer has a predefined color table. No attempt is made
by paint to download a specific color table. Rather, the driver is queried about its
available colors.The following routines return information about the colors available on
the printer. These routines may be called even if Popen(p. 272) has not been called.

Pncolors() number of printer colors

This routine returns the number of colors available. Currently, this routine must not
return a number larger than 255. If the printer is able to generate more than 255
colors, the driver must find a way to select a subset of these colors.Also, thepaint
system works well with printers that have around 125 different colors. If the printer
only has three colors (e.g., cyan, yellow, and magenta), then 125 colors can be
created using a 2x2 pixel.7

Pcolorlevels (red, green, blue) get color levels

int *red, *green, *blue;

Returns the number of colors levels. This means, for example, if the printer has 125
colors, the color level would be 5 for each color; if the printer has 216 colors, the
color levels would be 6 for each color, etc.

7 See§24.8 Creating 125 Colors From 3 Colors [p. 282].

§24 Writing a Paint Driver

- 277 - - 277 -

Pcolornum (red, green, blue) get color number

float red, green, blue;

This routine returns the color number for the printer which most closely
approximates the color specified by thered, green, and blue intensities. These
intensities will be in the range 0.0 to 1.0.8

The printer color numbers must be in the range 0 ton -1, wheren is the number of
colors returned byPncolors(p. 276).

For printers that have cyan, yellow, and magenta instead of red, green and blue, the
conversion formulas are:

cyan = 1.0 - red
yellow = 1.0 - blue
magenta = 1.0- green

Pcolorvalue (n, red, green, blue) get color intensities

int n;
float *red, *green, *blue;

This routine computes thered, green, and blue intensities for the printer color
numbern. These intensities must be in the range 0.0 to 1.0.If n is not a valid color
number, set the intensities to 1.0 (white).

24.4. TheDevice Driver Shell Script
The driver shell is a small shell script which sets some environment variables, and then
executes the driver. The following variables must be set :9

MAPLP
This variable should be set to thetty port that the printer is on. Thetty named by
this variable is passed toPopen(p. 272). Only in very special cases can drivers justify
either ignoring this value or allowing it not to be set.

The drivers distributed by USACERL have MAPLP set to /dev/${PAINTER}. Thus
each driver must have a corresponding /dev port. These are normally created as links
to real /dev/tty ports.

8 Just to be safe, those above 1.0 can be changed to 1.0, and those below 0.0 can be changed to
0.0.

9 The driver shell script may set any other variables that the programmer has determined the
driver needs.

§24 Writing a Paint Driver

- 278 - - 278 -

BAUD
This specifies the baud rate of the outputtty port. This variable is only needed if the
output port is a serial RS-232 tty port. The value of the variable should be an integer
(e.g., 1200, 9600, etc.), and should be used byPopen(p. 272) to set the baud rate of
thetty port.

HRES
This specifies the horizontal resolution of the printer in pixels per inch. This is a
positive floating point number.

VRES
This specifies the vertical resolution of the printer in pixels per inch. This is a
positive floating point number.

NCHARS
This specifies the maximum number of characters that can be printed on one line in
alpha-numeric mode.

Note. The application programs do not try to deduce the width in pixels of text
characters.

TEXTSCALE
This positive floating point number is used byp.mapto set the size of the numbers
placed on the grid when maps are drawn. The normal value is 1.0, but if the
numbers should appear too large, a smaller value (0.75) will shrink these numbers.
If they appear too small, a larger value (1.25) will enlarge them.This value must be
determined by trial and error.

The next five variables are used to control the color boxes drawn in the map legend for
p.mapas well as the boxes for the printer color chart created byp.chart. They hav eto be
determined by trial and error in order to get the numbering to appear under the correct
box.10

NBLOCKS
This positive integer specifies the maximum number of blocks that are to be drawn
per line.

BLOCKSIZE
This positive integer specifies the number of pixels across the top of an individual
box.

BLOCKSPACE
This positive integer specifies the number of pixels between boxes.

TEXTSPACE
This positive integer specifies the number of space characters to output after each
number (printed under the boxes).

10 Apologies are offered for this admittedly awkward design.

§24 Writing a Paint Driver

- 279 - - 279 -

TEXTFUDGE
This nonnegative integer provides a way of inserting extra pixels between every
other box, or every third box, etc. On some printers, this will not be necessary, in
which case TEXTFUDGE should be set to 0. If you find that the numbers under the
boxes are drifting away from the intended box, the solution may be to move every
other box, or every third box over 1 pixel. For example, to move every other box,
set TEXTFUDGE to 2.

The following is a samplepaintdriver shell script :

: ${PAINTER?} ${PAINT_DRIVER?}

MAPLP=/dev/$PAINTER
BAUD=9600

HRES=85.8
VRES=87.0
NCHARS=132

TEXTSCALE=1.0

NBLOCKS=25
BLOCKSIZE=23
BLOCKSPACE=13
TEXTSPACE=1
TEXTFUDGE=3

export MAPLP BAUD HRES VRES NCHARS
export TEXTSCALE TEXTSPACE TEXTFUDGE
export NBLOCKS BLOCKSIZE BLOCKSPACE

exec $PAINT_DRIVER

24.5. Programming Considerations
The paint driver uses its standard input and standard output to communicate with the
paint application program. It is very important that neither the driver shell nor the driver
program write to stdout or read from stdin.

Diagnostics, error messages, etc., should be written to stderr. There is an error routine
which driver programs can use for fatal error messages. It is defined as follows:

error (message, perror)

char *message;
int perror;

§24 Writing a Paint Driver

- 280 - - 280 -

This routine prints themessageon stderr. If perror is true (i.e., non-zero), the
UNIX routine perror () will be also called to print a system error message.Finally,
exit () is called to terminate the driver.

24.6. Paint Dri ver L ibrary
The paint system comes with some code that has already been written. This code is in
object files under thepaintdriver library directory.11 These object files are:

main.o
This file contains themain() routinewhich must be loaded by every dri ver , since
it contains the code that interfaces with the application programs.

io.o
This file contains versions ofPopen(p. 272), Pout(p. 272), Poutc(p. 273), Pouts(p. 273),
Pflush(p. 273), andPclose(p. 273) which can be used with printers that are connected
to serial or parallel ports. These routines handle the tricky tty interfaces for both
System V and Berkeley UNIX, allowing full 8-bit data output to the printer, with
xon/xoff control enabled, as well as baud rate selection.

colors125.o
This file contains versions of Pncolors(p. 276), Pcolorlevels(p. 276),
Pcolornum(p. 277), andPcolorvalue(p. 277) for the 125 color logic described in§24.8
Creating 125 Colors From 3 Colors [p. 282].

24.7. Compilingthe Driver
Paint drivers are compiled using the GRASSgmakeutility which requires aGmakefile
containing compilation rules.12 The following is a sampleGmakefile:

11 See§24.7 Compiling the Driver[p. 280] for an example of how to load this library code.
12 See §11 Compiling and Installing GRASS Programs [p. 57] for details on the GRASS

compilation process.

§24 Writing a Paint Driver

- 281 - - 281 -

NAME = sample
DRIVERLIB = $(SRC)/paint/Interface/driverlib
INTERFACE = $(DRIVERLIB)/main.o \

$(DRIVERLIB)/io.o \
$(DRIVERLIB)/colors125.o

DRIVER_SHELL = $(ETC)/paint/driver.sh/$(NAME)
DRIVER_EXEC = $(ETC)/paint/driver/$(NAME)

OBJ = alpha.o text.o raster.o npixels.o \
pictsize.o data.o rle.o

all: $(DRIVER_EXEC) $(DRIVER_SHELL)

$(DRIVER_EXEC): $(OBJ) $(LOCKLIB)
$(CC) $(LDFLAGS) $(INTERFACE) $(OBJ) $(LOCKLIB) -o $@

$(DRIVER_SHELL): DRIVER.sh
rm -f $@
cp $? $@
chmod +x $@

$(OBJ): P.h
$(LOCKLIB): # in case library changes

There are some features about thisGmakefilethat should be noted:

printer name (NAME)
The printer namesample is assigned to the NAME variable, which is then used
ev erywhere else.

paint driver library (DRIVERLIB)
This driver loads code from the commonpaint driver library.13 It loads main.o
containing themain() routine for the driver. All dri vers must load main.o. It
loads io.o which contains versions ofPopen(p. 272), Pout(p. 272), Poutc(p. 273),
Pouts(p. 273), Pflush(p. 273), andPclose(p. 273) for serial and parallel ports. It also
loadscolors125.owhich contains versions ofPncolors(p. 276), Pcolorlevels(p. 276),
Pcolornum(p. 277), andPcolorvalue(p. 277) for 125 colors.

lock library (LOCKLIB)
The driver loads the lock library. This is a GRASS library which must be loaded if
thePopen(p. 272) from the driver library is used.

homes for driver shell and executable
The driver executable is compiled into thedriver directory, and the driver shell is
copied into thedriver.sh directory. This means that the driver executable is placed

13 See also§24.6 Paint Driver Library[p. 280]).

§24 Writing a Paint Driver

- 282 - - 282 -

in

$GISBASE/etc/paint/driver14

and the driver shell in

$GISBASE/etc/paint/driver.sh.

24.8. Creating 125 Colors From 3 Colors
The paint system expects that the printer will have a reasonably large number of colors.
Some printers support a large color table in the hardware. But others only support three
primary colors: red, green, and blue (or cyan, yellow, and magenta).If the printer only
has three colors, the driver must simulate more.

If the printer pixels are grouped into 2x2 combinations of pixels, then 125 colors can be
simulated. For example, a color with 20% red, 100% green, and 0% blue would have one
of the four pixels painted red, all four pixels painted green, and none of the pixels painted
blue.

The following code converts a color intensity in the range 0.0 to 1.0 into a number from
0-4 (i.e., the number of pixels to "turn on" for that color):

npixels = (intensity∗ 5) ;
if (npixels > 4)
npixels = 4 ;

This logic will agree with the 125 color logic used by thepaint driver library15 routines
Pncolors(p. 276), Pcolorlevels(p. 276), Pcolornum(p. 277), andPcolorvalue(p. 277), provided
that the colornumbersare assigned as follows:

color_number = red_pixels∗ 25 + green_pixels∗ 5 + blue_pixels ;

14 $GISBASE is the directory where GRASS is installed.See§10.1 UNIX Environment[p. 53]

for details.
15 See§24.6 Paint Driver Library[p. 280].

§24 Writing a Paint Driver

- 283 - - 283 -

Chapter 25

Writing GRASS Shell Scripts

This section describes some of the things a programmer should consider when writing a
shell script that will become a GRASS command.

25.1. Usethe Bourne Shell
The Bourne Shell (/bin/sh) is the original UNIX command interpreter. It is available on
most (if not all) versions of UNIX. Other command interpreters, such as the C-Shell
(/bin/csh), are not as widely available. Therefore, programmers are strongly encouraged
to write Bourne Shell scripts for maximum portability.

The discussion that follows is for the Bourne Shell only. It is also assumed that the
reader knows (or can learn) how to write Bourne Shell scripts. This chapter is intended to
provide guidelines for making them work properly as GRASS commands.

25.2. How a Script Should Start
There are some things that should be done at the beginning of any GRASS shell script :

(1) Verify that the user is running GRASS, and

(2) Castthe GRASS environment variables into the UNIX environment,1 and
verify that the variables needed by the shell script are set.

#!/bin/sh
if test "$GISRC" = " "
then

echo "Sorry, you are not running GRASS" >&2
exit 1

fi
eval `g.gisenv`
: ${GISBASE?} ${GISDBASE?} ${LOCATION_NAME?} ${MASPET?}

1 See§10 Environment Variables[p. 53]

§25 Writing GRASS Shell Scripts

- 284 - - 284 -

Note the use of the: command. This command simply evaluates its arguments. The
syntax ${GISBASE?} means that if GISBASE is not set, issue an error message to
standard error and exit the shell script.

25.3. g.ask
The GRASS commandg.ask emulates the prompting found in all other GRASS
commands, and should be used in shell scripts to ask the user for files from the GRASS
database. Theuser’s response can be cast into shell variables. The following example
asks the user to select an existing raster file:

g.ask type=old prompt="Select a raster file" element=cell desc=raster unixfile=/tmp/$$
. /tmp/$$
rm -f /tmp/$$
if test "$name" = ""
then

exit 0
fi

Theg.askmanual entry in theGRASS User’s Reference Manualdescribes this command
in detail. Here, the reader should note the following:

(1) Thetemporary file used to hold the user’s response is/tmp/$$. The Bourne
Shell will substitute its process id for the$$ thus creating a unique file
name;

(2) Thenext line, which begins with a dot, sources the commands contained in
the temporary file. These commands are:

name=something
mapset=something
file=something

Therefore, the variables $name, $mapset, and $file will contain the name,
mapset and full UNIX file name of the raster file selected by the user;

(3) Thetemporary file is removed; and

(4) If $name is empty, this means that the user changed his or her mind and did
not select any raster file.2 In this case, something reasonable is done, like
exiting.

25.4. g.findfile
The g.findfile command can be used to locate GRASS files that were specified as
arguments to the shell script (instead of prompted for withg.ask). Assumingthat the
variable $request contains the name of a raster file, the following checks to see if the file
exists. If it does, the variables $name, $mapset and $file will be set to the name, mapset

2 The other variables will be empty as well.

§25 Writing GRASS Shell Scripts

- 285 - - 285 -

and full UNIX file name for the raster file:

eval `g.findfile element=cell file="$request"`
if test "$mapset" = " "
then

echo ERROR: raster file "$request" not found >&2
exit 1

fi

Note. The programmer should use quotes with $request, since it may contain spaces.
(quotes will preserve the full request). If found,g.findfileoutputs $name as the name part
and $mapset as the mapset part.See theg.findfile manual entry in theGRASS User’s
Reference Manualfor more details.

