GRASS 4.0 Inference Engine:
r.infer

Mary Martin
James Westervelt

U.S. Army Corps of Engineers
Construction Engineering Research Laboratory
Environmental Division
Spatial Analysis Systems Team
P.O. Box 9005
Champaign, IL 61826-9005

December 1991

Table of Contents

LI o Lo O] 011 g1 £ USSR 2
IR 111 oo 1 1o TSP 3
B2 @ 1= 1 (o) o 4
TS 4 = G TP UTPPTUP VRPN 5
A, ATIBSES .ottt E bbbt b et bbbt 7
5. SAMPIE SESSION ..ottt b b e bt b e bt e e n e nn e 8
6. Conclusions and RECOMMENELIONSccovueuiriririeirieireiereeeees e seens 18

(RS (=010 TR 18

1. INTRODUCTION
1.1. Background

This document details the capabilities of r.infer, an inference engine included among Geographic
Resources Analysis Support System (GRASS) software. GRASS is a public domain, image processing
and geographic information system (GIS) originaly developed by researchers in the Environmental
Divison of the U.S. Army Corps of Engineers Construction Engineering Research Laboratory
(USACERL-EN) in Champaign, Illinois. The system is used to input, manipulate, analyze, and output
geographic data by users in both military and non-military and public and private agencies based in
North America, Europe, and other parts of the world. r.infer uses an expert-system approach and
logic-based syntax to perform user-constructed analyses on map data in GRASS raster format.

Although most GRASS development has been conducted at USACERL, system integration, develop-
ment, testing, distribution, training, and support is performed by numerous publicly- and privately-
operated sites throughout the world. GRASS version 4.0 implemented significant additions and
modifications to system libraries and programming code. Mechanisms are needed to transfer current
technology and information about GRASS to user and development sites.

This document reflects modfications made to GRASS 4.0.

1.2. Objective

The objective of this work is to transfer knowledge of GRASS version 4.0 raster map analysis functions
to the field. This document guides the user through the process of using r.infer to analyze raster data
layers in GRASS using expert-system type rules.

1.3. Approach

Current GRASS r.infer functions are examined in this report.

1.4. Scope

This document discusses the 4.0-release version of the GRASS r.infer program, completed in Summer
of 1991. Some elements of this document will be dated and inaccurate for post-4.0 software releases.

1.5. Mode of Technology Transfer

The information in this report will aid the technical transfer of USACERL’'s GRASS image processing
and geographic information system. GRASS is being transferred to the field through the following
mechanisms. training programs, hands-on experience, a user support center, newsletters, extensive
documentation, institutional structures at the Army and interagency levels, communication networks,
and other forums.

User feedback on GRASS program capabilities, documentation, and other technology transfer mechan-
isms is important to the development of the system. Users are encouraged to communicate such feed-
back to GRASS development staff at USACERL, via existing electronic communication networks and
via the GRASS Information Center at USACERL, P.O. Box 9005, Champaign, IL 61826-9005; phone
217-373-7220; fax 217-373-7222; or e-mail grassbug@zorro.cecer.army.mil.

2. ORIENTATION

This paper describes the use and syntax of the GRASS program r.infer. r.infer uses an expert system
approach and logic-based syntax to perform analyses similar to those made by the GRASS program
r.combine. Both programs allow the user to analyze and manipulate information contained in existing
raster map layers, and use the results of these analyses to generate a new raster map layer. Unlike
r.combine, however, r.infer is an "inference engine" designed to apply expert system type rules to the
user's selected map layers, using a logical syntax comfortable for the user.

It is assumed that you are familiar with the nature of raster data and the concepts of a current location,
mapset search path, geographic region settings, and masks, as these are used in GRASS. For a review
of these concepts refer to An Introduction to GRASS.

