
1

DVIPS: A TEX Driver

Tomas Rokicki, rokicki@cs.stanford.edu
FAX: (415) 327–3329

[This manual describes version 5.58.]

The dvips program converts a TEX dvi file into a PostScript file for printing or distri-
bution. Seldom has such a seemingly easy programming task required so much effort.

1. Why Use dvips?

The dvips program has a number of features that set it apart from other PostScript
drivers for TEX. This rather long section describes the advantages of using dvips, and may
be skipped if you are just interested in learning how to use the program. Installation is
covered in section 14 near the end of this document.

The dvips driver generates excellent, standard PostScript, that can be included in other
documents as figures or printed through a variety of spoolers. The generated PostScript
requires very little printer memory, so very complex documents with a lot of fonts can easily
be printed even on PostScript printers without much memory, such as the original Apple
LaserWriter. The PostScript output is also compact, requiring less disk space to store and
making it feasible as a transfer format.

Even those documents that are too complex to print in their entirety on a particular
printer can be printed, since dvips will automatically split such documents into pieces,
reclaiming the printer memory between each piece.

The dvips program supports graphics in a natural way, allowing PostScript graphics
to be included and automatically scaled and positioned in a variety of ways.

Printers with resolutions other than 300 dpi are also supported, even if they have
a different resolution in the horizontal and vertical directions. High resolution output is
supported for typesetters, including an option that compresses the bitmapped fonts so that
typesetter virtual memory is not exhausted. This option also significantly reduces the size
of the PostScript file and decoding in the printer is very fast.

Missing fonts can be automatically generated if METAFONT exists on the system, or
fonts can be converted from gf to pk format on demand. If a font cannot be generated, a
scaled version of the same font at a different size can be used instead, although dvips will
complain loudly about the poor æsthetics of the resulting output.

DVIPS: A TEX Driver 2

Users will appreciate features such as collated copies and support for tpic, psfig,
emtex, and METAPOST; system administrators will love the support for multiple printers,
each with their own configuration file, and the ability to pipe the output directly to a
program such as lpr. Support for MS-DOS, OS/2, and VMS in addition to UNIX is
provided in the standard distribution, and porting to other systems is easy.

One of the most important features is the support of virtual fonts, which add an entirely
new level of flexibility to TEX. Virtual fonts are used to give dvips its excellent PostScript
font support, handling all the font remapping in a natural, portable, elegant, and extensible
way. The dvips driver even comes with its own afm2tfm program that creates the necessary
virtual fonts and TEX font metric files automatically from the Adobe font metric files.

Source is provided and freely distributable, so adding a site-specific feature is possible.
Adding such features is made easier by the highly modular structure of the program.

There is really no reason to use another driver, and the more people use dvips, the less
time will be spent fighting with PostScript and the more time will be available to create
beautiful documents. So if you don’t use dvips on your system, get it today.

2. Using dvips

To use dvips, simply type

localhost> dvips foo

where foo.dvi is the output of TEX that you want to print. If dvips has been installed
correctly, the document should come out of your default printer.

If you use fonts that have not been used on your system before, they may be auto-
matically generated; this process can take a few minutes. The next time that document is
printed, these fonts will already exist, so printing will go much faster.

Many options are available; they are described in a later section. For a brief summary
of available options, just type

localhost> dvips

DVIPS: A TEX Driver 3

3. Paper Size and Landscape Mode

Most TEX documents at a particular site are designed to use the standard paper size
(for example, letter size in the United States or A4 in Europe.) The dvips program defaults
to these paper sizes and can be customized for the defaults at each site or on each printer.

But many documents are designed for other paper sizes. For instance, you may want
to design a document that has the long edge of the paper horizontal. This can be useful
when typesetting booklets, brochures, complex tables, or many other documents. This type
of paper orientation is called landscape orientation (the ‘normal’ orientation is portrait).
Alternatively, a document might be designed for ledger or A3 paper.

Since the intended paper size is a document design decision, and not a decision that
is made at printing time, such information should be given in the TEX file and not on the
dvips command line. For this reason, dvips supports a papersize special. It is hoped that
this special will become standard over time for TEX previewers and other printer drivers.

The format of the papersize special is

\special{papersize=8.5in,11in}

where the dimensions given above are for a standard letter sheet. The first dimension
given is the horizontal size of the page, and the second is the vertical size. The dimensions
supported are the same as for TEX; namely, in (inches), cm (centimeters), mm (millimeters),
pt (points), sp (scaled points), bp (big points, the same as the default PostScript unit), pc
(picas), dd (didot points), and cc (ciceros).