§25 Writing GRASS Shell Scripts

- 286 - - 286 -

- 287 - - 287 -

Appendix A

Annotated Gmakefile Predefined Variables

The predefined Gmakefile variables are defined in the fileshead and make.mid.
These files can be found under $GISBASE/src/CMD.1

Note: Some of the variables shown here are described in more detail in§11
Compiling and Installing GRASS Programs[p. 57].

head

The head file contains machine dependent and installation dependent
information. It is created by system personnel when GRASS is installed on a
system prior to compilation. This file varies from system to system.The name
of this file may also vary, depending on the machine or architecture for which
GRASS is compiled.

Here is a sampleheadfile:

Variable Value Description

ARCH = sun3 Architectureto compile on
GISBASE =/usr/grass4.1 Locationof GRASS program
UNIX_BIN = /usr/local/bin MiscellaneousGRASS commands

DEFAULT_DAT ABASE =/usr/grass/data Locationof default database
DEFAULT_LOCATION = spearfish Nameof defaut database

COMPILE_FLAGS =-O Compilerflags
LDFLAGS =-s Loaderflags
DIGIT_FLAGS =
MATHLIB = -lm Math libraries
TERMLIB = -ltermlib Terminal emulation libraries
CURSES =-lcurses $(TERMLIB) Curses libraries
LIBRULE = ar ruv $@ $?; ranlib $@ Library archiver
#LIBRULE = ar rc $@ ‘lorder $(OBJ) | tsort‘ Alternate form of library archiver

command
#USE_TERMIO =-DUSE_TERMIO UseTERMIO or not?
USE_MTIO =-DUSE_MTIO UseMTIO?

1 $GISBASE is the directory where GRASS is installed.See§10.1 UNIX Environment[p. 53]

for details.

Annotated Gmakefile Predefined Variables

- 288 - - 288 -

Variable Value Description

DIGITFLAGS =

make.mid

The make.mid file uses the variables inmakeheadto construct other variables
that are useful for compilation rules.The contents of this file are usually
unchanged from system to system.

Here is a samplemake.midfile:

Variable Value Description

SHELL = /bin/sh

BIN = $(GISBASE)/bin GRASScommand links
ETC =$(GISBASE)/etc MainGRASS commands
GARDEN_BIN =$(GISBASE)/garden/bin Gardencommands
GARDEN_ETC =$(GISBASE)/garden/etc
BIN_MAIN_INTER = $(ETC)/bin/main/inter Maininteractive commands
BIN_MAIN_CMD = $(ETC)/bin/main/cmd Maincommand-line commands
BIN_ALPHA_INTER = $(ETC)/bin/alpha/inter Alphainteractive
BIN_ALPHA_CMD = $(ETC)/bin/alpha/cmd Alphacommand-line
BIN_CONTRIB_INTER =$(ETC)/bin/contrib/inter Contributed interactive
BIN_CONTRIB_CMD =$(ETC)/bin/contrib/cmd Contributed command-line
TXT = $(GISBASE)/txt Text directory
MAN1 = $(GISBASE)/man/1 Manualpage directories
MAN2 = $(GISBASE)/man/2
MAN3 = $(GISBASE)/man/3
MAN4 = $(GISBASE)/man/4
MAN5 = $(GISBASE)/man/5
MAN6 = $(GISBASE)/man/6
HELP =$(GISBASE)/man/help

CFLAGS = $(COMPILE_FLAGS)
$(EXTRA_CFLAGS)
-I$(LIBDIR)
$(USE_TERMIO)

AR All library archiver flags= $(GMAKE) -makeparentdir $@;
$(LIBRULE)

Annotated Gmakefile Predefined Variables

- 289 - - 289 -

Variable Value Description

MANROFF = tbl -TX
$(SRC)/man.help/man.version
$(SRC)/man.help/man.header $? |
nroff -Tlp | col -b > $@

Manual formatter command
and options

MAKEALL = $(GMAKE) -all Command to make GRASS

LIBDIR = $(SRC)/libes GRASSlibraries
DIG_LIBDIR = $(SRC)/mapdev/libes
DIG_INCLUDE = $(SRC)/mapdev/lib
VECT_INCLUDE = -I$(SRC)/mapdev/Vlib

-I$(SRC)/mapdev/diglib

VASKLIB = $(LIBDIR)/libvask.a Vask libraries
VASK = $(VASKLIB) $(CURSES) Vask and flags

GISLIB = $(LIBDIR)/libgis.a GISlibraries
ICONLIB = $(LIBDIR)/libicon.a
LOCKLIB = $(LIBDIR)/liblock.a
IMAGERYLIB = $(LIBDIR)/libI.a
RO WIOLIB = $(LIBDIR)/librowio.a
COORCNVLIB =$(LIBDIR)/libcoorcnv.a
SEGMENTLIB =$(LIBDIR)/libsegment.a
BTREELIB = $(LIBDIR)/libbtree.a
DLGLIB = $(LIBDIR)/libdlg.a
RASTERLIB =$(LIBDIR)/libraster.a
DISPLAYLIB = $(LIBDIR)/libdisplay.a
D_LIB = $(LIBDIR)/libD.a
DRIVERLIB =

$(SRC)/display/devices/lib/driverlib.a
LINKMLIB = $(LIBDIR)/liblinkm.a

DIGLIB = $(LIBDIR)/libdig.a
DIG2LIB = $(LIBDIR)/libdig2.a
VECTLIB_REAL = $(LIBDIR)/libvect.a
VECTLIB = $(VECTLIB_REAL) $(DIG2LIB)
DIG_ATTLIB = $(LIBDIR)/libdig_atts.a

XDISPLAYLIB = $(LIBDIR)/libXdisplay.a

Annotated Gmakefile Predefined Variables

- 290 - - 290 -

- 291 - - 291 -

Appendix B

The CELL Data Type

GRASS cell file data is defined to be of type CELL. This data type is defined in the
"gis.h" header file. Programmers must declare all variables and buffers which will hold
raster data or category codes as type CELL.

Under GRASS the CELL data type is declared to beint, but the programmer should not
assume this. What should be assumed is that CELL is a signed integer type. It may be
changed sometime toshort or long. This implies that use of CELL data with routines
which do not know about this data type (e.g., printf(), sscanf(), etc.) must use an
intermediate variable of typelong.

To print a CELL value, it must be cast tolong. For example:

CELL c; /* raster value to be printed */

/* some code to get a value for c */

printf ("%ld\n", (long) c); /* cast c to long to print */

To read a CELL value, for example from user typed input, it is necessary to read into a
long variable, and then assign it to the CELL variable. For example:1

char userbuf[128];
CELL c;
long x;

printf ("Which category? "); /* prompt user */
gets(userbuf); /* get user response */
sscanf (userbuf,"%ld", &x); /* scan category into long variable */
c = (CELL) x; /* assign long value to CELL value */

Of course, with GRASS library routines that are designed to handle the CELL type, this
problem does not arise.It is only when CELL data must be used in routines which do not
know about the CELL type, that the values must be cast to or fromlong.

1 This example does not check for valid inputs, EOF, etc., which good code must do.

The CELL Data Type

- 292 - - 292 -

- 293 - - 293 -

Appendix C

Index to GIS Library

Here is an index of GIS Library routines, with calling sequences and short function
descriptions.

GIS Library

routine parameters description page

G_add_color_rule (cat1,r1, g1, b1, cat2, r2, g2, b2, colors)set colors 113
G_adjust_Cell_head (cellhd,rflag, cflag) adjust cell header 107
G_adjust_easting (east,region) returnseast larger than west 96
G_adjust_east_longitude (east,west) adjusteast longitude 96
G_align_window (region, ref) align two regions 86

G_allocate_cell_buf () allocate a raster buffer 103
G_area_for_zone_on_ellipsoid (north,south) areabetween latitudes 92
G_area_for_zone_on_sphere (north,south) areabetween latitudes 92
G_area_of_cell_at_row (row) cell area in specified row 91
G_area_of_polygon (x,y, n) area in square meters of polygon 93

G_ask_any (prompt, name, element, label, warn) promptfor any valid file name 76
G_ask_cell_in_mapset (prompt,name) promptfor existing raster file 99
G_ask_cell_new (prompt, name) prompt for new raster file 99
G_ask_cell_old (prompt,name) promptfor existing raster file 99
G_ask_in_mapset (prompt,name, element, label) prompt for existing database file 75

G_ask_new (prompt, name, element, label) prompt for new database file 75
G_ask_old (prompt,name, element, label) prompt for existing database file 75
G_ask_sites_in_mapset (prompt,name) promptfor existing site list file 127
G_ask_sites_new (prompt, name) prompt for new site list file 127
G_ask_sites_old (prompt,name) promptfor existing site list file 127

G_ask_vector_in_mapset (prompt,name) promptfor an existing vector file 122
G_ask_vector_new (prompt, name) prompt for a new vector file 122
G_ask_vector_old (prompt,name) promptfor an existing vector file 122
G_begin_cell_area_calculations () begin cell area calculations 91
G_begin_distance_calculations () begin distance calculations 94

G_begin_ellipsoid_polygon_area (a,e2) begin area calculations 93
G_begin_geodesic_distance (a,e2) begin geodesic distance 94
G_begin_polygon_area_calculations () begin polygon area calculations 93
G_begin_zone_area_on_ellipsoid (a,e2, s) begin area calculations for ellipsoid 92
G_begin_zone_area_on_sphere (r, s) initialize calculations for sphere 92

G_bresenham_line (x1,y1, x2, y2, point) Bresenham line algorithm 129
G_calloc (n,size) memoryallocation 83
G_close_cell (fd) close a raster file 106
G_col_to_easting (col,region) columnto easting 86
G_database_projection_name (proj) query cartographic projection 88

G_database_unit_name (plural) database units 88
G_database_units_to_meters_factor () conversion to meters 88
G_date () current date and time 151
G_define_flag () return Flag structure 134
G_define_option () returns Option structure 134

Index to GIS Library

- 294 - - 294 -

GIS Library

routine parameters description page

G_disable_interactive () turns off interactive capability 135
G_distance (x1,y1, x2, y2) distance in meters 94
G_easting_to_col (east,region) eastingto column 87
G_ellipsoid_name (n) return ellopsoid name 96
G_ellipsoid_polygon_area (lon,lat, n) area of lat-long polygon 94

G_fatal_error (message) print error message and exit 70
G_find_cell (name,mapset) finda raster file 100
G_find_cell_stat (cat,count, s) random query of cell stats 120
G_find_file (element,name, mapset) find a database file 77
G_find_vector2 (name,mapset) finda vector file 123

G_find_vector (name,mapset) finda vector file 123
G_fopen_append (element,name) opena database file for update 80
G_fopen_new (element, name) open a new database file 81
G_fopen_old (element,name, mapset) open a database file for reading 79
G_fopen_sites_new (name) opena new site list file 128

G_fopen_sites_old (name,mapset) openan existing site list file 128
G_fopen_vector_new (name) opena new vector file 125
G_fopen_vector_old (name,mapset) openan existing vector file 124
G_fork () create a protected child process 150
G_format_easting (east,buf, projection) easting to ASCII 90

G_format_northing (north,buf, projection) northing to ASCII 90
G_format_resolution (resolution,buf, projection) resolution to ASCII 90
G_free_cats (cats) free category structure memory 111
G_free_cell_stats (s) free cell stats 119
G_free_colors (colors) free color structure memory 114

G_fully_qualified_name (name,mapset) fullyqualified file name 77
G_geodesic_distance (lon1,lat1, lon2, lat2) geodesic distance 95
G_geodesic_distance_lon_to_lon (lon1,lon2) geodesicdistance 95
G_get_ask_return_msg () get Hit RETURN msg 76
G_get_cat (n,cats) geta category label 110

G_get_cats_title (cats) get title from category structure 110
G_get_cellhd (name,mapset, cellhd) read the raster header 107
G_get_cell_title (name,mapset) getraster map title 109
G_get_color (cat,red, green, blue, colors) get a category color 113
G_get_color_range (min,max, colors) get color range 114

G_get_default_window (region) readthe default region 84
G_get_ellipsoid_by_name (name,a, e2) get ellipsoid by name 97
G_get_ellipsoid_parameters (a,e2) getellipsoid parameters 97
G_ _getenv (name) queryGRASS environment variable 73
G_getenv (name) queryGRASS environment variable 73

G_get_map_row (fd, cell, row) reada raster file 104
G_get_map_row_nomask (fd,cell, row) reada raster file (without masking) 104
G_get_range_min_max (range,min, max) get range min and max 119
G_gets (buf) geta line of input (detect ctrl-z) 151
G_get_set_window (region) getthe active region 86

G_get_site (fd,east, north, desc) read site list file 128
G_get_window (region) readthe database region 83
G_gisbase () top level program directory 72
G_gisdbase () top level database directory 73
G_gisinit (program_name) initialize gis library 70

Index to GIS Library

- 295 - - 295 -

GIS Library

routine parameters description page

G_home () user’s home directory 152
G_init_cats (n,title, cats) initialize category structure 110
G_init_cell_stats (s) initialize cell stats 119
G_init_colors (colors) initialize color structure 113
G_init_range (range) initialize range structure 118

G_intr_char () return interrupt char 152
G_is_reclass (name,mapset, r_name, r_mapset) reclass file? 108
G_legal_filename (name) check for legal database file names 78
G_location () current location name 72
G_location_path () current location directory 73

G_lookup_colors (raster, red, green, blue, set, n, colors) lookup an array of colors 112
G_make_aspect_colors (colors,min, max) make aspect colors 115
G_make_grey_scale_colors (colors,min, max) make linear grey scale 115
G_make_gyr_colors (colors,min, max) make green,yellow,red colors 116
G_make_histogram_eq_colors (colors,s) make histogram-stretched grey colors 116

G_make_rainbow_colors (colors,min, max) make rainbow colors 115
G_make_ramp_colors (colors,min, max) make color ramp 115
G_make_random_colors (colors,min, max) make random colors 116
G_make_ryg_colors (colors,min, max) make red,yellow,green colors 116
G_make_wav e_colors (colors,min, max) make color wav e 115

G_malloc (size) memory allocation 82
G_mapset () current mapset name 72
G_meridional_radius_of_curvature (lon,a, e2) meridional radius of curvature 97
G_myname () location title 72
G_next_cell_stat (cat,count, s) retrieve sorted cell stats 120