Land analysts rely heavily on maps as a source of geographic information. This geographic information
may be collected from many maps, of various scales and compiled from sources of differing dates. The
land analyst therefore frequently attempts to create a new map layer which combines data extracted
from numerous maps and contains only data relevant to the land analyst's current purpose. The
GRASS program r.infer provides the user with a tool for combining and manipulating such geographic
information, once it is entered into a GRASS database. Using r.infer, the land analyst can rapidly
identify and highlight the presence of specified landcover characteristics.

r.infer is an inference engine which applies expert system type rules to a set of user-specified maps.
The results are used to generate a new map in the user’s current mapset under the name "infer."

Expert systems are simply sets of logical rules that mirror the analysis process of an expert in some
field. For example, an expert system which might be used to locate suitable landfill sites contains ques-
tions that a waste disposal expert might ask of a landscape: |s the sope steep? Is the clay content of
the soil sufficiently high to inhibit the leaching of landfilled materials into groundwater supplies? How
far is the site from water supplies? Is the site within reasonable transport distance of the population
centers generating the wastes? Etc. The line of questioning will take different courses, depending on
the user’'s answers to questions along the way. An expert system embodies these lines of reasoning in a
data file. The program used to work its way through the questions and answers is called an inference
engine. r.infer is such a program. An expert system asks a user to answer simple yes/no questions.
r.infer instead asks these questions directly of the map database. Each individual map layer cell in turn
becomes the "user" answering questions about its contents. Results of this questioning are stored in a
new raster map layer.

Rules are provided to r.infer via standard input. The user may type these rules into a data file during a
GRASS session, but more frequently will create this data file prior to entering GRASS using a system
editor (e.g., the UNIX text editor vi).

r.infer differs from the GRASS program r.combine in its more pleasing syntax and approach. Like
r.combine, r.infer requires the user to determine only whether or not a given land characteristic is
good or bad for the user's purpose; another similar GRASS program called r.weight requires the user
to assign numeric weights to each map category quantifying gradations of goodness and badness.
Although r.weight allows the user to perform more detailed analyses of locational suitabilities than do
either r.infer or r.combine, the latter programs are more easily used and their outputs more easily
understood. Of the three programs, only r.infer attempts to apply an expert system approach to geo-
graphic analysis. Numerous other programs are available in GRASS to manipulate raster map data.
Refer to the manual entries for r.mapcalc, r.mfilter, r.neighbors, r.surf.idw, and r.watershed, for
examples of these.

3. SYNTAX

The user enters a series of logical statements into a data file which is subsequently run by r.infer.
Each logical statement is composed of one or more conditions followed by either a hypothesis or a
conclusion. In the jargon of the field, conditions are called antecedents while hypotheses and conclu-
sions are termed consequences. Suppose we wish to determine locations with our map database which
meet the following conditions.

If a cell contains category values 6, 7, or 8 in the map layer landuse, and also contains category values
1 or 2 in the map layer soils.Tfactor, but does not contain category values 10 through 89 in the slope
map layer, then assign that cell a category value of 3 (with the category label ‘* Suitable Location") in a
new map layer called infer.

The r.infer equivalent of this statement is:

IFMAP landuse 6-8
ANDIFMAP soilsTfactor 1 2
ANDNOTMAP dope 10-89
THENMAPHYP 3 Suitable Location

The first three lines in the above statement state the map conditions that must be met to reach the map
conclusion stated on the fourth line. This shorthand allows for the quick entry of quite involved and
complex logic branches using many statements resulting in the possibility of many different conclu-
sions.

Each logical statement in r.infer is composed of one or more conditions followed by a consequence.
The user's input to r.infer can contain a series of such logical statements. This input file must contain
at least one Map Condition and at least one Map Conclusion. It can also contain Statement Conditions
and Statement Hypotheses. Map Conditions are questions about the presence or absence of stated
categories in specified GRASS raster map layers. Map Conclusions designate the category to be
assigned to the cells which meet stated conditions in the new raster map layer created by r.infer.
Statement Conditions are similar to Map Conditions, but are used to refer to Statement Hypotheses,
rather than to actual map layers. Statement Hypotheses are used to embody the truth of a set of condi-
tions, without actually assigning a value to cells which meet these conditions in the new map layer
infer. The r.infer language uses its own words to form these statements; descriptions of these words
follow:

1. Map Conditions:

IFMAP
checks for the existence of stated contents. In the example above, IFMAP checks to see if each cell in
the raster map layer landuse contains categories 6, 7, or 8.