For a landscape document, the papersize comment would be given as

\special{papersize=11in,8.5in}

An alternate specification of landscape is to have a special of the form

\special{landscape}

This is supported for backward compatibility, but it is hoped that eventually the papersize
comment will dominate.

Of course, using such a command only informs dvips of the desired paper size; you
must still adjust the hsize and vsize in your TEX document to actually use the full page.

The papersize special must occur somewhere on the first page of the document.

The dvips default landscape configuration is presently as though the paper were ro-
tated ninety degrees counterclockwise; this seems to be the convention adopted by preview-
ers that the author is familiar with. If for some reason you need your landscape orientation

DVIPS: A TEX Driver 4

to be rotated clockwise, simply include at the top of your TEX file or in some included
macro file

\special{! /landplus90 true store}

to set this orientation. Alternatively, you can change the default value of landplus90 in the
tex.lpro file before compilation, or include a header file that just includes the definition
/landplus90 true store.

4. Including PostScript Graphics

Scaling and including PostScript graphics is a breeze—if the PostScript file is correctly
formed. Even if it is not, however, the file can usually be accommodated with just a little
more work. The most important feature of a good PostScript file—from the standpoint of
including it in another document—is an accurate bounding box comment.

4.1 The Bounding Box Comment

Every well-formed PostScript file has a comment describing where on the page the
graphic is located, and how big that graphic is. This information is given in terms of the
lower left and upper right corners of a box just enclosing the graphic, and is thus referred
to as a bounding box. These coordinates are given in PostScript units (there are precisely
72 PostScript units to the inch) with respect to the lower left corner of the sheet of paper.

To see if a PostScript file has a bounding box comment, just look at the first few lines
of the file. (PostScript is standard ASCII, so you can use any text editor to do this.) If
within the first few dozen lines there is a line of the form

%%BoundingBox: 0 1 2 3

(with any numbers), chances are very good that the file is Encapsulated PostScript and will
work easily with dvips. If the file contains instead a line like

%%BoundingBox: (atend)

the file is still probably Encapsulated PostScript, but the bounding box (that dvips needs
to position the graphic) is at the end of the file and should be moved to the position of the
line above. This can be done with that same text editor, or with a simple Perl script.

If the document lacks a bounding box altogether, one can easily be added. Simply
print the file. Now, take a ruler, and make the following measurements. All measurements
should be in PostScript units, so measure it in inches and multiply by 72. Alternatively, the
bbfig program distributed with dvips in the contrib directory can be used to automate
this process.

DVIPS: A TEX Driver 5

From the left edge of the paper to the leftmost mark on the paper is llx, the first
number. From the bottom edge of the paper to the bottommost mark on the paper is lly,
the second number. From the left edge of the paper to the rightmost mark on the paper is
urx, the third number. The fourth and final number, ury, is the distance from the bottom
of the page to the uppermost mark on the paper.

Now, add a comment of the following form as the second line of the document. (The
first line should already be a line starting with the two characters ‘%!’; if it is not, the file
probably isn’t PostScript.)

%%BoundingBox: llx lly urx ury

Or, if you don’t want to modify the file, you can simply write these numbers down in a
convenient place and use them when you import the graphic.

If the document does not have such a bounding box, or if the bounding box is given
at the end of the document, please complain to the authors of the software package that
generated the file; without such a line, including PostScript graphics can be tedious.

4.2 Using the EPSF Macros

Now you are ready to include the graphic into a TEX file. Simply add to the top of
your TEX file a line like

\input epsf

(or, if your document is in LaTEX or SliTEX, add the epsf style option, as was done to the
following line).

\documentstyle[12pt,epsf]{article}

This only needs to be done once, no matter how many figures you plan to include. Now, at
the point you want to include the file, enter a line such as

\epsffile{foo.ps}

If you are using LaTEX or SliTEX, you may need to add a \leavevmode command imme-
diately before the \epsffile command to get certain environments to work correctly. If
your file did not (or does not currently) have a bounding box comment, you should supply
those numbers you wrote down as in the following example:

\epsffile[100 100 500 500]{foo.ps}

(in the same order they would have been in a normal bounding box comment). Now, save
your changes and run TEX and dvips; the output should have your graphic positioned at
precisely the point you indicated, with the proper amount of space reserved.

DVIPS: A TEX Driver 6

The effect of the \epsffile macro is to typeset the figure as a TEX \vbox at the point
of the page that the command is executed. By default, the graphic will have its ‘natural’
width (namely, the width of its bounding box). The TEX box will have depth zero and a
‘natural’ height. The graphic will be scaled by any dvi magnification in effect at the time.