G_northing_to_row (north, region) northingto row 87
G_open_cell_new (name) opena new raster file (sequential) 102
G_open_cell_new_random (name) open a new raster file (random) 102
G_open_cell_new_uncompressed (name) open a new raster file (uncompressed) 102
G_open_cell_old (name,mapset) openan existing raster file 101

G_open_new (element, name) open a new database file 81
G_open_old (element,name, mapset) open a database file for reading 79
G_open_update (element,name) opena database file for update 80
G_parser (argc, argv) parsecommand line 134
G_percent (n,total, incr) print percent complete messages 152

G_planimetric_polygon_area (x,y, n) area in coordinate units 93
G_plot_fx (f,east1, east2) plot f(east1) to f(east2) 131
G_plot_line (east1,north1, east2, north2) plot line between latlon coordinates 130
G_plot_polygon (east,north, n) plot filled polygon with n vertices 130
G_plot_where_en (x,y, east, north) x,y to east,north 130

G_plot_where_xy (east,north, x, y) east,north to x,y 130
G_pole_in_polygon (x,y, n) pole in polygon 98
G_program_name () return program name 152
G_projection () query cartographic projection 88
G_put_cellhd (name,cellhd) writethe raster header 108

G_put_cell_title (name,title) changeraster map title 109
G_put_map_row (fd, buf) write a raster file (sequential) 105
G_put_map_row_random (fd,buf, row, col, ncells) write a raster file (random) 105
G_put_site (fd,east, north, desc) write site list file 129
G_put_window (region) writethe database region 84

Index to GIS Library

- 296 - - 296 -

GIS Library

routine parameters description page

G_radius_of_conformal_tangent_sphere(lon, a, e2) radius of conformal tangent sphere 97
G_read_cats (name,mapset, cats) read raster category file 109
G_read_colors (name,mapset, colors) read map layer color table 111
G_read_history (name,mapset, history) read raster history file 117
G_read_range (name,mapset, range) read raster range 118

G_read_vector_cats (name,mapset, cats) read vector category file 126
G_realloc (ptr, size) memoryallocation 82
G_remove (element, name) remove a database file 82
G_rename (element,old, new) renamea database file 81
G_rewind_cell_stats (s) reset/rewind cell stats 120

G_row_to_northing (row, region) row to northing 87
G_row_update_range (cell,n, range) update range structure 119
G_scan_easting (buf, easting, projection) ASCII easting to double 90
G_scan_northing (buf, northing, projection) ASCII northing to double 90
G_scan_resolution (buf, resolution, projection) ASCII resolution to double 91

G_set_ask_return_msg (msg) set Hit RETURN msg 76
G_set_cat (n,label, cats) set a category label 111
G_set_cats_title (title,cats) settitle in category structure 111
G_set_color (cat,red, green, blue, colors) set a category color 114
G_ _setenv (name, value) setGRASS environment variable 73

G_setenv (name, value) setGRASS environment variable 73
G_set_error_routine (handler) change error handling 71
G_set_geodesic_distance_lat1 (lat1) set geodesic distance lat1 95
G_set_geodesic_distance_lat2 (lat2) set geodesic distance lat2 95
G_setup_plot (t,b, l, r, Move, Cont) initializeplotting routines 129

G_set_window (region) setthe active region 85
G_shortest_way (east1,east2) shortestway between eastings 96
G_short_history (name,type, history) initialize history structure 117
G_sleep_on_error (flag) sleep on error? 71
G_squeeze (s) remove unnecessary white space 148

G_store (s) copy string to allocated memory 148
G_strcat (dst,src) concatenatestrings 148
G_strcpy (dst, src) copy strings 147
G_strip (s) remove leading/training white space 148
G_strncpy (dst, src, n) copy strings 147

G_suppress_warnings (flag) suppress warnings? 71
G_system (command) run a shell level command 151
G_tempfile () returns a temporary file name 131
G_tolcase (s) convert string to lower case 148
G_toucase (s) convert string to upper case 149

G_transverse_radius_of_curvature (lon,a, e2) transverse radius of curvature 97
G_unctrl (c) printable version of control character 149
G_unopen_cell (fd) unopen a raster file 106
G_unset_error_routine () reset normal error handling 71
G_update_cell_stats (data,n, s) add data to cell stats 120

G_update_range (cat,range) updaterange structure 118
G_usage () command line help/usage message 134
G_warning (message) print warning message and continue 70
G_whoami () user’s name 153
G_window_cols () number of columns in active region 85

Index to GIS Library

- 297 - - 297 -

GIS Library

routine parameters description page

G_window_rows () number of rows in active region 85
G_write_cats (name,cats) writeraster category file 109
G_write_colors (name,mapset, colors) write map layer color table 112
G_write_history (name,history) writeraster history file 117
G_write_range (name,range) writeraster range file 118

G_write_vector_cats (name,cats) writevector category file 126
G_yes (question,default) aska yes/no question 153
G_zero_cell_buf (buf) zeroa raster buffer 103
G_zone () query cartographic zone 88

Index to GIS Library

- 298 - - 298 -

- 299 - - 299 -

Appendix D

Index to Vector Library

Here is an index of vector Library routines, with calling sequences and short function
descriptions.

vector Library

routine parameters description page

dig_check_dist (Map,n, x, y, d) find distance of point to line 170
dig_point_in_area (Map,x, y, pa) ispoint in area? 169
dig_point_to_area (Map,x, y) find which area point is in 169
dig_point_to_line (Map,x, y, type) findwhich arc point is closest to 170
V1_read_line (Map,Points, offset) readvector arc by specifying offset 164

V2_area_att (Map,area) getattribute number of area 167
V2_get_area_bbox (Map,area, n, s, e, w) get bounding box of area 168
V2_get_area (Map,n, pa) get area info from id 168
V2_get_line_bbox (Map,line, n, s, e, w) get bounding box of arc 168
V2_line_att (Map,line) getattribute number of arc 167

V2_num_areas (Map) get number of areas in vector map 167
V2_num_lines (Map) get number of arcs in vector map 167
V2_read_line (Map,Points, line) read vector arc by specifying line id 164
Vect_close (Map) close a vector map 162
Vect_copy_head_data (from,to) copy vector header struct data 166

Vect_copy_pnts_to_xy (Points,x, y, n) convert line_pnts structure to xy arrays 166
Vect_copy_xy_to_pnts (Points,x, y, n) convert xy arrays to line_pnts structure 165
Vect_destroy_line_struct (Points) deallocate line points structure space 165
Vect_get_area_points (Map,area, Points) get defining points for area polygon 166
Vect_level (Map) getopen level of vector map 169

Vect_new_line_struct () create new initialized line points structure 165
Vect_open_new (Map, name) open new vector map 161
Vect_open_old (Map,name, mapset) open existing vector map 161
Vect_print_header (Map) print header info to stdout 169
Vect_read_next_line (Map,Points) readnext vector line 162

Vect_remove_constraints (Map) unset any vector read constraints 164
Vect_rewind (Map) rewind vector map for re-reading 163
Vect_set_constraint_region (Map,n, s, e, w) set restricted region to read vector arcs from 163
Vect_set_constraint_type (Map,type) specifytypes of arcs to read 163
Vect_set_open_level (level) specifylevel for opening map 162

Vect_write_line (Map,type, Points) write out arc to vector map 164

Index to Vector Library

- 300 - - 300 -

- 301 - - 301 -

Appendix E

Index to Imagery Library

Here is an index of Imagery Library routines, with calling sequences and short function
descriptions.

Imagery Library

routine parameters description page

I_add_file_to_group_ref (name,mapset, ref) add file name to Ref structure 177
I_ask_group_any (prompt, group) prompt for any valid group name 175
I_ask_group_new (prompt, group) prompt for new group 174
I_ask_group_old (prompt,group) promptfor an existing group 174
I_find_group (group) does group exist? 175

I_free_group_ref (ref) free Ref structure 178
I_get_control_points (group,cp) readgroup control points 179
I_get_group_ref (group,ref) readgroup REF file 176
I_get_subgroup_ref (group,subgroup, ref) read subgroup REF file 176
I_get_target (group,location, mapset) read target information 178

I_init_group_ref (ref) initialize Ref structure 177
I_new_control_point (cp,e1, n1, e2, n2, status) add new control point 179
I_put_control_points (group,cp) writegroup control points 179
I_put_group_ref (group,ref) writegroup REF file 176
I_put_subgroup_ref (group,subgroup, ref) write subgroup REF file 176

I_put_target (group,location, mapset) write target information 178
I_transfer_group_ref_file (src,n, dst) copy Ref lists 177

Index to Imagery Library

- 302 - - 302 -

- 303 - - 303 -

Appendix F

Index to Display Graphics Library

Here is an index of Display Graphics Library routines, with calling sequences and short
function descriptions.

Display Graphics Library

routine parameters description page

D_add_to_list (string) add command to frame display list 199
D_a_to_d_col (column) array to screen (column) 201
D_a_to_d_row (row) arrayto screen (row) 200
D_cell_draw_setup (top,bottom, left, right) prepare for raster graphics 204
D_check_colormap_size (min,max,ncolors) verify a range of colors 202

D_check_map_window (region) assign/retrieve current map region 198
D_clear_window () clear frame display lists 198
D_clear_window () clears information about current frame 198
D_clip (s,n, w, e, x, y, c_x, c_y) clip coordinates to window 205
D_color (cat,colors) selectraster color for line 203

D_cont_abs (x,y) line to x,y 209
D_cont_rel (x,y) line to x,y 209
D_do_conversions (region, top, bottom, left, right) initialize conversions 200
D_draw_cell (row, raster, colors) rendera raster row 204
D_d_to_a_col (x) screen to array (x) 202

D_d_to_a_row (y) screento array (y) 202
D_d_to_u_col (x) screen to earth (x) 201
D_d_to_u_row (y) screento earth (y) 201
D_erase_window () erase current frame 198
D_get_cell_name (name) retrieve raster map name 199

D_get_cur_wind (name) identify current graphics frame 197
D_get_screen_window (top, bottom, left, right) retrieve current frame coordinates 197
D_lookup_colors (data,n, colors) change to hardware color 203
D_move_abs (x,y) move to pixel 209
D_move_rel (x,y) move to pixel 209

D_new_window (name, top, bottom, left, right) create new graphics frame 197
D_popup (bcolor, tcolor, dcolor, top, left, size, options)pop-up menu 206
D_raster (raster, n, repeat, colors) low lev el raster plotting 204
D_remove_window () remove a frame 198
D_reset_color (data,r, g, b) reset raster color value 202

D_reset_colors (colors) set colors in driver 206
D_reset_screen_window (top, bottom, left, right) resets current frame position 198
D_set_cell_name (name) add raster map name to display list 199
D_set_clip_window_to_map_window() set clipping window to map window 208
D_set_clip_window (top, bottom, left, right) set clipping window 208

D_set_colors (colors) establish raster colors for graphics 203
D_set_cur_wind (name) set current graphics frame 197
D_set_overlay_mode (flag) configure raster overlay mode 204
D_setup (clear) graphics frame setup 196
D_setup (clear) initialize/create a frame 196

Index to Display Graphics Library

- 304 - - 304 -

Display Graphics Library

routine parameters description page

D_show_window (color) outlinescurrent frame 197
D_timestamp () giv e current time to frame 198
D_translate_color (name) color name to number 207
D_u_to_a_col (east) earth to array (east) 200
D_u_to_a_row (north) earthto array (north) 200

D_u_to_d_col (east) earth to screen (east) 201
D_u_to_d_row (north) earthto screen (north) 201

Index to Display Graphics Library

- 305 - - 305 -

Appendix G

Index to Raster Graphics Library

Here is an index of Raster Graphics Library routines, with calling sequences and short
function descriptions.

Raster Graphics Library

routine parameters description page

R_box_abs (x1,y1,x2,y2) fill a box 187
R_box_rel (dx,dy) fill a box 187
R_close_driver () terminate graphics 184
R_color (color) select color 185
R_color_table_fixed () select fixed color table 185

R_color_table_float () select floating color table 185
R_cont_abs (x,y) draw line 187
R_cont_rel (dx,dy) draw line 187
R_erase () erase screen 188
R_flush () flush graphics 188

R_font (font) choose font 191
R_get_location_with_box (x,y,nx,ny,button) getmouse location using a box 193
R_get_location_with_line (x,y,nx,ny,button) getmouse location using a line 192
R_get_location_with_pointer (nx,ny,button) getmouse location using pointer 192
R_get_text_box (text, top, bottom, left, right) get text extents 192

R_move_abs (x,y) move current location 186
R_move_rel (dx,dy) move current location 187
R_open_driver () initialize graphics 184
R_polydots_abs (x,y,num) draw a series of dots 188
R_polydots_rel (x,y,num) draw a series of dots 188

R_polygon_abs (x,y,num) draw a closed polygon 189
R_polygon_rel (x,y,num) draw a closed polygon 189
R_polyline_abs (x,y,num) draw an open polygon 189
R_polyline_rel (x,y,num) draw an open polygon 189
R_raster (num,nrows,withzero,raster) draw a raster 190

R_reset_color (red,green, blu, num) define single color 185
R_reset_colors (min,max,red,green,blue) define multiple colors 185
R_RGB_color (red,green,blue) select color 186
R_RGB_raster (num,nrows,red,green,blue,withzero) draw a raster 190
R_screen_bot () bottom of screen 186

R_screen_left () screen left edge 186
R_screen_rite () screen right edge 186
R_screen_top () top of screen 186
R_set_RGB_color (red,green,blue) initialize graphics 190
R_set_window (top,bottom,left,right) settext clipping frame 191

R_stabilize () synchronize graphics 188
R_standard_color (color) select standard color 186
R_text_size (width,height) settext size 191
R_text (text) write text 192

Index to Raster Graphics Library

- 306 - - 306 -

- 307 - - 307 -

Appendix H

Index to Rowio Library

Here is an index of Rowio Library routines, with calling sequences and short function
descriptions.

Rowio Library

routine parameters description page

rowio_fileno (r) get file descriptor 218
rowio_flush (r) force pending updates to disk 218
rowio_forget (r, n) forget a row 217
rowio_get (r, n) read a row 217
rowio_put (r, buf, n) write a row 218

rowio_release (r) free allocated memory 218
rowio_setup (r, fd, nrows, len, getrow, putrow) configurerowio structure 216

Index to Rowio Library

- 308 - - 308 -

- 309 - - 309 -

Appendix I

Index to Segment Library

Here is an index of Segment Library routines, with calling sequences and short function
descriptions.