IFNOTMAP
is similar to IFMAP, but checks for the existence of the inverse of the stated contents (i.e., it checks the
cell for the absence of the stated map layer category values).

2. Map Conclusions:

THENMAPHYP

When this conclusion statement is reached, application of the rules to the data ceases, the current cell is
assigned the stated category value in the new growing map layer, and the trailing text is saved for the
creation of the category labels for the new map layer. In the above example, if the current cell met al

stated conditions, the line:
THENMAPHYP 3 Suitable Location

would determine that the current cell would be assigned a category value of 3 and analysis would stop
for that cell. The trailing label text ‘‘Suitable Location” would be entered beside category 3 in the
category support file. The inference engine then moves on to the next cell in the map layer and starts
the analysis again from the top of the logical statement.

3. Statement Hypotheses:

THEN
Instead of making a Map Conclusion after successfully meeting the stated conditions (antecedents), a
statement may instead be assigned a Truth Condition. In the above example, we might have said

THEN Suitable Location

(rather than THENMAPHYP 3 Suitable Location), and added additional conditions beneath this THEN
statement.

Use of a THEN statement does not result in the assignment of a specified category value to the current
cell in the new map. Instead, the hypothesis ‘‘Suitable Location” will be set to the truth condition
"true," and analysis of the current cell will continue; succeeding rules will continue to be applied to
this current cell untii a THENMAPHYP statement is reached. The hypothesis made using the THEN
statement can be used in conditional statements using the keywords below. This means that the phrase
named by the THEN statement (here, "Suitable Location") can be used further down in the logica
statement to refer to the fulfillment of the set of conditions specified by the THEN statement (here, that
the cell contains landuse category values 6, 7 or 8, and soils.Tfactor category values 1 or 2, and does
not contain slope category values 10 through 89).

4. Statement Conditions:

IF
Hypothesis strings, the truth of which can be determined in other statements which use the THEN con-
clusion keyword, can be used with these condition keywords. Our above example,

IFMAP landuse 6-8
ANDIFMAP soilsTfactor 12
ANDNOTMAP dope 10-89
THENMAPHYP 3 Suitable Location

could be rewritten to make use of the IF keyword:

IFMAP landuse 6-8

THEN suitable landuse

!

IFMAP soils.Tfactor 1 2
ANDNOTMAP dope 10-89

THEN erosion limited

!

IF suitable landuse

ANDIF erosion limited
THENMAPHYP 3 Suitable Location

IFNOT
states the inverse of that which is stated.

It should be noted that the spacing of words on a line in the data file input to r.infer shown above was
done for clarity; it is not necessary that keywords be separated by more than one space from either
map layer names, category designations, or truth conditions. It is necessary that map layer names (or
category values) be separated from map layer category values by exactly one space on a given line.
Exclamation points identify comments which will be ignored by r.infer, but which may greatly contri-

bute to the readability of your logical statement.

4. ALIASES

Several of the above keywords (used to express antecedents and consequences) have aliases with which
they are interchangeable. All keywords must be capitalized. The following table lists those keyword

aliases that are currently available;

KEYWORD:

Can be replaced with:

Map Conditions:
IFMAP
IFNOTMAP

Map Conclusions:
THENMAPHYP

Statement Hypotheses:

THEN

Statement Conditions:
IF
IFNOT

ANDIFMAP ANDMAP
ANDNOTMAP

ANDTHEN

AND ANDIF
ANDNOT

5. SAMPLE SESSION

This sample session can be replicated by users who run GRASS and choose spearfish as their current
GRASS location.