Any PostScript graphics included by any method in this document (except bop-hook
and its ilk) are scaled by the current dvi magnification. For graphics included with
\epsffile where the size is given in TEX dimensions, this scaling will produce the cor-
rect, or expected, results. For compatibility with old PostScript drivers, it is possible to
turn this scaling off with the following TEX command:

\special{! /magscale false def}

Use of this command is not recommended because it will make the \epsffile graphics the
wrong size if global magnification is used in a dvi document, and it will cause any PostScript
graphics to appear improperly scaled and out of position if a dvi to dvi program is used
to scale or otherwise modify the document.

You can enlarge or reduce the figure by putting

\epsfxsize=<dimen>

right before the call to \epsffile. Then the width of the TEX box will be <dimen> and
its height will be scaled proportionately. Alternatively you can force the vertical size to a
particular size with

\epsfysize=<dimen>

in which case the height will be set and the width will be scaled proportionally. If you set
both, the aspect ratio of the included graphic will be distorted but both size specifications
will be honored.

By default, clipping is disabled for included EPSF images. This is because clipping to
the bounding box dimensions often cuts off a small portion of the figure, due to slightly
inaccurate bounding box arguments. The problem might be subtle; lines around the bound-
ary of the image might be half their intended width, or the tops or bottoms of some text
annotations might be sliced off. If you want to turn clipping on, just use the command

\epsfclipon

and to turn clipping back off, use

\epsfclipoff

A more general facility for sizing is available by defining the \epsfsize macro. You
can redefine this macro to do almost anything. This TEX macro is passed two parameters by
\epsffile. The first parameter is the natural horizontal size of the PostScript graphic, and

DVIPS: A TEX Driver 7

the second parameter is the natural vertical size. This macro is responsible for returning
the desired horizontal size of the graph (the same as assigning \epsfxsize above).

In the definitions given below, only the body is given; it should be inserted in

\def\epsfsize#1#2{body}

Some common definitions are:

\epsfxsize This definition (the default) enables the default features listed above, by setting
\epsfxsize to the same value it had before the macro was called.

0pt This definition forces natural sizes for all graphics by setting the width to zero, which
turns on horizontal scaling.

#1 This forces natural sizes too, by returning the first parameter only (the natural width)
and setting the width to it.

\hsize This forces all graphics to be scaled so they are as wide as the current horizontal
size. (In LaTEX, use \textwidth instead of \hsize.)

0.5#1 This scales all figures to half of their natural size.

\ifdim#1>\hsize\hsize\else#1\fi This keeps graphics at their natural size, unless the
width would be wider than the current \hsize, in which case the graphic is scaled
down to \hsize.

If you want TEX to report the size of the figure as a message on your terminal when it
processes each figure, give the command

\epsfverbosetrue

4.3 Header Files

Often in order to get a particular graphic file to work, a certain header file might
need to be sent first. Sometimes this is even desirable, since the size of the header macros
can dominate the size of certain PostScript graphics files. The dvips program provides
support for this with the header= special command. For instance, to ensure that foo.ps
gets downloaded as part of the header material, the following command should be added
to the TEX file:

\special{header=foo.ps}

The dictionary stack will be at the userdict level when these header files are included.

DVIPS: A TEX Driver 8

For these and all other header files (including the headers required by dvips itself and
any downloaded fonts), the printer VM budget is debited by some value. If the header file
has, in its first 1024 bytes, a line of the form

%%VMusage: min max

then the maximum value is used. If it doesn’t, then the total size of the header file in bytes
is used as an approximation of the memory requirements.

4.4 Literal PostScript

For simple graphics, or just for experimentation, literal PostScript graphics can be
included. Simply use a special command that starts with a double quote ("). For instance,
the following (simple) graphic:

was created by typing:

\vbox to 100bp{\vss % a bp is the same as a PostScript unit

\special{" newpath 0 0 moveto 100 100 lineto 394 0 lineto

closepath gsave 0.8 setgray fill grestore stroke}}

(Note that you are responsible for leaving space for such literal graphics.) Literal graphics
are discouraged because of their nonportability.

4.5 Literal Headers

Similarly, you can define your own macros for use in such literal graphics through the
use of literal macros. Literal macros are defined just like literal graphics, only you begin
the special with an exclamation point instead of a double quote. These literal macros are
included as part of the header material in a special dictionary called SDict. This dictionary
is the first one on the PostScript dictionary stack when any PostScript graphic is included,
whether by literal inclusion or through the \epsffile macros.

DVIPS: A TEX Driver 9

4.6 Other Graphics Support

There are other ways to include graphics with dvips. One is to use an existing package,
such as emtex, psfig, tpic, or METAPOST, all supported by dvips.