Segment Library

routine parameters description page

segment_flush (seg) flushpending updates to disk 224
segment_format (fd,nrows, ncols, srows, scols, len) format a segment file 222
segment_get_row (seg, buf, row) readrow from segment file 224
segment_get (seg, value, row, col) getvalue from segment file 223
segment_init (seg, fd, nsegs) initializesegment structure 223

segment_put_row (seg, buf, row) write row to segment file 223
segment_put (seg, value, row, col) putvalue to segment file 224
segment_release (seg) freeallocated memory 225

Index to Segment Library

- 310 - - 310 -

- 311 - - 311 -

Appendix J

Index to Vask Library

Here is an index of Vask Library routines, with calling sequences and short function
descriptions.

Vask Library

routine parameters description page

V_call () interact with the user 231
V_clear () initialize screen description 230
V_const (value, type, row, col, len) define screen constant 230
V_float_accuracy (num) setnumber of decimal places 231
V_intrpt_msg (text) changectrl-c message 232

V_intrpt_ok () allow ctrl-c 231
V_line (num,text) addline of text to screen 230
V_ques (value, type, row, col, len) define screen question 230

Index to Vask Library

- 312 - - 312 -

- 313 - - 313 -

Appendix K

Permuted Index for Library Subroutines

get theactive region G_get_set_window() 86
set theactive region G_set_window() 85

number of columns inactive region G_window_cols() 85
number of rows inactive region G_window_rows() 85

add command to frame display list D_add_to_list() 199

add data to cell stats G_update_cell_stats() 120
add file name to Ref structure I_add_file_to_group_ref() 177
add line of text to screen V_line() 230
add new control point I_new_control_point() 179
add raster map name to display list D_set_cell_name() 199

adjust cell header G_adjust_Cell_head() 107
adjust east longitude G_adjust_east_longitude() 96

Bresenham linealgorithm G_bresenham_line() 129
align two regions G_align_window() 86
allocate a raster buffer G_allocate_cell_buf() 103

copy string toallocated memory G_store() 148
freeallocated memory rowio_release() 218
freeallocated memory segment_release() 225

memoryallocation G_calloc() 83
memoryallocation G_malloc() 82

memoryallocation G_realloc() 82
allow ctrl-c V_intrpt_ok() 231

get bounding box ofarc V2_get_line_bbox() 168
get attribute number ofarc V2_line_att() 167

read vectorarc by specifying line id V2_read_line() 164

read vectorarc by specifying offset V1_read_line() 164
find whicharc point is closest to dig_point_to_line() 170

write outarc to vector map Vect_write_line() 164
set restricted region to read vectorarcs from Vect_set_constraint_region() 163

get number ofarcs in vector map V2_num_lines() 167

specify types ofarcs to read Vect_set_constraint_type() 163
is point inarea? dig_point_in_area() 169

get attribute number ofarea V2_area_att() 167
get bounding box ofarea V2_get_area_bbox() 168

area between latitudes G_area_for_zone_on_ellipsoid() 92

area between latitudes G_area_for_zone_on_sphere() 92
begin cellarea calculations G_begin_cell_area_calculations() 91

beginarea calculations G_begin_ellipsoid_polygon_area() 93
begin polygonarea calculations G_begin_polygon_area_calculations() 93

beginarea calculations for ellipsoid G_begin_zone_area_on_ellipsoid() 92

area in coordinate units G_planimetric_polygon_area() 93
cellarea in specified row G_area_of_cell_at_row() 91

area in square meters of polygon G_area_of_polygon() 93
getarea info from id V2_get_area() 168

area of lat-long polygon G_ellipsoid_polygon_area() 94

find whicharea point is in dig_point_to_area() 169
get defining points forarea polygon Vect_get_area_points() 166

Permuted Index for Library Subroutines

- 314 - - 314 -

get number ofareas in vector map V2_num_areas() 167
earth toarray (east) D_u_to_a_col() 200
earth toarray (north) D_u_to_a_row() 200

lookup anarray of colors G_lookup_colors() 112
array to screen (column) D_a_to_d_col() 201
array to screen (row) D_a_to_d_row() 200

screen toarray (x) D_d_to_a_col() 202
screen toarray (y) D_d_to_a_row() 202

convert line_pnts structure to xyarrays Vect_copy_pnts_to_xy() 166
convert xyarrays to line_pnts structure Vect_copy_xy_to_pnts() 165
easting toASCII G_format_easting() 90

northing toASCII G_format_northing() 90
resolution toASCII G_format_resolution() 90

ASCII easting to double G_scan_easting() 90
ASCII northing to double G_scan_northing() 90
ASCII resolution to double G_scan_resolution() 91
ask a yes/no question G_yes() 153

makeaspect colors G_make_aspect_colors() 115

assign/retrieve current map region D_check_map_window() 198
getattribute number of arc V2_line_att() 167
getattribute number of area V2_area_att() 167

begin area calculations G_begin_ellipsoid_polygon_area() 93
begin area calculations for ellipsoid G_begin_zone_area_on_ellipsoid() 92

begin cell area calculations G_begin_cell_area_calculations() 91
begin distance calculations G_begin_distance_calculations() 94
begin geodesic distance G_begin_geodesic_distance() 94
begin polygon area calculations G_begin_polygon_area_calculations() 93
bottom of screen R_screen_bot() 186

getbounding box of arc V2_get_line_bbox() 168
getbounding box of area V2_get_area_bbox() 168

fill abox R_box_abs() 187
fill abox R_box_rel() 187

get mouse location using abox R_get_location_with_box() 193

get boundingbox of arc V2_get_line_bbox() 168
get boundingbox of area V2_get_area_bbox() 168

Bresenham line algorithm G_bresenham_line() 129
allocate a rasterbuffer G_allocate_cell_buf() 103

zero a rasterbuffer G_zero_cell_buf() 103

begin cell areacalculations G_begin_cell_area_calculations() 91
begin distancecalculations G_begin_distance_calculations() 94

begin areacalculations G_begin_ellipsoid_polygon_area() 93
begin polygon areacalculations G_begin_polygon_area_calculations() 93

begin areacalculations for ellipsoid G_begin_zone_area_on_ellipsoid() 92

initializecalculations for sphere G_begin_zone_area_on_sphere() 92
turns off interactivecapability G_disable_interactive() 135

querycartographic projection G_database_projection_name() 88
querycartographic projection G_projection() 88
querycartographic zone G_zone() 88

convert string to lowercase G_tolcase() 148
convert string to uppercase G_toucase() 149

get acategory color G_get_color() 113
set acategory color G_set_color() 114

read rastercategory file G_read_cats() 109

Permuted Index for Library Subroutines

- 315 - - 315 -

read vectorcategory file G_read_vector_cats() 126
write rastercategory file G_write_cats() 109
write vectorcategory file G_write_vector_cats() 126

get acategory label G_get_cat() 110
set acategory label G_set_cat() 111

get title fromcategory structure G_get_cats_title() 110
initializecategory structure G_init_cats() 110

set title incategory structure G_set_cats_title() 111
freecategory structure memory G_free_cats() 111

begincell area calculations G_begin_cell_area_calculations() 91

cell area in specified row G_area_of_cell_at_row() 91
adjustcell header G_adjust_Cell_head() 107

random query ofcell stats G_find_cell_stat() 120
freecell stats G_free_cell_stats() 119

initializecell stats G_init_cell_stats() 119

retrieve sortedcell stats G_next_cell_stat() 120
reset/rewindcell stats G_rewind_cell_stats() 120
add data tocell stats G_update_cell_stats() 120

change ctrl-c message V_intrpt_msg() 232
change error handling G_set_error_routine() 71

change raster map title G_put_cell_title() 109
change to hardware color D_lookup_colors() 203

return interruptchar G_intr_char() 152
printable version of controlcharacter G_unctrl() 149

check for legal database file names G_legal_filename() 78

create a protectedchild process G_fork() 150
choose font R_font() 191
clear frame display lists D_clear_window() 198
clears information about current frame D_clear_window() 198
clip coordinates to window D_clip() 205

set textclipping frame R_set_window() 191
setclipping window D_set_clip_window() 208
setclipping window to map window D_set_clip_window_to_map_window() 208

close a raster file G_close_cell() 106
close a vector map Vect_close() 162

draw aclosed polygon R_polygon_abs() 189
draw aclosed polygon R_polygon_rel() 189

find which arc point isclosest to dig_point_to_line() 170
change to hardwarecolor D_lookup_colors() 203

get a categorycolor G_get_color() 113

set a categorycolor G_set_color() 114
selectcolor R_color() 185

define singlecolor R_reset_color() 185
selectcolor R_RGB_color() 186

select standardcolor R_standard_color() 186

select rastercolor for line D_color() 203
color name to number D_translate_color() 207

makecolor ramp G_make_ramp_colors() 115
getcolor range G_get_color_range() 114

initializecolor structure G_init_colors() 113

freecolor structure memory G_free_colors() 114
read map layercolor table G_read_colors() 111

write map layercolor table G_write_colors() 112

Permuted Index for Library Subroutines

- 316 - - 316 -

select fixedcolor table R_color_table_fixed() 185
select floatingcolor table R_color_table_float() 185

reset rastercolor value D_reset_color() 202
makecolor wav e G_make_wav e_colors() 115

verify a range ofcolors D_check_colormap_size() 202
setcolors G_add_color_rule() 113

lookup an array ofcolors G_lookup_colors() 112

make aspectcolors G_make_aspect_colors() 115
make green,yellow,redcolors G_make_gyr_colors() 116

make histogram-stretched greycolors G_make_histogram_eq_colors() 116
make rainbowcolors G_make_rainbow_colors() 115
make randomcolors G_make_random_colors() 116

make red,yellow,greencolors G_make_ryg_colors() 116
define multiplecolors R_reset_colors() 185
establish rastercolors for graphics D_set_colors() 203

setcolors in driver D_reset_colors() 206
array to screen(column) D_a_to_d_col() 201

easting tocolumn G_easting_to_col() 87
column to easting G_col_to_easting() 86

number ofcolumns in active region G_window_cols() 85
run a shell levelcommand G_system() 151

parsecommand line G_parser() 134

command line help/usage message G_usage() 134
addcommand to frame display list D_add_to_list() 199

print percentcomplete messages G_percent() 152
concatenate strings G_strcat() 148
configure raster overlay mode D_set_overlay_mode() 204

configure rowio structure rowio_setup() 216
radius ofconformal tangent sphere G_radius_of_conformal_tangent_sphere()97

define screenconstant V_const() 230
unset any vector readconstraints Vect_remove_constraints() 164

print warning message andcontinue G_warning() 70

printable version ofcontrol character G_unctrl() 149
add newcontrol point I_new_control_point() 179

read groupcontrol points I_get_control_points() 179
write groupcontrol points I_put_control_points() 179

conversion to meters G_database_units_to_meters_factor() 88

initializeconversions D_do_conversions() 200
convert line_pnts structure to xy arrays Vect_copy_pnts_to_xy() 166
convert string to lower case G_tolcase() 148
convert string to upper case G_toucase() 149
convert xy arrays to line_pnts structure Vect_copy_xy_to_pnts() 165

area incoordinate units G_planimetric_polygon_area() 93
retrieve current framecoordinates D_get_screen_window() 197

plot line between latloncoordinates G_plot_line() 130
clipcoordinates to window D_clip() 205

copy Ref lists I_transfer_group_ref_file() 177

copy string to allocated memory G_store() 148
copy strings G_strcpy() 147
copy strings G_strncpy() 147
copy vector header struct data Vect_copy_head_data() 166
create a lock lock_file() 211

create a protected child process G_fork() 150

Permuted Index for Library Subroutines

- 317 - - 317 -

create new graphics frame D_new_window() 197
create new initialized line points structureVect_new_line_struct() 165

allowctrl-c V_intrpt_ok() 231
changectrl-c message V_intrpt_msg() 232

get a line of input (detectctrl-z) G_gets() 151
current date and time G_date() 151

clears information aboutcurrent frame D_clear_window() 198
erasecurrent frame D_erase_window() 198

outlinescurrent frame D_show_window() 197

retrievecurrent frame coordinates D_get_screen_window() 197
resetscurrent frame position D_reset_screen_window() 198

identifycurrent graphics frame D_get_cur_wind() 197
setcurrent graphics frame D_set_cur_wind() 197

movecurrent location R_move_abs() 186

movecurrent location R_move_rel() 187
current location directory G_location_path() 73
current location name G_location() 72

assign/retrievecurrent map region D_check_map_window() 198
current mapset name G_mapset() 72

givecurrent time to frame D_timestamp() 198
meridional radius ofcurvature G_meridional_radius_of_curvature() 97
transverse radius ofcurvature G_transverse_radius_of_curvature() 97

copy vector header structdata Vect_copy_head_data() 166
adddata to cell stats G_update_cell_stats() 120

top leveldatabase directory G_gisdbase() 73
prompt for existingdatabase file G_ask_in_mapset() 75

prompt for newdatabase file G_ask_new() 75
prompt for existingdatabase file G_ask_old() 75

find adatabase file G_find_file() 77

open a newdatabase file G_fopen_new() 81
open a newdatabase file G_open_new() 81

remove adatabase file G_remove() 82
rename adatabase file G_rename() 81

open adatabase file for reading G_fopen_old() 79

open adatabase file for reading G_open_old() 79
open adatabase file for update G_fopen_append() 80
open adatabase file for update G_open_update() 80

check for legaldatabase file names G_legal_filename() 78
read thedatabase region G_get_window() 83

write thedatabase region G_put_window() 84
database units G_database_unit_name() 88

currentdate and time G_date() 151
deallocate line points structure space Vect_destroy_line_struct() 165

set number ofdecimal places V_float_accuracy() 231

read thedefault region G_get_default_window() 84
define multiple colors R_reset_colors() 185
define screen constant V_const() 230
define screen question V_ques() 230
define single color R_reset_color() 185

getdefining points for area polygon Vect_get_area_points() 166
initialize screendescription V_clear() 230

get filedescriptor rowio_fileno() 218
get a line of input(detect ctrl-z) G_gets() 151