Normally, before entering the GRASS session in which the user actually executes the relevant com-
mands, the user will already have made a list of the map layers relevant to a specific problem, and will
have created a set of logical statements to be input to r.infer designed to answer each map layer’s ahil-
ity to solve this problem. However, here we will both construct and run the analysis within a single
GRASS session, proceeding one step at atime. This will entail the

Statement of the Problem

Invocation of the Command-Driven Version of GRASS
Examination of Available Map Layers and Map Layer Categories
Construction of Logical Statements

Execution of r.infer

Examination of the Resultant Map Layer Created

Exiting of GRASS.

Noak~wdE

Remember that r.infer will run your analysis, but it will not construct that analysis. Before running
r.infer you must have a clear understanding of the problem you wish to analyze, and know how to
trandate this problem into the syntax accepted by r.infer. You, not r.infer, construct the line of rea-
soning (in the form of a logical statement) that is entered into a data file and used to analyze selected
map layers. You determine which map layers and map layer categories are relevant to your analysis.

Commands that you are requested to enter are displayed in bold in the manner shown below:
PROMPT:> my_command

Results that you should see after typing a command are displayed like this:

Some result displayed here

Let us begin. This sample session with r.infer can be reproduced on any normal text terminal. r.infer,
unlike r.combine and r.weight, does not print map layers out to the screen as it processes geographic
data. However, if you wish to see the map layer created as a result of your r.infer run, you can simply
use the GRASS program r.combine, which prints numeric maps to the screen. On color graphics moni-
tors, these numeric maps are turned into color maps. If the color graphics monitor is used, you can
display your r.infer map in color using such GRASS programs as d.display and d.rast (as well as
r.combine).

5.1. Statement of the Problem

Let us assume we wish to examine the suitability of various portions of the spearfish database for the
construction of an electric steam-generating plant. We now require a set of rules which an expert in the
field of power plant siting might use to analyze landscape features for their suitability for this purpose.
We can state that we require a suitable construction site (implying a site with relatively deep depth to
bedrock, little dope, good soils, the absence of existing fixed structures, and the absence of flooding on
the site itself). We also require a site that is close to a flowing water source which can supply water to
the plant, and would like the site to be near a reliable transportation network.

We will now enter GRASS, and subsequently create a data file containing these site requirements after
having trandated them into a logical statement interpretable by r.infer.

5.2. Entering GRASS

Users should now enter GRASS. The below sample session assumes that users are running GRASS
version 4.0. If you are running a version of GRASS previous to 4.0, note that r.infer must be accessed
through the quick access (not the menu driven) GRASS.

Once you have entered GRASS by invoking the command gr ass4.0,
PROMPT:> grass4.0

you must declare to GRASS the LOCATION_NAME, MAPSET, and DATABASE on which you wish
to work. To duplicate this session, you must request LOCATION_NAME spearfish. The mapset nhame
you choose is arbitrary, but must be a one-word name less than 14 characters long. A default database
directory will be presented to you.

5.3. Examination of Map Layers and Map Layer Categories

You have formulated a problem statement and invoked (command driven) GRASS. You will now wish
to examine available map layers and map layer categories within the location spearfish that appear
relevant to your problem. To do this, we will make brief use of the GRASS program r.weight. Enter
the command r.weight to begin your r.weight session.

GRASS 4.0 > r.weight
You will be asked:

Do you want graphics to go to the color monitor? (y/n) [n] >

Figure 1

Press RETURN or enter the command n here, because we have no r.infer-created map as yet to
display, and do not now intend to display other maps. After your response is entered a screen with
general information concerning r.weight will appear. r.weight is a language-driven program, whose
use is explained in the GRASS Tutorial: r.weight. Here, we will assume the user is already familiar
with basic r.weight commands. We are in any case only currently interested in using r.weight to
obtain a listing of available map layers and the categories within each map layer. A listing of available
map layers can be obtained without entering r.weight, smply by entering the command

GRASS 4.0 > glist rast
From within r.weight, the command list maps will produce the same results. Try this:
r.weight:> list maps

RASTER files available in mapset PERMANENT:

aspect mss.image rushmore soils.ph trn.sites
bugsites owner slope soils.range vegcover
density quads slope.7 soils.texture

elevation railroads soils streams

geology roads soils. Tfactor strm.dist

landuse rstrct.areas soils.br.depth transport.misc

Hit RETURN to Continue-->

Figure 2

Hit RETURN to return to the r.weight prompt.