Other facilities are available for historical reasons, but their use is discouraged, in hope
that some ‘sane’ form of PostScript inclusion shall become standard. Note that the main
advantage of the \epsffilemacros is that they can be adapted for whatever form of special
eventually becomes standard, and thus only minor modifications to that one file need to be
made, rather than revising an entire library of TEX documents.

Most of these specials use a flexible key and value scheme:

\special{psfile=filename.ps[key=value]*}

This will download the PostScript file called filename.ps such that the current point will
be the origin of the PostScript coordinate system. The optional key/value assignments
allow you to specify transformations on the PostScript.

The possible keys are:

hoffset The horizontal offset (default 0)
voffset The vertical offset (default 0)
hsize The horizontal clipping size (default 612)
vsize The vertical clipping size (default 792)
hscale The horizontal scaling factor (default 100)
vscale The vertical scaling factor (default 100)
angle The rotation (default 0)
clip Enable clipping to the bounding box

The dimension parameters are all given in PostScript units. The hscale and vscale

are given in non-dimensioned percentage units, and the rotation value is specified in degrees.
Thus

\special{psfile=foo.ps hoffset=72 hscale=90 vscale=90}

will shift the graphics produced by file foo.ps right by one inch and will draw it at 0.9
times normal size. Offsets are given relative to the point of the special command, and are
unaffected by scaling or rotation. Rotation is counterclockwise about the origin. The order
of operations is to rotate the figure, scale it, then offset it.

For compatibility with older PostScript drivers, it is possible to change the units that
hscale and vscale are given in. This can be done by redefining @scaleunit in SDict by
a TEX command such as

\special{! /@scaleunit 1 def}

DVIPS: A TEX Driver 10

The @scaleunit variable, which is by default 100, is what hscale and vscale are divided
by to yield an absolute scale factor.

All of the methods for including graphics we have described so far enclose the graphic
in a PostScript save/restore pair, guaranteeing that the figure will have no effect on the rest
of the document. Another type of special command allows literal PostScript instructions
to be inserted without enclosing them in this protective shield; users of this feature are
supposed to understand what they are doing (and they shouldn’t change the PostScript
graphics state unless they are willing to take the consequences). This command can take
many forms, because it has had a tortuous history; any of the following will work:

\special{ps:text}

\special{ps::text}

\special{ps::[begin]text}

\special{ps::[end]text}

(with longer forms taking precedence over shorter forms, when they are used). Note that
ps:: and ps::[end] do not do any positioning, so they can be used to continue PostScript
literals started with ps: or ps::[begin]. There is also the command

\special{ps: plotfile filename}

which will copy the commands from filename verbatim into the output (but omitting lines
that begin with %). An example of the proper use of literal specials can be found in the
file rotate.tex which makes it easy to typeset text turned 90 degrees.

To finish off this section, the following examples are presented without explanation:

\def\rotninety{\special{ps:currentpoint currentpoint translate 90

rotate neg exch neg exch translate}}\font\huge=cmbx10 at 14.4truept

\setbox0=\hbox to0pt{\huge A\hss}\vskip16truept\centerline{\copy0

\special{ps:gsave}\rotninety\copy0\rotninety\copy0\rotninety

\box0\special{ps:grestore}}\vskip16truept

AAAA

\vbox to 2truein{\special{ps:gsave 0.3 setgray}\hrule height 2in

width\hsize\vskip-2in\special{ps:grestore}\font\big=cminch\big

\vss\special{ps:gsave 1 setgray}\vbox to 0pt{\vskip2pt

\line{\hss\hskip4pt NEAT\hss}\vss}\special{ps:0 setgray}%

\hbox{\raise2pt\line{\hss NEAT\hss}\special{ps:grestore}}\vss}

DVIPS: A TEX Driver 11

NEATNEAT
Some caveats are in order when using the above forms. Make sure that each gsave on

a page is matched with a grestore on the same page. Do not use save or restore. Use of
these macros can interact with the PostScript generated by dvips if care is not taken; try
to understand what the above macros are doing before writing your own. The \rotninety
macro especially has a useful trick that appears again and again.

4.7 Dynamic Creation of PostScript Graphics Files

PostScript is an excellent page description language—but it does tend to be rather
verbose. Compressing PostScript graphics files can often reduce them by more than a
factor of five. For this reason, if the filename parameter to one of the graphics inclusion
techniques starts with a backtick (‘), the filename is instead interpreted as a command to
execute that will send the actual file to standard output. Thus,

\special{psfile="‘zcat foo.ps.Z"}

will include the uncompressed version of foo.ps. Since such a command is not accessible
to TEX, if you use this facility with the EPSF macros, you need to supply the bounding box
parameter yourself, as in

\epsffile[72 72 540 720]{"‘zcat screendump.ps.Z"}

to include screendump.ps. Of course, the commands to be executed can be anything,
including using a file conversion utility such as tek2ps or whatever is appropriate.