Permuted Index for Library Subroutines

- 318 - - 318 -

top level programdirectory G_gisbase() 72

top level databasedirectory G_gisdbase() 73
user’s homedirectory G_home() 152

current locationdirectory G_location_path() 73
force pending updates todisk rowio_flush() 218
flush pending updates todisk segment_flush() 224

add command to framedisplay list D_add_to_list() 199
add raster map name todisplay list D_set_cell_name() 199

clear framedisplay lists D_clear_window() 198
begin geodesicdistance G_begin_geodesic_distance() 94

geodesicdistance G_geodesic_distance() 95

geodesicdistance G_geodesic_distance_lon_to_lon() 95
begindistance calculations G_begin_distance_calculations() 94

distance in meters G_distance() 94
set geodesicdistance lat1 G_set_geodesic_distance_lat1() 95
set geodesicdistance lat2 G_set_geodesic_distance_lat2() 95

finddistance of point to line dig_check_dist() 170
does group exist? I_find_group() 175

draw a series ofdots R_polydots_abs() 188
draw a series ofdots R_polydots_rel() 188

ASCII easting todouble G_scan_easting() 90

ASCII northing todouble G_scan_northing() 90
ASCII resolution todouble G_scan_resolution() 91

draw a closed polygon R_polygon_abs() 189
draw a closed polygon R_polygon_rel() 189
draw a raster R_raster() 190

draw a raster R_RGB_raster() 190
draw a series of dots R_polydots_abs() 188
draw a series of dots R_polydots_rel() 188
draw an open polygon R_polyline_abs() 189
draw an open polygon R_polyline_rel() 189

draw line R_cont_abs() 187
draw line R_cont_rel() 187

set colors indriver D_reset_colors() 206
earth to array (east) D_u_to_a_col() 200
earth to array (north) D_u_to_a_row() 200

earth to screen (east) D_u_to_d_col() 201
earth to screen (north) D_u_to_d_row() 201

screen toearth (x) D_d_to_u_col() 201
screen toearth (y) D_d_to_u_row() 201

earth to array(east) D_u_to_a_col() 200

earth to screen(east) D_u_to_d_col() 201
returnseast larger than west G_adjust_easting() 96
adjusteast longitude G_adjust_east_longitude() 96

column toeasting G_col_to_easting() 86
easting to ASCII G_format_easting() 90

easting to column G_easting_to_col() 87
ASCIIeasting to double G_scan_easting() 90

shortest way betweeneastings G_shortest_way() 96
x,y toeast,north G_plot_where_en() 130

east,north to x,y G_plot_where_xy() 130

screen leftedge R_screen_left() 186
screen rightedge R_screen_rite() 186

Permuted Index for Library Subroutines

- 319 - - 319 -

begin area calculations forellipsoid G_begin_zone_area_on_ellipsoid() 92
getellipsoid by name G_get_ellipsoid_by_name() 97
getellipsoid parameters G_get_ellipsoid_parameters() 97

returnellopsoid name G_ellipsoid_name() 96
query GRASSenvironment variable G__getenv() 73
query GRASSenvironment variable G_getenv() 73

set GRASSenvironment variable G__setenv() 73
set GRASSenvironment variable G_setenv() 73

erase current frame D_erase_window() 198
erase screen R_erase() 188

sleep onerror? G_sleep_on_error() 71
changeerror handling G_set_error_routine() 71

reset normalerror handling G_unset_error_routine() 71

printerror message and exit G_fatal_error() 70
establish raster colors for graphics D_set_colors() 203

does groupexist? I_find_group() 175
prompt forexisting database file G_ask_in_mapset() 75
prompt forexisting database file G_ask_old() 75

prompt for anexisting group I_ask_group_old() 174
prompt forexisting raster file G_ask_cell_in_mapset() 99
prompt forexisting raster file G_ask_cell_old() 99

open anexisting raster file G_open_cell_old() 101
prompt forexisting site list file G_ask_sites_in_mapset() 127

prompt forexisting site list file G_ask_sites_old() 127
open anexisting site list file G_fopen_sites_old() 128

prompt for anexisting vector file G_ask_vector_in_mapset() 122
prompt for anexisting vector file G_ask_vector_old() 122

open anexisting vector file G_fopen_vector_old() 124

openexisting vector map Vect_open_old() 161
print error message andexit G_fatal_error() 70

get textextents R_get_text_box() 192
plotf(east1) to f(east2) G_plot_fx() 131

plot f(east1) tof(east2) G_plot_fx() 131

prompt for existing rasterfile G_ask_cell_in_mapset() 99
prompt for new rasterfile G_ask_cell_new() 99

prompt for existing rasterfile G_ask_cell_old() 99
prompt for existing databasefile G_ask_in_mapset() 75

prompt for new databasefile G_ask_new() 75

prompt for existing databasefile G_ask_old() 75
prompt for existing site listfile G_ask_sites_in_mapset() 127

prompt for new site listfile G_ask_sites_new() 127
prompt for existing site listfile G_ask_sites_old() 127

prompt for an existing vectorfile G_ask_vector_in_mapset() 122

prompt for a new vectorfile G_ask_vector_new() 122
prompt for an existing vectorfile G_ask_vector_old() 122

close a rasterfile G_close_cell() 106
find a rasterfile G_find_cell() 100

find a databasefile G_find_file() 77

find a vectorfile G_find_vector2() 123
find a vectorfile G_find_vector() 123

open a new databasefile G_fopen_new() 81
open a new site listfile G_fopen_sites_new() 128

open an existing site listfile G_fopen_sites_old() 128

Permuted Index for Library Subroutines

- 320 - - 320 -

open a new vectorfile G_fopen_vector_new() 125
open an existing vectorfile G_fopen_vector_old() 124

read a rasterfile G_get_map_row() 104
read site listfile G_get_site() 128

reclassfile? G_is_reclass() 108

open an existing rasterfile G_open_cell_old() 101
open a new databasefile G_open_new() 81

write site listfile G_put_site() 129
read raster categoryfile G_read_cats() 109

read raster historyfile G_read_history() 117

read vector categoryfile G_read_vector_cats() 126
remove a databasefile G_remove() 82
rename a databasefile G_rename() 81

unopen a rasterfile G_unopen_cell() 106
write raster categoryfile G_write_cats() 109

write raster historyfile G_write_history() 117
write raster rangefile G_write_range() 118

write vector categoryfile G_write_vector_cats() 126
read group REFfile I_get_group_ref() 176

read subgroup REFfile I_get_subgroup_ref() 176

write group REFfile I_put_group_ref() 176
write subgroup REFfile I_put_subgroup_ref() 176

format a segmentfile segment_format() 222
get value from segmentfile segment_get() 223
read row from segmentfile segment_get_row() 224

put value to segmentfile segment_put() 224
write row to segmentfile segment_put_row() 223

getfile descriptor rowio_fileno() 218
open a databasefile for reading G_fopen_old() 79
open a databasefile for reading G_open_old() 79

open a databasefile for update G_fopen_append() 80
open a databasefile for update G_open_update() 80

prompt for any validfile name G_ask_any() 76
fully qualifiedfile name G_fully_qualified_name() 77

returns a temporaryfile name G_tempfile() 131

addfile name to Ref structure I_add_file_to_group_ref() 177
check for legal databasefile names G_legal_filename() 78

open a new rasterfile (random) G_open_cell_new_random() 102
write a rasterfile (random) G_put_map_row_random() 105

open a new rasterfile (sequential) G_open_cell_new() 102

write a rasterfile (sequential) G_put_map_row() 105
open a new rasterfile (uncompressed) G_open_cell_new_uncompressed() 102

read a rasterfile (without masking) G_get_map_row_nomask() 104
fill a box R_box_abs() 187
fill a box R_box_rel() 187

plotfilled polygon with n vertices G_plot_polygon() 130
find a database file G_find_file() 77
find a raster file G_find_cell() 100
find a vector file G_find_vector2() 123
find a vector file G_find_vector() 123

find distance of point to line dig_check_dist() 170
find which arc point is closest to dig_point_to_line() 170
find which area point is in dig_point_to_area() 169

Permuted Index for Library Subroutines

- 321 - - 321 -

selectfixed color table R_color_table_fixed() 185
returnFlag structure G_define_flag() 134

selectfloating color table R_color_table_float() 185
flush graphics R_flush() 188
flush pending updates to disk segment_flush() 224

choosefont R_font() 191
force pending updates to disk rowio_flush() 218

forget a row rowio_forget() 217
format a segment file segment_format() 222

clears information about currentframe D_clear_window() 198
erase currentframe D_erase_window() 198

identify current graphicsframe D_get_cur_wind() 197

create new graphicsframe D_new_window() 197
remove aframe D_remove_window() 198

set current graphicsframe D_set_cur_wind() 197
initialize/create aframe D_setup() 196

outlines currentframe D_show_window() 197

give current time toframe D_timestamp() 198
set text clippingframe R_set_window() 191
retrieve currentframe coordinates D_get_screen_window() 197

add command toframe display list D_add_to_list() 199
clearframe display lists D_clear_window() 198

resets currentframe position D_reset_screen_window() 198
graphicsframe setup D_setup() 196

free allocated memory rowio_release() 218
free allocated memory segment_release() 225
free category structure memory G_free_cats() 111

free cell stats G_free_cell_stats() 119
free color structure memory G_free_colors() 114
free Ref structure I_free_group_ref() 178
fully qualified file name G_fully_qualified_name() 77

begingeodesic distance G_begin_geodesic_distance() 94

geodesic distance G_geodesic_distance() 95
geodesic distance G_geodesic_distance_lon_to_lon() 95

setgeodesic distance lat1 G_set_geodesic_distance_lat1() 95
setgeodesic distance lat2 G_set_geodesic_distance_lat2() 95

initializegis library G_gisinit() 70

give current time to frame D_timestamp() 198
prepare for rastergraphics D_cell_draw_setup() 204

establish raster colors forgraphics D_set_colors() 203
terminategraphics R_close_driver() 184

flushgraphics R_flush() 188

initializegraphics R_open_driver() 184
initializegraphics R_set_RGB_color() 190

synchronizegraphics R_stabilize() 188
identify currentgraphics frame D_get_cur_wind() 197

create newgraphics frame D_new_window() 197

set currentgraphics frame D_set_cur_wind() 197
graphics frame setup D_setup() 196

queryGRASS environment variable G__getenv() 73
queryGRASS environment variable G_getenv() 73

setGRASS environment variable G__setenv() 73

setGRASS environment variable G_setenv() 73

Permuted Index for Library Subroutines

- 322 - - 322 -

makegreen,yellow,red colors G_make_gyr_colors() 116
make histogram-stretchedgrey colors G_make_histogram_eq_colors() 116

make lineargrey scale G_make_grey_scale_colors() 115
prompt for newgroup I_ask_group_new() 174

prompt for an existinggroup I_ask_group_old() 174
readgroup control points I_get_control_points() 179

writegroup control points I_put_control_points() 179
doesgroup exist? I_find_group() 175

prompt for any validgroup name I_ask_group_any() 175

readgroup REF file I_get_group_ref() 176
writegroup REF file I_put_group_ref() 176

change errorhandling G_set_error_routine() 71
reset normal errorhandling G_unset_error_routine() 71

change tohardware color D_lookup_colors() 203

adjust cellheader G_adjust_Cell_head() 107
read the rasterheader G_get_cellhd() 107

write the rasterheader G_put_cellhd() 108
printheader info to stdout Vect_print_header() 169

copy vectorheader struct data Vect_copy_head_data() 166

command linehelp/usage message G_usage() 134
makehistogram-stretched grey colors G_make_histogram_eq_colors() 116

read rasterhistory file G_read_history() 117
write rasterhistory file G_write_history() 117

initializehistory structure G_short_history() 117

getHit RETURN msg G_get_ask_return_msg() 76
setHit RETURN msg G_set_ask_return_msg() 76

user’shome directory G_home() 152
get area info fromid V2_get_area() 168

read vector arc by specifying lineid V2_read_line() 164

identify current graphics frame D_get_cur_wind() 197
get areainfo from id V2_get_area() 168

print headerinfo to stdout Vect_print_header() 169
read targetinformation I_get_target() 178

write targetinformation I_put_target() 178

clearsinformation about current frame D_clear_window() 198
initialize calculations for sphere G_begin_zone_area_on_sphere() 92
initialize category structure G_init_cats() 110
initialize cell stats G_init_cell_stats() 119
initialize color structure G_init_colors() 113

initialize conversions D_do_conversions() 200
initialize gis library G_gisinit() 70
initialize graphics R_open_driver() 184
initialize graphics R_set_RGB_color() 190
initialize history structure G_short_history() 117

initialize plotting routines G_setup_plot() 129
initialize range structure G_init_range() 118
initialize Ref structure I_init_group_ref() 177
initialize screen description V_clear() 230
initialize segment structure segment_init() 223

initialize/create a frame D_setup() 196
create newinitialized line points structure Vect_new_line_struct() 165

get a line ofinput (detect ctrl-z) G_gets() 151
interact with the user V_call() 231

Permuted Index for Library Subroutines

- 323 - - 323 -

turns offinteractive capability G_disable_interactive() 135

returninterrupt char G_intr_char() 152
get a categorylabel G_get_cat() 110
set a categorylabel G_set_cat() 111

returns eastlarger than west G_adjust_easting() 96
set geodesic distancelat1 G_set_geodesic_distance_lat1() 95

set geodesic distancelat2 G_set_geodesic_distance_lat2() 95
area betweenlatitudes G_area_for_zone_on_ellipsoid() 92
area betweenlatitudes G_area_for_zone_on_sphere() 92

plot line betweenlatlon coordinates G_plot_line() 130
area oflat-long polygon G_ellipsoid_polygon_area() 94

read maplayer color table G_read_colors() 111
write maplayer color table G_write_colors() 112

removeleading/training white space G_strip() 148
screenleft edge R_screen_left() 186

check forlegal database file names G_legal_filename() 78

run a shelllevel command G_system() 151
toplevel database directory G_gisdbase() 73

specifylevel for opening map Vect_set_open_level() 162
get openlevel of vector map Vect_level() 169

toplevel program directory G_gisbase() 72

lowlevel raster plotting D_raster() 204
initialize gislibrary G_gisinit() 70

select raster color forline D_color() 203
find distance of point toline dig_check_dist() 170

parse commandline G_parser() 134

drawline R_cont_abs() 187
drawline R_cont_rel() 187

get mouse location using aline R_get_location_with_line() 192
read next vectorline Vect_read_next_line() 162