Given the problem you wish to analyze, it appears that the spearfish map layers soils.br.depth,
soilstexture, dope, streams, transport.misc, roads, and railroads will be useful to your analysis. You
will now wish to obtain a listing of the categories within each of the map layers you want included in
your analysis. One convenient way to obtain such category listings for particular map layers is through
use of the r.weight command,

-10 -

r.weight:> list categories map_name

where map_name is the name of an available map layer in the database. Here, we will obtain listings
of the categories present in the spearfish map layers noted above, by invoking the following series of
commands:

r.weight:> list categories soils.br.depth
r.weight:> list categories soils.texture
r.weight:> list categories ope
r.weight:> list categories streams
r.weight:> list categories transport.misc
r.weight:> list categories roads
r.weight:> list categories railroads

The map layer category listings output by these commands are summarized in Figure 3.

- 11 -

map | Slope Soils Texture St reams

c | 0 No Data 0 No Data 0 No Data
a | 1 0 degrees 1 Loam 1 Perennial Stream
t | 2 1 degree 2 Stony loam 2 Intermittent Stream
e | 3 2 degrees 3 Silty loam 3 Aqueduct
g | 4 3 degrees 4 Silt loam, loam 4 Shoreline
o | 5 4 degrees 5 Fine sandy |oam
r | 6 5 degrees 6 Loam, fine sandy |oam
y | 7 6 degrees 7 Loam, very fine sandy |oam

| 8 7 degrees 8 Gravelly loam

| 9 8 degrees 9 Gravelly silt loam

|10 9 degrees 10 Channery silt loam, loam

|11 10 degrees 11 Cobbly loam

|12 11 degrees 12 Very gravelly silt |oam,

| gravelly silt loam,silt loam

|13 12 degrees 13 Clay

|14 13 degrees 14 Clay |loam

|15 14 degrees 15 Silt clay loam

|16 15 degrees 16 Silty clay loam, clay

|17 16 degrees 17 Silty clay loam, silty clay

|18 17 degrees

|19 18 degrees (...More Slope:)

|20 19 degrees 39 38 degrees

|21 20 degrees 40 39 degrees

|21 21 degrees 41 40 degrees

|22 22 degrees 42 41 degrees

|23 23 degrees 43 42 degrees

|24 24 degrees 44 43 degrees

|25 25 degrees 45 44 degrees

|26 26 degrees 46 45 degrees

|27 27 degrees 47 46 degrees

|28 28 degrees 48 47 degrees

|30 29 degrees 50 49 degrees

|31 30 degrees 53 52 degrees

|32 31 degrees 54 53 degrees

|33 32 degrees 82 81 degrees

|34 33 degrees 83 82 degrees

|35 34 degrees 84 83 degrees

|36 35 degrees 85 84 degrees

|37 36 degrees 87 86 degrees

|38 37 degrees 88 87 degrees

| 89 88 degrees

map: | Miscel laneous Roads Rai | roads
| Transportation
| Features
c | 0 No data 0 No data 0 No data
a | 1 Power transmission 1 Primary route, undivided 1 railroad
line
t | 2 Landing strip 2 Road or Street, class 3 2
e | 3 Road or Street, class 4
g | 4 Trail, class 4, non-
4-wheel drive vehicle
o | 5 Cloverleaf or Exchange
ro|
y |

c | 0 No data

a | 1< 14 inches

t | 2 >=14 and < 20 inches
e | 3>=20 and < 40 inches
g | 4 >=40 and < 60 inches
o | 5> =60 inches

ro|

y |

Figure 3

It should be noted that you need not use map layers present within the PERMANENT mapset to run
r.infer; you might use other raster map layers from other GRASS locations and mapsets in your mapset
search path, including map layers you have generated using programs like r.combine and r.weight
(refer to GRASS g.mapsets command).