This extension is not portable to other dvi2ps programs. Yet.

DVIPS: A TEX Driver 12

5. Using PostScript Fonts

Thanks to Donald E. Knuth, the dvips driver now supports PostScript fonts through
the virtual font capability. PostScript fonts are (or should be) accompanied by a font metric
file such as Times-Roman.afm, which describes characteristics of a font called Times-Roman.
To use such fonts with TEX, we need tfm files that contain similar information. These can
be generated from afm files by running the program afm2tfm, supplied with dvips. This
program also creates virtual fonts with which you can use normal plain TEX conventions.

Note that non-resident downloaded PostScript fonts tend to use a great deal of printer
virtual memory. PostScript printers typically have between 130,000 and 400,000 bytes of
available virtual memory; each downloaded font will require approximately 30,000 bytes
of that. For many applications, bitmapped fonts work much better, even at typesetter
resolutions (with the -Z option.)

Even resident PostScript fonts can take a fair amount of memory, but less with this
release of dvips than previously. Also, bitmapped fonts tend to image faster than PostScript
fonts.

A few Type 1 fonts (such as Utopia, Charter, and Courier) have been contributed by
vendors to the X distribution, and are freely available. You can get TEX distributions for
them from ftp.cs.umb.edu in pub/tex, and from the CTAN hosts in tex-archive/fonts.

Your Unix system may have come with additional PostScript fonts. If so, you can make
them available to Dvips by copying the files or making symbolic links with the appropriate
filenames, and running afm2tfm to make TFM and VF files so the fonts will be available in
the same encoding as the fonts distributed with dvips. Also check psfonts.map to be sure
the fonts are listed there.

Here are the typical locations for vendor-supplied fonts:

DEC Ultrix /usr/lib/DPS/outline/decwin

DEC OSF/1 /usr/lib/X11/fonts/Type1Adobe

NeXT /NextLibrary/Fonts/outline

SGI IRIX /usr/lib/DPS/outline/base

Sun Solaris 2.3 /usr/openwin/lib/X11/fonts/Type1/outline

5.1 The afm2tfm Program

The afm2tfm program can convert an Adobe afm file into a ‘raw’ TEX tfm file with the
command

localhost> afm2tfm Times-Roman rptmr

(You should run this from in a directory where Times-Roman.afm resides.) The output
file rptmr.tfm is ‘raw’ because it does no character remapping; it simply converts the

DVIPS: A TEX Driver 13

character information on a one-to-one basis to TEX characters with the same code. The
name rptmr stands for Resident PostScript Times Roman; section 6 below explains more
about a proposed scheme for font names.

In the following examples, we will use the font Times-Roman to illustrate the conver-
sion process. For the standard 35 LaserWriter fonts, however, it is highly recommended
that you use the supplied tfm and vf files that come with dvips (usually in a file called
dvipslib.tar.Z), as these files contain some additional changes that make them work
better with TEX than they otherwise would.

PostScript fonts have a different encoding scheme from that of plain TEX. Although
both schemes are based on ASCII, special characters such as ligatures and accents are
handled quite differently. Therefore we obtain best results by using a ‘virtual font’ interface,
which makes TEX act as if the PostScript font had a standard TEX encoding. Such a virtual
font can be obtained, for example, by the command

localhost> afm2tfm Times-Roman -v ptmr rptmr

This produces two outputs, namely the ‘virtual property list’ file ptmr.vpl, and the TEX
font metric file rptmr.tfm. The latter file describes an ‘actual font’ on which the virtual
font is based.

To use the font in TEX, you should first run

localhost> vptovf ptmr.vpl ptmr.vf ptmr.tfm

and then install the virtual font file ptmr.vf in the virtual font directory (by default,
/usr/lib/tex/fonts/vf) and install ptmr.tfm and rptmr.tfm in the directory for TEX
font metrics (by default, /usr/lib/tex/fonts/tfm). (This probably has already been done
for you for the most common PostScript fonts.) You can also make more complex virtual
fonts by editing ptmr.vpl before running vptovf; such editing might add the uppercase
Greek characters in the standard TEX positions, for instance. Once this has been done,
you’re all set. You can use code like this in TEX henceforth:

\font\myfont=ptmr at 10pt

\myfont Hello, I am being typeset in Times-Roman.