Bresenhamline algorithm G_bresenham_line() 129

plotline between latlon coordinates G_plot_line() 130
commandline help/usage message G_usage() 134

read vector arc by specifyingline id V2_read_line() 164
get aline of input (detect ctrl-z) G_gets() 151
addline of text to screen V_line() 230

create new initializedline points structure Vect_new_line_struct() 165
deallocateline points structure space Vect_destroy_line_struct() 165

line to x,y D_cont_abs() 209
line to x,y D_cont_rel() 209

makelinear grey scale G_make_grey_scale_colors() 115

convert xy arrays toline_pnts structure Vect_copy_xy_to_pnts() 165
convertline_pnts structure to xy arrays Vect_copy_pnts_to_xy() 166

add command to frame displaylist D_add_to_list() 199
add raster map name to displaylist D_set_cell_name() 199

prompt for existing sitelist file G_ask_sites_in_mapset() 127

prompt for new sitelist file G_ask_sites_new() 127
prompt for existing sitelist file G_ask_sites_old() 127

open a new sitelist file G_fopen_sites_new() 128
open an existing sitelist file G_fopen_sites_old() 128

read sitelist file G_get_site() 128

write sitelist file G_put_site() 129
clear frame displaylists D_clear_window() 198

Permuted Index for Library Subroutines

- 324 - - 324 -

copy Reflists I_transfer_group_ref_file() 177
move currentlocation R_move_abs() 186
move currentlocation R_move_rel() 187

currentlocation directory G_location_path() 73
currentlocation name G_location() 72

location title G_myname() 72
get mouselocation using a box R_get_location_with_box() 193
get mouselocation using a line R_get_location_with_line() 192

get mouselocation using pointer R_get_location_with_pointer() 192
create alock lock_file() 211

remove alock unlock_file() 212
adjust eastlongitude G_adjust_east_longitude() 96

lookup an array of colors G_lookup_colors() 112

low lev el raster plotting D_raster() 204
convert string tolower case G_tolcase() 148

get number of areas in vectormap V2_num_areas() 167
get number of arcs in vectormap V2_num_lines() 167

close a vectormap Vect_close() 162

get open level of vectormap Vect_level() 169
open new vectormap Vect_open_new() 161

open existing vectormap Vect_open_old() 161
specify level for openingmap Vect_set_open_level() 162

write out arc to vectormap Vect_write_line() 164

rewind vectormap for re-reading Vect_rewind() 163
readmap layer color table G_read_colors() 111

writemap layer color table G_write_colors() 112
retrieve rastermap name D_get_cell_name() 199

add rastermap name to display list D_set_cell_name() 199

assign/retrieve currentmap region D_check_map_window() 198
get rastermap title G_get_cell_title() 109

change rastermap title G_put_cell_title() 109
set clipping window tomap window D_set_clip_window_to_map_window() 208

currentmapset name G_mapset() 72

read a raster file (withoutmasking) G_get_map_row_nomask() 104
get range min andmax G_get_range_min_max() 119

free category structurememory G_free_cats() 111
free color structurememory G_free_colors() 114

copy string to allocatedmemory G_store() 148

free allocatedmemory rowio_release() 218
free allocatedmemory segment_release() 225

memory allocation G_calloc() 83
memory allocation G_malloc() 82
memory allocation G_realloc() 82

pop-upmenu D_popup() 206
meridional radius of curvature G_meridional_radius_of_curvature() 97

command line help/usagemessage G_usage() 134
change ctrl-cmessage V_intrpt_msg() 232
print warningmessage and continue G_warning() 70

print errormessage and exit G_fatal_error() 70
print percent completemessages G_percent() 152

conversion tometers G_database_units_to_meters_factor() 88
distance inmeters G_distance() 94

area in squaremeters of polygon G_area_of_polygon() 93

Permuted Index for Library Subroutines

- 325 - - 325 -

get rangemin and max G_get_range_min_max() 119
configure raster overlaymode D_set_overlay_mode() 204

getmouse location using a box R_get_location_with_box() 193
getmouse location using a line R_get_location_with_line() 192
getmouse location using pointer R_get_location_with_pointer() 192

move current location R_move_abs() 186
move current location R_move_rel() 187
move to pixel D_move_abs() 209
move to pixel D_move_rel() 209

get Hit RETURNmsg G_get_ask_return_msg() 76

set Hit RETURNmsg G_set_ask_return_msg() 76
definemultiple colors R_reset_colors() 185

plot filled polygon withn vertices G_plot_polygon() 130
retrieve raster mapname D_get_cell_name() 199

prompt for any valid filename G_ask_any() 76

return ellopsoidname G_ellipsoid_name() 96
fully qualified filename G_fully_qualified_name() 77

get ellipsoid byname G_get_ellipsoid_by_name() 97
current locationname G_location() 72
current mapsetname G_mapset() 72

return programname G_program_name() 152
returns a temporary filename G_tempfile() 131

user’sname G_whoami() 153
prompt for any valid groupname I_ask_group_any() 175

add raster mapname to display list D_set_cell_name() 199

colorname to number D_translate_color() 207
add filename to Ref structure I_add_file_to_group_ref() 177

check for legal database filenames G_legal_filename() 78
readnext vector line Vect_read_next_line() 162
resetnormal error handling G_unset_error_routine() 71

earth to array(north) D_u_to_a_row() 200
earth to screen(north) D_u_to_d_row() 201

row tonorthing G_row_to_northing() 87
northing to ASCII G_format_northing() 90

ASCIInorthing to double G_scan_northing() 90

northing to row G_northing_to_row() 87
color name tonumber D_translate_color() 207

get attributenumber of arc V2_line_att() 167
getnumber of arcs in vector map V2_num_lines() 167

get attributenumber of area V2_area_att() 167

getnumber of areas in vector map V2_num_areas() 167
number of columns in active region G_window_cols() 85

setnumber of decimal places V_float_accuracy() 231
number of rows in active region G_window_rows() 85

read vector arc by specifyingoffset V1_read_line() 164

open a database file for reading G_fopen_old() 79
open a database file for reading G_open_old() 79
open a database file for update G_fopen_append() 80
open a database file for update G_open_update() 80
open a new database file G_fopen_new() 81

open a new database file G_open_new() 81
open a new raster file (random) G_open_cell_new_random() 102
open a new raster file (sequential) G_open_cell_new() 102

Permuted Index for Library Subroutines

- 326 - - 326 -

open a new raster file (uncompressed) G_open_cell_new_uncompressed() 102
open a new site list file G_fopen_sites_new() 128

open a new vector file G_fopen_vector_new() 125
open an existing raster file G_open_cell_old() 101
open an existing site list file G_fopen_sites_old() 128
open an existing vector file G_fopen_vector_old() 124
open existing vector map Vect_open_old() 161

getopen level of vector map Vect_level() 169
open new vector map Vect_open_new() 161

draw anopen polygon R_polyline_abs() 189
draw anopen polygon R_polyline_rel() 189

specify level foropening map Vect_set_open_level() 162

returnsOption structure G_define_option() 134
outlines current frame D_show_window() 197

configure rasteroverlay mode D_set_overlay_mode() 204
get ellipsoidparameters G_get_ellipsoid_parameters() 97

parse command line G_parser() 134

forcepending updates to disk rowio_flush() 218
flushpending updates to disk segment_flush() 224
printpercent complete messages G_percent() 152

move topixel D_move_abs() 209
move topixel D_move_rel() 209

set number of decimalplaces V_float_accuracy() 231
plot f(east1) to f(east2) G_plot_fx() 131
plot filled polygon with n vertices G_plot_polygon() 130
plot line between latlon coordinates G_plot_line() 130

low lev el rasterplotting D_raster() 204

initializeplotting routines G_setup_plot() 129
add new controlpoint I_new_control_point() 179

ispoint in area? dig_point_in_area() 169
find which arcpoint is closest to dig_point_to_line() 170

find which areapoint is in dig_point_to_area() 169

find distance ofpoint to line dig_check_dist() 170
get mouse location usingpointer R_get_location_with_pointer() 192

read group controlpoints I_get_control_points() 179
write group controlpoints I_put_control_points() 179

get definingpoints for area polygon Vect_get_area_points() 166

create new initialized linepoints structure Vect_new_line_struct() 165
deallocate linepoints structure space Vect_destroy_line_struct() 165

pole in polygon G_pole_in_polygon() 98
area in square meters ofpolygon G_area_of_polygon() 93

area of lat-longpolygon G_ellipsoid_polygon_area() 94

pole inpolygon G_pole_in_polygon() 98
draw a closedpolygon R_polygon_abs() 189
draw a closedpolygon R_polygon_rel() 189
draw an openpolygon R_polyline_abs() 189
draw an openpolygon R_polyline_rel() 189

get defining points for areapolygon Vect_get_area_points() 166
beginpolygon area calculations G_begin_polygon_area_calculations() 93

plot filledpolygon with n vertices G_plot_polygon() 130
pop-up menu D_popup() 206

resets current frameposition D_reset_screen_window() 198

prepare for raster graphics D_cell_draw_setup() 204

Permuted Index for Library Subroutines

- 327 - - 327 -

print error message and exit G_fatal_error() 70
print header info to stdout Vect_print_header() 169
print percent complete messages G_percent() 152
print warning message and continue G_warning() 70

printable version of control character G_unctrl() 149
create a protected childprocess G_fork() 150

top levelprogram directory G_gisbase() 72
returnprogram name G_program_name() 152

query cartographicprojection G_database_projection_name() 88

query cartographicprojection G_projection() 88
prompt for a new vector file G_ask_vector_new() 122
prompt for an existing group I_ask_group_old() 174
prompt for an existing vector file G_ask_vector_in_mapset() 122
prompt for an existing vector file G_ask_vector_old() 122

prompt for any valid file name G_ask_any() 76
prompt for any valid group name I_ask_group_any() 175
prompt for existing database file G_ask_in_mapset() 75
prompt for existing database file G_ask_old() 75
prompt for existing raster file G_ask_cell_in_mapset() 99

prompt for existing raster file G_ask_cell_old() 99
prompt for existing site list file G_ask_sites_in_mapset() 127
prompt for existing site list file G_ask_sites_old() 127
prompt for new database file G_ask_new() 75
prompt for new group I_ask_group_new() 174

prompt for new raster file G_ask_cell_new() 99
prompt for new site list file G_ask_sites_new() 127

create aprotected child process G_fork() 150
put value to segment file segment_put() 224

fullyqualified file name G_fully_qualified_name() 77

query cartographic projection G_database_projection_name() 88
query cartographic projection G_projection() 88
query cartographic zone G_zone() 88
query GRASS environment variable G__getenv() 73
query GRASS environment variable G_getenv() 73

randomquery of cell stats G_find_cell_stat() 120
ask a yes/noquestion G_yes() 153

define screenquestion V_ques() 230
radius of conformal tangent sphere G_radius_of_conformal_tangent_sphere()97

meridionalradius of curvature G_meridional_radius_of_curvature() 97

transverseradius of curvature G_transverse_radius_of_curvature() 97
makerainbow colors G_make_rainbow_colors() 115

make colorramp G_make_ramp_colors() 115
open a new raster file(random) G_open_cell_new_random() 102

write a raster file(random) G_put_map_row_random() 105

makerandom colors G_make_random_colors() 116
random query of cell stats G_find_cell_stat() 120

get colorrange G_get_color_range() 114
read rasterrange G_read_range() 118

write rasterrange file G_write_range() 118

getrange min and max G_get_range_min_max() 119
verify arange of colors D_check_colormap_size() 202

initializerange structure G_init_range() 118
updaterange structure G_row_update_range() 119

Permuted Index for Library Subroutines

- 328 - - 328 -

updaterange structure G_update_range() 118

draw araster R_raster() 190
draw araster R_RGB_raster() 190

allocate araster buffer G_allocate_cell_buf() 103
zero araster buffer G_zero_cell_buf() 103

readraster category file G_read_cats() 109

writeraster category file G_write_cats() 109
selectraster color for line D_color() 203
resetraster color value D_reset_color() 202

establishraster colors for graphics D_set_colors() 203
prompt for existingraster file G_ask_cell_in_mapset() 99

prompt for newraster file G_ask_cell_new() 99
prompt for existingraster file G_ask_cell_old() 99

close araster file G_close_cell() 106
find araster file G_find_cell() 100
read araster file G_get_map_row() 104

open an existingraster file G_open_cell_old() 101
unopen araster file G_unopen_cell() 106

open a newraster file (random) G_open_cell_new_random() 102
write araster file (random) G_put_map_row_random() 105

open a newraster file (sequential) G_open_cell_new() 102

write araster file (sequential) G_put_map_row() 105
open a newraster file (uncompressed) G_open_cell_new_uncompressed() 102

read araster file (without masking) G_get_map_row_nomask() 104
prepare forraster graphics D_cell_draw_setup() 204

read theraster header G_get_cellhd() 107

write theraster header G_put_cellhd() 108
readraster history file G_read_history() 117

writeraster history file G_write_history() 117
retrieveraster map name D_get_cell_name() 199

addraster map name to display list D_set_cell_name() 199

getraster map title G_get_cell_title() 109
changeraster map title G_put_cell_title() 109

configureraster overlay mode D_set_overlay_mode() 204
low lev elraster plotting D_raster() 204

readraster range G_read_range() 118

writeraster range file G_write_range() 118
render araster row D_draw_cell() 204

specify types of arcs toread Vect_set_constraint_type() 163
read a raster file G_get_map_row() 104
read a raster file (without masking) G_get_map_row_nomask() 104

read a row rowio_get() 217
unset any vectorread constraints Vect_remove_constraints() 164

read group control points I_get_control_points() 179
read group REF file I_get_group_ref() 176
read map layer color table G_read_colors() 111

read next vector line Vect_read_next_line() 162
read raster category file G_read_cats() 109
read raster history file G_read_history() 117
read raster range G_read_range() 118
read row from segment file segment_get_row() 224

read site list file G_get_site() 128
read subgroup REF file I_get_subgroup_ref() 176