Having obtained a listing of relevant raster map layer categories, you are ready to leave r.weight. To
exit r.weight, use the command exit.

r.weight:> exit

You now exit the r.weight program and are returned
to your GRASS shell prompt.

- 13-

5.4. Construction of Logical Statements

Using the syntax rules described earlier, we can trandate our problem statement into the following logi-
cal statement. r.infer will later apply the rules embodied in this logical statement to each cell in the
map layers specified. You can use your system editor to create a new data file containing this logical
statement. Do this now, inserting the text shown below:

IFMAP streams 1 3 4

THENMAPHYP 1 Water Present

!

IFMAP roads125

THENMAPHYP 2 Transport Lines Available
!

IFMAP transport.misc 2

THENMAPHYP 2 Transport Lines Available
!

IFMAP railroads 1

THENMAPHYP 2 Transport Lines Available
!

IFMAP soils.br.depth 3-5

ANDIFMAP soilstexture 1-7

ANDNOTMAP dlope 0 9-89

THENMAPHYP 3 Suitable for Construction

5.5. Execution of r.infer

Having constructed a data file containing the set of rules by which you will analyze the suitability of
specified landscape features to support the construction of an electric steam-generating plant, you now
wish the inference engine r.infer to evaluate the ability of each spearfish cell to satisfy these require-
ments. However, you feel a bit queasy about your newly constructed logical statement. Does it contain
the questions you think it contains? Will the line of reasoning embodied in the data file follow the
courses you expect it to take under all possible sets of circumstances? You can alleviate this uncer-
tainty by testing your logical statement, using the command:

GRASS 4.0 > r.infer -t filename
where filename is the name of your data file containing the logical statement described above, and - t

denotes the test option available with r.infer. (Note that you must also specify the full pathname loca
tion of this filename if it is not in your current working directory.)

Compiling input rules from file /full path/filename

mark_cats (6-8)
mark_cats (1-1)
mark_cats (2-2)
mark_cats (9-89)

Maps used:

Map [dope] in mapset [PERMANENT]

Map [soils.texture] in mapset [PERMANENT]
Map [soils.br.depth] in mapset [PERMANENT]
Map [railroads] in mapset [PERMANENT]
Map [transport.misc] in mapset [PERMANENT]

-14 -

Map [roads] in mapset [PERMANENT]

Map [streams] in mapset [PERMANENT]

Is the following statement true?

streams 134 :

Is the following statement true?

roads125:

Is the following statement true?

transport.misc 2 :

Is the following statement true?

railroads 1 :

Is the following statement true?

soils.br.depth 345 :

Is the following statement true?

soilstexture 123456 7:

Is the following statement true?

sope 0910 11 12 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 3334 3536 37 38 39 40 41 42 43 44 45 46 47 48 50 53 54 82 82 84 85
87 88 89:

New cell value =

Mapset <mapset-name> in Location <spearfish>
GRASS 4.0 >

Figure 4

Enter either yes or no (or true or false) as to the truth of each statement. The new cell value shown
should vary between zero and three, depending on your answers to each of these questions. A cell
category value of zero implies the user (i.e., the map layer cell) has failed to satisfy at least one of the
sets of map conditions tested for within the data file. r.infer works from the top of your logical state-
ment to its bottom; as soon as you satisfy all map conditions necessary to making a map conclusion, a
new cell category value will appear. You will not then necessarily be asked all of the questions present
in the data file; you will only continue to be asked questions until a conclusion about the cell’s value
can be drawn. Given the site requirements we earlier stated within our problem statement, it is there-
fore important that we ordered questions within the data file as we did. For example, we sought a site
that was both close to water sources, but did not itself often flood. It was therefore necessary to iden-
tify cells containing or adjacent to water, prior to identifying sites ‘‘suitable for construction.” It is
necessarily implied that those sites assigned to category 3 (Suitable for Construction) do not satisfy the
conditions necessary to be assigned to category 1 (Water Present). Had they fallen into category 1, the
analysis of the cell would have ceased, and the cell been assigned to category 1 without progressing
further down through the data file to see if the cell also satisfied the conditions necessary to be classed
in category 3.