Note that there are two fonts, one actual (‘rptmr’, which is analogous to a raw piece
of hardware) and one virtual (‘ptmr’, which has typesetting know-how added). You could
also say

\font\TR=rptmr at 10pt

and typeset directly with that, but then you would have no ligatures or kerning, and you
would have to use Adobe character positions for special letters like Æ. The virtual font called
ptmr not only has ligatures and kerning, and most of the standard accent conventions of
TEX, it also has a few additional features not present in the Computer Modern fonts. For

DVIPS: A TEX Driver 14

example, it includes all the Adobe characters (such as the Polish ogonek and the French
guillemots). The only things you lose from ordinary TEX text fonts are the dotless j (which
can be hacked into the VPL file with literal PostScript specials if you have the patience) and
uppercase Greek letters (which just don’t exist unless you buy them separately). Experts
may refer to Donald E. Knuth article in TUGboat v. 11, no. 1, Apr. 1990, pp. 13–23.
“Virtual Fonts: More Fun for Grand Wizards.”

When dvips goes to use a font, it first checks to see if it is one of the fonts listed in a
file called psfonts.map. If it is mentioned in that file, then it is assumed that the font is
a resident PostScript font and can be found with the PostScript findfont operator. This
file resides by default in /usr/lib/tex/ps, and consists of a single font per line. Note that
only the raw PostScript font names should be listed in this file; the vf fonts should not
be, since they are automatically mapped to the raw PostScript fonts by the virtual font
machinery. The supplied psfonts.map file defines the most common PostScript fonts.

As much as possible, the PostScript fonts follow plain TEX conventions for accents.
The two exceptions to this are the Hungarian umlaut (which is at position 0x7D in cmr10,
but position 0xCD in ptmr) and the dot accent (at positions 0x5F and 0xC7, respectively).
In order to use these accents with PostScript fonts or in math mode when \textfont0 is a
PostScript font, you will need to use the following definitions. Note that these definitions
will not work with normal TEX fonts for the relevant accents; note also that these definitions
are already part of the distributed psfonts.sty. In addition, the \AA that is used to typeset

the Å character must be modified as shown.

\def\H#1{{\accent"CD #1}}\def\.#1{{\accent"C7 #1}}

\def\dot{\mathaccent"70C7 }

\newdimen\aadimen

\def\AA{\leavevmode\setbox0\hbox{h}\aadimen\ht0

\advance\aadimen-1ex\setbox0\hbox{A}\rlap{\raise.67\aadimen

\hbox to \wd0{\hss\char’27\hss}}A}

These PostScript fonts can be scaled to any size. Go wild! Note, however, that using
PostScript fonts does use up a great deal of the printer’s virtual memory and it does take
time. You may find downloading the Computer Modern bitmapped fonts to be faster than
using the built-in PostScript fonts.

5.2 Changing a Font’s Encoding

The afm2tfm program also allows you to specify a different encoding for a PostScript
font. This should only be done by wizards. This can be done at two levels.

You can specify a different output encoding with -o. This only applies when you are
building a virtual font, and it tells afm2tfm to attempt to remap the font to match the
output encoding as closely as possible. In such an output encoding, you can also specify
ligature pairs and kerning information that will be used in addition to the information in
the afm file. This will be the most common re-encoding required, since the only thing that

DVIPS: A TEX Driver 15

changes is the vf file (and its associated tfm file) and since most everything you would want
to do can be done with this method.

You can also specify a different PostScript encoding with -p. This option affects the
generation of both the raw tfm file and the virtual vf and tfm files, and it also requires
that the encoding file be available to be downloaded as part of every PostScript document
produced that uses this font. But this is the only way to access characters in a PostScript
font that are neither encoded in the afm file nor built from other characters (constructed
characters.) For instance, Times-Roman contains the extra characters registered and
thorn (among others) that can only be accessed through such a PostScript reencoding. Any
ligature or kern information specified in the PostScript encoding is ignored by afm2tfm.

The format of the encoding files is simple—it is precisely the same format that is used
to define an encoding vector in PostScript! For this reason, the same file can be used as a
PostScript or TEX encoding file for afm2tfm as well as downloaded to the printer as part of
a document that uses a reencoded font.

The specific format that afm2tfm accepts is one of the following form:

% comments are mostly ignored; more on this later

/MyEncoding [/Alpha /Beta /Gamma /Delta ...

/A /B ... /Z % exactly 256 entries, each with a / at the front

/wfooaccent /xfooaccent /yfooaccent /zfooaccent] def

Comments, which start with a percent sign and continue until the end of the current
line, are mostly ignored. The first ‘word’ of the file must start with a forward slash (a
PostScript literal name) and is used as the name of the encoding. The next word must be
an open bracket. Following that must be precisely 256 character names; use /.notdef for
any that you do not want to define. Finally, there must be a close bracket. The final token
is usually def, but this is not enforced. Note that all names are case sensitive.