Permuted Index for Library Subroutines

- 329 - - 329 -

read target information I_get_target() 178
read the database region G_get_window() 83
read the default region G_get_default_window() 84

read the raster header G_get_cellhd() 107
read vector arc by specifying line id V2_read_line() 164
read vector arc by specifying offset V1_read_line() 164

set restricted region toread vector arcs from Vect_set_constraint_region() 163
read vector category file G_read_vector_cats() 126

open a database file forreading G_fopen_old() 79
open a database file forreading G_open_old() 79

reclass file? G_is_reclass() 108
makered,yellow,green colors G_make_ryg_colors() 116

read groupREF file I_get_group_ref() 176

read subgroupREF file I_get_subgroup_ref() 176
write groupREF file I_put_group_ref() 176

write subgroupREF file I_put_subgroup_ref() 176
copyRef lists I_transfer_group_ref_file() 177

add file name toRef structure I_add_file_to_group_ref() 177

freeRef structure I_free_group_ref() 178
initializeRef structure I_init_group_ref() 177

assign/retrieve current mapregion D_check_map_window() 198
read the defaultregion G_get_default_window() 84

get the activeregion G_get_set_window() 86

read the databaseregion G_get_window() 83
write the databaseregion G_put_window() 84

set the activeregion G_set_window() 85
number of columns in activeregion G_window_cols() 85

number of rows in activeregion G_window_rows() 85

set restrictedregion to read vector arcs from Vect_set_constraint_region() 163
align tworegions G_align_window() 86

remove a database file G_remove() 82
remove a frame D_remove_window() 198
remove a lock unlock_file() 212

remove leading/training white space G_strip() 148
remove unnecessary white space G_squeeze() 148
rename a database file G_rename() 81
render a raster row D_draw_cell() 204

rewind vector map forre-reading Vect_rewind() 163

reset normal error handling G_unset_error_routine() 71
reset raster color value D_reset_color() 202
reset/rewind cell stats G_rewind_cell_stats() 120
resets current frame position D_reset_screen_window() 198
resolution to ASCII G_format_resolution() 90

ASCIIresolution to double G_scan_resolution() 91
setrestricted region to read vector arcs fromVect_set_constraint_region() 163

retrieve current frame coordinates D_get_screen_window() 197
retrieve raster map name D_get_cell_name() 199
retrieve sorted cell stats G_next_cell_stat() 120

return ellopsoid name G_ellipsoid_name() 96
return Flag structure G_define_flag() 134
return interrupt char G_intr_char() 152

get HitRETURN msg G_get_ask_return_msg() 76
set HitRETURN msg G_set_ask_return_msg() 76

Permuted Index for Library Subroutines

- 330 - - 330 -

return program name G_program_name() 152
returns a temporary file name G_tempfile() 131
returns east larger than west G_adjust_easting() 96
returns Option structure G_define_option() 134
rewind vector map for re-reading Vect_rewind() 163

initialize plottingroutines G_setup_plot() 129
array to screen(row) D_a_to_d_row() 200
render a rasterrow D_draw_cell() 204

cell area in specifiedrow G_area_of_cell_at_row() 91
northing torow G_northing_to_row() 87

forget arow rowio_forget() 217
read arow rowio_get() 217

write arow rowio_put() 218
readrow from segment file segment_get_row() 224

row to northing G_row_to_northing() 87

writerow to segment file segment_put_row() 223
configurerowio structure rowio_setup() 216

number ofrows in active region G_window_rows() 85
run a shell level command G_system() 151

make linear greyscale G_make_grey_scale_colors() 115

erasescreen R_erase() 188
bottom ofscreen R_screen_bot() 186

top ofscreen R_screen_top() 186
add line of text toscreen V_line() 230

array toscreen (column) D_a_to_d_col() 201

definescreen constant V_const() 230
initializescreen description V_clear() 230
earth toscreen (east) D_u_to_d_col() 201

screen left edge R_screen_left() 186
earth toscreen (north) D_u_to_d_row() 201

definescreen question V_ques() 230
screen right edge R_screen_rite() 186

array toscreen (row) D_a_to_d_row() 200
screen to array (x) D_d_to_a_col() 202
screen to array (y) D_d_to_a_row() 202

screen to earth (x) D_d_to_u_col() 201
screen to earth (y) D_d_to_u_row() 201

format asegment file segment_format() 222
get value fromsegment file segment_get() 223
read row fromsegment file segment_get_row() 224

put value tosegment file segment_put() 224
write row tosegment file segment_put_row() 223

initializesegment structure segment_init() 223
select color R_color() 185
select color R_RGB_color() 186

select fixed color table R_color_table_fixed() 185
select floating color table R_color_table_float() 185
select raster color for line D_color() 203
select standard color R_standard_color() 186

open a new raster file(sequential) G_open_cell_new() 102

write a raster file(sequential) G_put_map_row() 105
draw aseries of dots R_polydots_abs() 188
draw aseries of dots R_polydots_rel() 188

Permuted Index for Library Subroutines

- 331 - - 331 -

set a category color G_set_color() 114
set a category label G_set_cat() 111

set clipping window D_set_clip_window() 208
set clipping window to map window D_set_clip_window_to_map_window() 208
set colors G_add_color_rule() 113
set colors in driver D_reset_colors() 206
set current graphics frame D_set_cur_wind() 197

set geodesic distance lat1 G_set_geodesic_distance_lat1() 95
set geodesic distance lat2 G_set_geodesic_distance_lat2() 95
set GRASS environment variable G__setenv() 73
set GRASS environment variable G_setenv() 73
set Hit RETURN msg G_set_ask_return_msg() 76

set number of decimal places V_float_accuracy() 231
set restricted region to read vector arcs fromVect_set_constraint_region() 163
set text clipping frame R_set_window() 191
set text size R_text_size() 191
set the active region G_set_window() 85

set title in category structure G_set_cats_title() 111
graphics framesetup D_setup() 196

run ashell level command G_system() 151
shortest way between eastings G_shortest_way() 96

definesingle color R_reset_color() 185

prompt for existingsite list file G_ask_sites_in_mapset() 127
prompt for newsite list file G_ask_sites_new() 127

prompt for existingsite list file G_ask_sites_old() 127
open a newsite list file G_fopen_sites_new() 128

open an existingsite list file G_fopen_sites_old() 128

readsite list file G_get_site() 128
writesite list file G_put_site() 129

set textsize R_text_size() 191
sleep on error? G_sleep_on_error() 71

retrievesorted cell stats G_next_cell_stat() 120

remove unnecessary whitespace G_squeeze() 148
remove leading/training whitespace G_strip() 148
deallocate line points structurespace Vect_destroy_line_struct() 165

cell area inspecified row G_area_of_cell_at_row() 91
specify level for opening map Vect_set_open_level() 162

specify types of arcs to read Vect_set_constraint_type() 163
read vector arc byspecifying line id V2_read_line() 164
read vector arc byspecifying offset V1_read_line() 164

initialize calculations forsphere G_begin_zone_area_on_sphere() 92
radius of conformal tangentsphere G_radius_of_conformal_tangent_sphere()97

area insquare meters of polygon G_area_of_polygon() 93
selectstandard color R_standard_color() 186

random query of cellstats G_find_cell_stat() 120
free cellstats G_free_cell_stats() 119

initialize cellstats G_init_cell_stats() 119

retrieve sorted cellstats G_next_cell_stat() 120
reset/rewind cellstats G_rewind_cell_stats() 120
add data to cellstats G_update_cell_stats() 120

print header info tostdout Vect_print_header() 169
copystring to allocated memory G_store() 148

convertstring to lower case G_tolcase() 148

Permuted Index for Library Subroutines

- 332 - - 332 -

convertstring to upper case G_toucase() 149
concatenatestrings G_strcat() 148

copystrings G_strcpy() 147
copystrings G_strncpy() 147

copy vector headerstruct data Vect_copy_head_data() 166
return Flagstructure G_define_flag() 134

returns Optionstructure G_define_option() 134
get title from categorystructure G_get_cats_title() 110

initialize categorystructure G_init_cats() 110

initialize colorstructure G_init_colors() 113
initialize rangestructure G_init_range() 118

update rangestructure G_row_update_range() 119
set title in categorystructure G_set_cats_title() 111

initialize historystructure G_short_history() 117

update rangestructure G_update_range() 118
add file name to Refstructure I_add_file_to_group_ref() 177

free Refstructure I_free_group_ref() 178
initialize Refstructure I_init_group_ref() 177

configure rowiostructure rowio_setup() 216

initialize segmentstructure segment_init() 223
convert xy arrays to line_pntsstructure Vect_copy_xy_to_pnts() 165

create new initialized line pointsstructure Vect_new_line_struct() 165
free categorystructure memory G_free_cats() 111

free colorstructure memory G_free_colors() 114

deallocate line pointsstructure space Vect_destroy_line_struct() 165
convert line_pntsstructure to xy arrays Vect_copy_pnts_to_xy() 166

readsubgroup REF file I_get_subgroup_ref() 176
writesubgroup REF file I_put_subgroup_ref() 176

suppress warnings? G_suppress_warnings() 71

synchronize graphics R_stabilize() 188
read map layer colortable G_read_colors() 111

write map layer colortable G_write_colors() 112
select fixed colortable R_color_table_fixed() 185

select floating colortable R_color_table_float() 185

radius of conformaltangent sphere G_radius_of_conformal_tangent_sphere()97
readtarget information I_get_target() 178

writetarget information I_put_target() 178
returns atemporary file name G_tempfile() 131

terminate graphics R_close_driver() 184

writetext R_text() 192
settext clipping frame R_set_window() 191
gettext extents R_get_text_box() 192
settext size R_text_size() 191

add line oftext to screen V_line() 230

get raster maptitle G_get_cell_title() 109
locationtitle G_myname() 72

change raster maptitle G_put_cell_title() 109
gettitle from category structure G_get_cats_title() 110
settitle in category structure G_set_cats_title() 111

top level database directory G_gisdbase() 73
top level program directory G_gisbase() 72
top of screen R_screen_top() 186
transverse radius of curvature G_transverse_radius_of_curvature() 97

Permuted Index for Library Subroutines

- 333 - - 333 -

turns off interactive capability G_disable_interactive() 135

specifytypes of arcs to read Vect_set_constraint_type() 163
open a new raster file(uncompressed) G_open_cell_new_uncompressed() 102

databaseunits G_database_unit_name() 88
area in coordinateunits G_planimetric_polygon_area() 93

removeunnecessary white space G_squeeze() 148

unopen a raster file G_unopen_cell() 106
unset any vector read constraints Vect_remove_constraints() 164

open a database file forupdate G_fopen_append() 80
open a database file forupdate G_open_update() 80

update range structure G_row_update_range() 119

update range structure G_update_range() 118
force pendingupdates to disk rowio_flush() 218
flush pendingupdates to disk segment_flush() 224

convert string toupper case G_toucase() 149
interact with theuser V_call() 231

user’s home directory G_home() 152
user’s name G_whoami() 153

get mouse locationusing a box R_get_location_with_box() 193
get mouse locationusing a line R_get_location_with_line() 192
get mouse locationusing pointer R_get_location_with_pointer() 192

prompt for anyvalid file name G_ask_any() 76
prompt for anyvalid group name I_ask_group_any() 175

reset raster colorvalue D_reset_color() 202
getvalue from segment file segment_get() 223
putvalue to segment file segment_put() 224

query GRASS environmentvariable G__getenv() 73
query GRASS environmentvariable G_getenv() 73

set GRASS environmentvariable G__setenv() 73
set GRASS environmentvariable G_setenv() 73

readvector arc by specifying line id V2_read_line() 164

readvector arc by specifying offset V1_read_line() 164
set restricted region to readvector arcs from Vect_set_constraint_region() 163

readvector category file G_read_vector_cats() 126
writevector category file G_write_vector_cats() 126

prompt for an existingvector file G_ask_vector_in_mapset() 122

prompt for a newvector file G_ask_vector_new() 122
prompt for an existingvector file G_ask_vector_old() 122

find avector file G_find_vector2() 123
find avector file G_find_vector() 123

open a newvector file G_fopen_vector_new() 125

open an existingvector file G_fopen_vector_old() 124
copyvector header struct data Vect_copy_head_data() 166

read nextvector line Vect_read_next_line() 162
get number of areas invector map V2_num_areas() 167
get number of arcs invector map V2_num_lines() 167

close avector map Vect_close() 162
get open level ofvector map Vect_level() 169

open newvector map Vect_open_new() 161
open existingvector map Vect_open_old() 161

write out arc tovector map Vect_write_line() 164

rewindvector map for re-reading Vect_rewind() 163
unset anyvector read constraints Vect_remove_constraints() 164

Permuted Index for Library Subroutines

- 334 - - 334 -

verify a range of colors D_check_colormap_size() 202
printableversion of control character G_unctrl() 149

plot filled polygon with nvertices G_plot_polygon() 130

printwarning message and continue G_warning() 70
suppresswarnings? G_suppress_warnings() 71

make colorwav e G_make_wav e_colors() 115
returns east larger thanwest G_adjust_easting() 96

remove unnecessarywhite space G_squeeze() 148

remove leading/trainingwhite space G_strip() 148
clip coordinates towindow D_clip() 205

set clippingwindow D_set_clip_window() 208
set clipping window to mapwindow D_set_clip_window_to_map_window() 208

set clippingwindow to map window D_set_clip_window_to_map_window() 208

read a raster file(without masking) G_get_map_row_nomask() 104
write a raster file (random) G_put_map_row_random() 105
write a raster file (sequential) G_put_map_row() 105
write a row rowio_put() 218
write group control points I_put_control_points() 179

write group REF file I_put_group_ref() 176
write map layer color table G_write_colors() 112
write out arc to vector map Vect_write_line() 164
write raster category file G_write_cats() 109
write raster history file G_write_history() 117

write raster range file G_write_range() 118
write row to segment file segment_put_row() 223
write site list file G_put_site() 129
write subgroup REF file I_put_subgroup_ref() 176
write target information I_put_target() 178

write text R_text() 192
write the database region G_put_window() 84
write the raster header G_put_cellhd() 108
write vector category file G_write_vector_cats() 126

screen to array(x) D_d_to_a_col() 202

screen to earth(x) D_d_to_u_col() 201
line tox,y D_cont_abs() 209
line tox,y D_cont_rel() 209

east,north tox,y G_plot_where_xy() 130
convert line_pnts structure toxy arrays Vect_copy_pnts_to_xy() 166

convertxy arrays to line_pnts structure Vect_copy_xy_to_pnts() 165
x,y to east,north G_plot_where_en() 130

screen to array(y) D_d_to_a_row() 202
screen to earth(y) D_d_to_u_row() 201

ask ayes/no question G_yes() 153

zero a raster buffer G_zero_cell_buf() 103
query cartographiczone G_zone() 88

Permuted Index for Library Subroutines

- 335 - - 335 -

Index

Throw this page away and replace it with the real index.