Again invoke the command:
GRASS 4.0 > r.infer -t filename

This time entering different responses (yes or no) along the way. Again, check to make sure that the
New Cell Value output as a result of your responses matches up with what you intended to occur under
such circumstances. Do this repeatedly, entering different answers as to the truth of the questions posed
you each time, until you are comfortable that the logical statement contained in your data file filename
will indeed output the results you expect.

-15 -

Thus far, you have only tested your data file contents, without producing any new raster map layer.
After you are satisfied with your data file, you are ready to actually run r.infer. Do this now, by sim-
ply entering the command:

GRASS 4.0 > r.infer filename

Compiling input rules from file /pathname/filename

mark_cats (6-8)
mark_cats (1-1)
mark_cats (2-2)
mark_cats (9-89)

Map [slope] in mapset [PERMANENT] opened

Map [soilstexture] in mapset [PERMANENT] opened
Map [soils.br.depth] in mapset [PERMANENT] opened
Map [railroads] in mapset [PERMANENT] opened
Map [transport.misc] in mapset [PERMANENT] opened
Map [roads] in mapset [PERMANENT] opened

Map [streams] in mapset [PERMANENT] opened
Working to row 280

At row: 280

Creating support files

Mapset <mapset-name> in Location <spearfish>
GRASS 4.0 >

Figure 5
If you now type,
GRASS 4.0 > glist rast

your new map should appear as a raster map layer called infer stored within your current GRASS
MAPSET:

RASTER files available in mapset <mapset-name>:
infer

RASTER files available in mapset PERMANENT:

aspect mss.image rushmore soils.ph trn.sites
bugsites owner slope soils.range vegcover
density quads dope.7 soils.texture

elevation railroads soils streams

geology roads soils.Tfactor strm.dist

landuse rstrct.areas soils.br.depth transport.misc

Hit RETURN to Continue-->

Figure 6

Hit the RETURN key to return to the GRASS 4.0 prompt. You can display your raster map layer on a
color graphics monitor after running the GRASS program r.support. All support files except a color
file will already have been created for you by r.infer. You can also modify the cell header, category,

- 16 -

miscellaneous, and history files associated with your new raster data file by running r.support if
desired.

5.6. Examination of the Resultant Raster Map Layer

Now that you have successfully created the raster map layer infer containing the results of your
analysis, and have created a color table for this map by running r.support, you can display or print out
this map layer. If you have a color graphics monitor, you can display your map using GRASS pro-
grams like d.rast or d.display. If you do not have a color graphics monitor, you can display a numeric
representation of your map layer on your dumb terminal, by using a GRASS program like r.combine.
This is demonstrated below. [If your system is hooked up to a printer, you can print out your map using
p.map.

Let us take a brief look at a numeric representation of your new raster map layer within r.combine.
Enter the following command to begin your session.

GRASS 4.0 > r.combine

Do you want graphics to go to the color monitor? (y/n) [n] >

If you are not working with a color monitor, enter "no" at this prompt. (Note that if you are working
with a color graphics monitor, you can more easily display your new raster map layer infer using such
GRASS programs as d.display and d.rast.)

Analyses will be displayed with symbols during execution.

Help is available for r.combine: enter (help)

Let us look at our new map layer named infer. A correct and complete r.combine request is caled a
map expression (EXPR). A viable data layer name is, by itself, an EXPR.