Any ligature or kern information is given in the comments. As each comment is en-
countered, it is examined. If the first word after the percent sign is LIGKERN, exactly, then
the entire rest of the line is parsed for ligature and kern information. This ligature and
kern information is given in groups of words, each group of which must be terminated by a
semicolon (with a space before and after it, unless it occurs on the end of a line.)

In these LIGKERN statements, three types of information may be specified. These three
types are ligature pairs, kerns to remove or ignore, and the character value of this font’s
boundary character. Which of the types the particular set of words corresponds to is
automatically determined by the allowable syntax.

Throughout the LIGKERN section, the boundary character is specified as ||. To set the
boundary character value, a command such as || = 39 ; must be used.

DVIPS: A TEX Driver 16

To indicate a kern to remove, give the names of the two characters (without the leading
slash) separated by {}, as in one {} one ;. This is similar to the way you might use {}

in a TEX file to turn off ligatures or kerns at a particular location. Either or both of the
character names can be given as *, which is a wild card matching any character; thus, all
kerns can be removed with * {} * ;.

To specify a ligature, specify the names of the pair of characters, followed by the
ligature ‘operation’ (as in METAFONT), followed by the replacing character name. Either
(but not both) of the first two characters can be || to indicate a word boundary. Normally
the ‘operation’ is =: meaning that both characters are removed and replaced by the third
character, but by adding | characters on either side of the =:, you can specify which of the
two leading characters to retain. In addition, by suffixing the ligature operation with one
or two > signs, you can indicate that the ligature scanning operation should skip that many
characters before proceeding. This works just like in METAFONT. A typical ligature might
be specified with ff i =: ffi ;. A more convoluted ligature is one one |=:|>> exclam

; which indicates that every pair of adjacent 1’s should be separated by an exclamation
point, and then two of the resulting characters should be skipped over before continuing
searching for ligatures and kerns. You cannot give more >’s in an ligature operation as you
did |, so there are a total of eight possible ligature operations:

=: |=: |=:> =:| =:|> |=:| |=:|> |=:|>>

The default set of ligatures and kerns built in to afm2tfm can be specified with:

% LIGKERN space l =: lslash ; space L =: Lslash ;

% LIGKERN question quoteleft =: questiondown ;

% LIGKERN exclam quoteleft =: exclamdown ;

% LIGKERN hyphen hyphen =: endash ; endash hyphen =: emdash ;

% LIGKERN quoteleft quoteleft =: quotedblleft ;

% LIGKERN quoteright quoteright =: quotedblright ;

% LIGKERN space {} * ; * {} space ; zero {} * ; * {} zero ;

% LIGKERN one {} * ; * {} one ; two {} * ; * {} two ;

% LIGKERN three {} * ; * {} three ; four {} * ; * {} four ;

% LIGKERN five {} * ; * {} five ; six {} * ; * {} six ;

% LIGKERN seven {} * ; * {} seven ; eight {} * ; * {} eight ;

% LIGKERN nine {} * ; * {} nine ;

5.3 Special Effects

Special effects are also obtainable, with commands such as

localhost> afm2tfm Times-Roman -s .167 -v ptmro rptmro

which create ptmro.vpl and rptmro.tfm. To use this, proceed as above but put the line

rptmro Times-Roman ".167 SlantFont"

DVIPS: A TEX Driver 17

into psfonts.map. Then rptmro (our name for an obliqued Times) will act as if it were a
resident font, although it is actually constructed from Times-Roman by PostScript hackery.
(This oblique version of Times-Roman is obtained by slanting everything 1/6 to the right.)
Similarly, you can get an expanded font by

localhost> afm2tfm Times-Roman -e 1.2 -v ptmrre rptmrre

and by recording the pseudo-resident font

rptmrre Times-Roman "1.2 ExtendFont"

in psfonts.map.

You can also create a small caps font with a command such as

localhost> afm2tfm Times-Roman -V ptmrc rptmr

This is done strictly with a virtual font, however. In addition, the font on which the small
caps font is based (in this case rptmr may already be created and installed, in which case
no additional psfonts.map entry is needed. In any case, you must give the appropriate
name of the font that is not small caps as the base name (last parameter) to afm2tfm. For
instance, if you create a slanted small caps font, you must give the base name of the raw
slanted font as that last parameter, not the base name of the unslanted font.

By default, the -V option uses a font scaled to 80% for lower case. If you specify the
-c option, you can change this scaling.