- 336 - - 336 -

Table of Contents

Chapter 1. Introduction... 1

1.1. Background.. 1

1.2. Objective .. 1

1.3. Approach.. 1

1.4. Scope.. 2

1.5. Mode of Technology Transfer ..2

1.6. GRASS Information Center... 4

Chapter 2. Development Guidelines... 5

2.1. Intended GRASS Audience.. 5

2.2. Programming Standards... 6

2.3. Documentation Standards.. 7

Chapter 3. Multilevel .. 9

3.1. General User... 9

3.2. GRASS Programmer.. 10

3.3. Driver Programmer ...12

3.4. GRASS System Designer... 13

Chapter 4. Database Structure... 15

4.1. Programming Interface ...15

4.2. GISDBASE ..16

4.3. Locations.. 16

4.4. Mapsets... 16

4.5. Mapset Structure.. 17

4.5.1. Mapset Files.. 17

4.5.2. Elements.. 18

4.6. Permanent Mapset.. 19

4.7. Database Access Rules... 20

4.7.1. Mapset Search Path ...20

4.7.2. UNIX File Permissions... 20

Chapter 5. Raster Maps... 23

5.1. What is a Raster Map Layer?.. 23

5.2. Raster File Format ..24

5.3. Raster Header Format ...26

- ii - - i i -

5.3.1. Regular Format ..26

5.3.2. Reclass Format ..28

5.4. Raster Category File Format ..28

5.5. Raster Color Table Format ...29

5.6. Raster History File... 30

5.7. Raster Range File... 31

Chapter 6. Vector Maps... 33

6.1. What is a Vector Map Layer?.. 33

6.2. Ascii Arc File Format ...34

6.2.1. Header Section.. 35

6.2.2. Arc Section.. 36

6.3. Vector Category Attribute File... 37

6.4. Vector Category Label File.. 38

6.5. Vector Index and Pointer File... 38

6.6. Digitizer Registration Points File... 38

6.7. Vector Topology Rules... 39

6.8. Importing Vector Files Into GRASS.. 39

Chapter 7. Point Data: Site List Files... 41

7.1. What is a Site List?.. 41

7.2. Site File Format ..41

7.3. Programming Interface to Site Files... 42

Chapter 8. Image Data: Groups.. 43

8.1. Introduction.. 43

8.2. What is a Group?... 43

8.2.1. A List of Cell Files.. 44

8.2.2. Image Registration and Rectification.. 44

8.2.3. Image Classification.. 44

8.3. The Group Structure... 45

8.3.1. The REF File... 45

8.3.2. The POINTS File.. 46

8.3.3. The TARGET File... 46

8.3.4. Subgroups.. 46

8.4. Imagery Programs.. 47

8.5. Programming Interface for Groups.. 48

Chapter 9. Region and Mask... 49

9.1. Region ..49

9.2. Mask... 51

- iii - - iii -

9.3. Variations ..51

Chapter 10. Environment Variables ..53

10.1. UNIX Environment ..53

10.2. GRASS Environment ...54

10.3. Difference Between GRASS and UNIX Environments 54

Chapter 11. Compiling and Installing GRASS Programs... 57

11.1. gmake4.1 ..57

11.2. Gmakefile Variables ...58

11.3. Constructing a Gmakefile ...60

11.3.1. Building programs from source (.c) files.. 61

11.3.2. Include files... 62

11.3.3. Building object libraries.. 62

11.3.4. Building more than one target ...63

11.4. Compilation Results... 64

11.4.1. Multiple-Architecture Conventions ...64

11.4.2. Compiled Command Destinations.. 64

11.5. Notes... 67

11.5.1. Bypassing the creation of .o files.. 67

11.5.2. Simultaneous compilation... 67

Chapter 12. GIS Library... 69

12.1. Introduction.. 69

12.2. Library Initialization.. 70

12.3. Diagnostic Messages.. 70

12.4. Environment and Database Information... 72

12.5. Fundamental Database Access Routines.. 74

12.5.1. Prompting for Database Files.. 74

12.5.2. Fully Qualified File Names... 76

12.5.3. Finding Files in the Database.. 77

12.5.4. Legal File Names.. 78

12.5.5. Opening an Existing Database File for Reading............................... 79

12.5.6. Opening an Existing Database File for Update................................. 79

12.5.7. Creating and Opening a New Database File..................................... 80

12.5.8. Database File Management... 81

12.6. Memory Allocation.. 82

12.7. The Region ...83

12.7.1. The Database Region ..83

12.7.2. The Active Program Region ..84

- iv - - iv -

12.7.3. Projection Information.. 87

12.8. Latitude-Longitude Databases.. 88

12.8.1. Coordinates.. 89

12.8.2. Raster Area Calculations... 91

12.8.3. Polygonal Area Calculations... 92

12.8.4. Distance Calculations.. 94

12.8.5. Global Wraparound... 95

12.8.6. Miscellaneous.. 96

12.9. Raster File Processing.. 98

12.9.1. Prompting for Raster Files.. 98

12.9.2. Finding Raster Files in the Database... 99

12.9.3. Opening an Existing Raster File.. 100

12.9.4. Creating and Opening New Raster Files... 101

12.9.5. Allocating Raster I/O Buffers .. 103

12.9.6. Reading Raster Files.. 103

12.9.7. Writing Raster Files.. 104

12.9.8. Closing Raster Files.. 106

12.10. Raster Map Layer Support Routines.. 106

12.10.1. Raster Header File... 106

12.10.2. Raster Category File.. 108

12.10.3. Raster Color Table ...111

12.10.4. Raster History File.. 116

12.10.5. Raster Range File.. 117

12.10.6. Raster Histograms... 119

12.11. Vector File Processing.. 121

12.11.1. Prompting for Vector Files.. 121

12.11.2. Finding Vector Files in the Database... 122

12.11.3. Opening an Existing Vector File... 124

12.11.4. Creating and Opening New Vector Files... 124

12.11.5. Reading and Writing Vector Files... 125

12.11.6. Vector Category File.. 125

12.12. Site List Processing.. 126

12.12.1. Prompting for Site List Files... 126

12.12.2. Opening Site List Files.. 127

12.12.3. Reading and Writing Site List Files.. 128

12.13. General Plotting Routines.. 129

12.14. Temporary Files.. 131

- v - - v -

12.15. Command Line Parsing ..132

12.15.1. Description.. 132

12.15.2. Structures... 133

12.15.3. Parser Routines.. 134

12.15.4. Parser Programming Examples... 135

12.15.5. Full Structure Members Description... 140

12.15.6. Common Questions... 146

12.16. String Manipulation Functions... 147

12.17. Enhanced UNIX Routines.. 149

12.17.1. Running in the Background... 149

12.17.2. Partially Interruptible System Call.. 150

12.18. Miscellaneous... 151

12.19. Deleted Routines.. 153

12.20. GIS Library Data Structures... 153

12.20.1. struct Cell_head... 154

12.20.2. struct Categories ..154

12.20.3. struct Colors.. 155

12.20.4. struct History... 155

12.20.5. struct Range... 156

12.21. Loading the GIS Library.. 156

Chapter 13. Vector Library... 157

13.1. Introduction.. 157

13.1.1. Include Files.. 157

13.1.2. Vector Arc Types ...158

13.1.3. Levels of Access.. 158

13.2. Changes in 4.0 from 3.0... 158

13.2.1. Problem... 159

13.2.2. Solution... 159

13.2.3. Approach... 159

13.2.4. Implementation.. 160

13.3. Opening and closing vector maps.. 161

13.4. Reading and writing vector maps... 162

13.5. Data Structures... 165

13.6. Data Conversion ...165

13.7. Miscellaneous... 166

13.8. Routines that remain from GRASS 3.1.. 169

13.9. Loading the Vector Library.. 170

- vi - - vi -

Chapter 14. Imagery Library... 173

14.1. Introduction.. 173

14.2. Group Processing... 174

14.2.1. Prompting for a Group.. 174

14.2.2. Finding Groups in the Database.. 175

14.2.3. REF File.. 175

14.2.4. TARGET File.. 178

14.2.5. POINTS File.. 178

14.3. Loading the Imagery Library... 180

14.4. Imagery Library Data Structures.. 180

14.4.1. struct Ref... 180

14.4.2. struct Control_Points... 181

Chapter 15. Raster Graphics Library.. 183

15.1. Introduction.. 183

15.2. Connecting to the Driver .. 184

15.3. Colors... 184

15.4. Basic Graphics.. 186

15.5. Poly Calls... 188

15.6. Raster Calls.. 189

15.7. Text ... 190

15.8. User Input... 192

15.9. Loading the Raster Graphics Library... 193

Chapter 16. Display Graphics Library.. 195

16.1. Introduction.. 195

16.2. Library Initialization.. 195

16.3. Frame Management.. 197

16.4. Frame Contents Management... 198

16.5. Coordinate Transformation Routines... 199

16.6. Raster Graphics.. 203

16.7. Window Clipping ...205

16.8. Pop-up Menus.. 206

16.9. Colors... 206

16.10. Deleted Routines.. 207

16.11. Loading the Display Graphics Library... 207

16.12. Vector Graphics / Plotting Routines... 208

16.12.1. DISPLAYLIB routines.. 208

Chapter 17. Lock Library.. 211

- vii - - vii -

17.1. Introduction.. 211

17.2. Lock Routine Synopses.. 211

17.3. Use and Limitations... 212

17.4. Loading the Lock Library.. 212

Chapter 18. Rowio Library... 215

18.1. Introduction.. 215

18.2. Rowio Routine Synopses... 216

18.3. Rowio Programming Considerations... 218

18.4. Loading the Rowio Library.. 219

Chapter 19. Segment Library.. 221

19.1. Introduction.. 221

19.2. Segment Routines... 222

19.3. How to Use the Library Routines... 225

19.4. Loading the Segment Library... 227

Chapter 20. Vask Library.. 229

20.1. Introduction.. 229

20.2. Vask Routine Synopses.. 229

20.3. An Example Program... 232

20.4. Loading the Vask Library... 233

20.5. Programming Considerations... 234

Chapter 21. Digitizer/Mouse/Trackball Files (.dgt).. 237

21.1. Rules for Digitizer Configuration Files.. 237

21.2. Digitizer Configuration File Commands.. 238

21.2.1. Setup.. 238

21.2.2. Startrun, Startpoint, Startquery, Stop, Query.................................... 241

21.2.3. Format ...244

21.3. Examples of Complete Files.. 247

21.3.1. Example 1.. 247

21.3.2. Example 2.. 248

21.4. Digitizer File Naming Conventions .. 250

Chapter 22. Writing a Digitizer Driver ... 251

22.1. Introduction.. 251

22.2. Writing the Digitizer Device Driver ... 251

22.2.1. Functions that must be Written... 252

22.2.2. Functions Available For Use... 256

22.2.3. Compiling the Device Driver .. 258

22.2.4. Testing the Device Driver .. 258

- viii - - viii -

22.3. Discussion of the Finer Points (Hints)... 259

22.3.1. Setting up the Digitizer... 259

22.3.2. Program Logic... 260

22.3.3. Specific Driver Issues ..260

Chapter 23. Writing a Graphics Driver ... 263

23.1. Introduction.. 263

23.2. Basics... 263

23.3. Basic Routines.. 264

23.3.1. Open/Close Device ..264

23.3.2. Return Edge and Color Values ..264

23.3.3. Drawing Routines.. 265

23.3.4. Colors.. 265

23.3.5. Mouse Input... 266

23.3.6. Panels ..267

23.4. Optional Routines... 268

Chapter 24. Writing a Paint Driver ... 271

24.1. Introduction.. 271

24.2. Creating a Source Directory for the Driver Code271

24.3. The Paint Driver Executable Program.. 272

24.3.1. Printer I/O Routines.. 272

24.3.2. Initialization.. 273

24.3.3. Alpha-Numeric Mode... 274

24.3.4. Graphics Mode.. 274

24.3.5. Color Information.. 276

24.4. The Device Driver Shell Script .. 277

24.5. Programming Considerations... 279

24.6. Paint Driver Library ...280

24.7. Compiling the Driver .. 280

24.8. Creating 125 Colors From 3 Colors... 282

Chapter 25. Writing GRASS Shell Scripts... 283

25.1. Use the Bourne Shell.. 283

25.2. How a Script Should Start.. 283

25.3. g.ask.. 284

25.4. g.findfile .. 284

Appendix A. Annotated Gmakefile Predefined Variables ...287

Appendix B. The CELL Data Type ..291

Appendix C. Index to GIS Library ... 293

- ix - - ix -

Appendix D. Index to Vector Library ... 299

Appendix E. Index to Imagery Library... 301

Appendix F. Index to Display Graphics Library... 303

Appendix G. Index to Raster Graphics Library.. 305

Appendix H. Index to Rowio Library ... 307

Appendix I. Index to Segment Library ... 309

Appendix J. Index to Vask Library ... 311

Appendix K. Permuted Index for Library Subroutines... 313

Index ... 335