[1]:> (infer)

- 17 -

0002200000000000
0000020002000000000000
0100000200000002000300000000000000000220000002000000000020111010
0001020000220020000000020000000000000000000000000000000222200000
0001020000020000000000000000000000003300000000000000000000000200
0000000000200000000000000020300000030200000000000000000000002000
0010000000020000000000000003000000000002000000000000000200000020
0100
0000000000000020022010
00000000000002200100
00
0000000000002000000000000000000000000000000000100000000110000000
0000000000002000
0000000000000200000000000000000000000000200000000000000000000000
0000000000000000020000000000000002000020200000000000000000000000
0000000000000000000000000000002000000000000200000000000200000000
0000000000000020000020000000002200000001200000000000000000000000
0000000000000000000000000020000000020200020000000200000000000000

It should be emphasized that the raster map layer infer in which your results are stored will be
overwritten each time you run r.infer. If you wish to save a particular map layer created using r.infer,
you should therefore remember to rename this raster map layer before running a different r.infer
analysis. The GRASS command g.rename can be used when you are either outside or inside of
r.combine to change the name of the raster map layer infer. When outside of the r.combine program
(at the GRASS 4.0 prompt), enter the command g.rename:

GRASS 4.0 > g.rename

This command can conveniently be run from within r.combine by preceding the command with the
shell escape character ! (an exclamation point):

[2]:> !g.rename

After invoking either command, the user is prompted for the type of file to be renamed (here, a raster
data file), the existing map name the user wishes to change (infer), and the new map name to which the
user desires to change it.

At this point, we might conveniently edit and run additional data files through r.infer while remaining
within r.combine. As shown above, commands that can be run from within GRASS can aso be run
from within r.combine, by preceding command names with the shell escape character ! (refer to the
GRASS Tutorial: r.combine for further instructions on the use of r.combine).

When editing logical statements, the user should be careful to specify the full path name of the direc-
tory in which the user wants to place the data file. Similarly, when running r.infer from within
r.combine, the user should specify the full path name of the directory in which the user’s r.infer data
file appears. For example, the following commands would allow a user to first edit an input file called
test.1 located in the directory specified by the path name /usr/cerl/login-name using the visual editor vi,
and subsequently run this data file through r.infer:

[3]:> Vi /usr/cerl/login-nameltest.1
[4]:> !r.infer /usr/cerl/login-name/test.1

-18 -

r.combine has now demonstrated its usefulness. You should give the following command to leave
r.combine.

[5]:> BYE

5.7. Exiting GRASS

At this point, you might also edit and execute additional logical statements through r.infer. Now, how-
ever, we will exit GRASS entirely. When you then exit GRASS with the exit command you will be
given the opportunity to save or remove the new maps you have made using r.infer:

GRASS 4.0 > exit

Unless your new maps must be saved, it is always best to remove them at this point.

6. CONCLUSIONS AND RECOMMENDATIONS

This manual is part of an ongoing process to document Geographic Resources Analysis Support System
(GRASS) program functions. It is one of many technology transfer mechanisms being implemented to
explain current, and future, GRASS program capabilities to resource managers and system users.

Documentation, along with training programs, hands-on use, a user-support center, newdetters, institu-
tional structures at the Army and interagency levels, communication networks, and other forums, can be
used to aid this ongoing technology transfer effort.

User feedback on GRASS program capabilities, documentation, and other technology transfer mechan-
isms is also needed. Users are encouraged to communicate such feedback to GRASS development staff
at USACERL, via existing electronic communication networks and via the GRASS Information Center
at USACERL, P.O. Box 9005, Champaign, IL 61826-9005; phone 217-373-7220; fax 217-373-7222; or
e-mail: grassbug@zorro.cecer.army.mil.

REFERENCES

Ruiz, Marilyn S., and Jean M. Messersmith, Cartographic Issues in the Development of a Digital
GRASS Database, USACERL Special Report N-90/16 (USACERL, September 1990).

Westervelt, James, and William D. Goran, Introduction to GRASS 4, Technical Manuscript N-92/xx
(USACERL, xx 1992).

Westervelt, James, Mary Martin, and Deborah Brinegar, GRASS 4.0 Programs, USACERL Technical
Manuscript N-92/xx (U.S. Army Construction Engineering Research Laboratory [USACERL], xx
1992).

Westervelt, James, Michael Shapiro, William D. Goran, et al., GRASS User’'s Reference Manual, ADP
Report N-87/22 rev (USACERL, September 1988, last revised December 1991).