If you change the PostScript encoding of a font, you must specify the input file as
a header file, as well as give a reencoding command. For instance, let us say we are
using Times-Roman reencoded according to the encoding MyEncoding (stored in the file
myenc.enc) as rptmrx. In this case, our psfonts.map entry would look like

rptmrx Times-Roman "MyEncoding ReEncodeFont" <myenc.enc

The afm2tfm program prints out the precise line you need to add to psfonts.map to
use that font, assuming the font is resident in the printer; if the font is not resident, you
must add the header command to download the font yourself. Note that each identical line
only needs to be specified once in the psfonts.map file, even though many different fonts
(small caps variants, or ones with different output encodings) may be based on it.

The command line switches to afm2tfm are:

-e ratio All characters are stretched horizontally by the stated ratio; if it is less than 1.0,
you get a condensed font.

DVIPS: A TEX Driver 18

-c scale If this option is given when creating a small caps font (with -V), then the scaling
for the ‘lower’ case will be changed from the default 0.8 to the fraction given here.

-O This option forces all character designations in the resultant vpl file be given as octal
values; this is useful for symbol or other special-purpose fonts where character names
such as ‘A’ have no meaning.

-p file This specifies a file to use for the PostScript encoding of the font. Note that this
file must also be mentioned as a header file for the font in psfonts.map, and that
ligature and kern information in this file is ignored.

-s slant All characters are slanted to the right by the stated slant; if it is negative, the
letters slope to the left (or they might be upright if you start with an italic font).

-t file This specifies a file to use for the target TEX encoding of the font. Ligature and
kern information may also be specified in this file; the file is not needed once the vf
file has been created.

-T file This option specifies that file is to be used for both the PostScript and target TEX
encodings of the font.

-u This option indicates that afm2tfm should use only those characters that are required
by the output encoding, and no others. Normally, afm2tfm tries to include both
characters that fit the output encoding and any additional characters that might
exist in the font. This option forbids those additional characters from being added.

-v file Generate a virtual property list vpl file as well as a tfm file.

-V file Same as -v, but the virtual font generated is a small caps font obtained by scaling
uppercase letters by 0.8 to typeset lowercase. This font handles accented letters and
retains proper kerning.

5.4 Non-Resident PostScript Fonts

If you want to use a non-printer-resident PostScript font for which you have a pfb or
pfa file (an Adobe Type 1 font program), you can make it act like a resident font by putting
a ‘<’ sign and the name of the pfb or pfa file just after the font name in the psfonts.map
file entry. For example,

rpstrn StoneInformal <StoneInformal.pfb

will cause dvips to include StoneInformal.pfb in your document as if it were a header
file, whenever the pseudo-resident font StoneInformal is used in a document. Similarly, you
can generate transformed fonts and include lines like

DVIPS: A TEX Driver 19

rpstrc StoneInformal <StoneInformal.pfb ".8 ExtendFont"

in psfonts.map, in which case StoneInformal.pfbwill be loaded whenever StoneInformal-
Condensed is used. (Each header file is loaded at most once per PostScript file. The pfb

files should be installed in the dvips header directory [usually /usr/lib/tex/ps] with the
other header files.)

If you are using a pfb file that has different PostScript encodings, you would need to
multiple header files for that font in psfonts.map. If, for instance, StoneInformal was
both non-resident and you wanted to reencode it in PostScript with MyEncoding stored in
myenc.enc, a line such as

rpstrnx StoneInformal "MyEncoding ReEncodeFont" <myenc.enc <StoneInformal.pfb

When using such files, dvips is smart enough to unpack the standard binary pfb format
into ASCII so there is no need to perform this conversion yourself. In addition, it will scan
the font to determine its memory usage, as it would for any header file.

5.5 Font Aliases

Some systems don’t handle files with long names well—MS-DOS is a notable example.
For this reason, dvips will accept an alias for such fonts. Such an alias should be the
first word in the psfonts.map line. For instance, if we wanted the name rptmr to be used
for the raw Times-Roman since our computer can’t handle long names or, alternatively, we
want to follow the standard naming conventions, we would use the following line in our
psfonts.map file:

rptmr Times-Roman

The tfm file must have the name rptmr.tfm.

The distribution file adobe contains a list of the short names that should be used for
most Adobe fonts currently available. Please reference this file when installing a new font
and use the standard name.

The parsing of the psfonts.map file should be explained to eliminate all confusion.
If a line is empty or begins with a space, asterisk, semicolon, or hash mark, it is ignored.
Each remaining line is separated into words, where words are separated by spaces or tabs.
If a word begins with a double quote, it extends until the next double quote or the end of
the line. If a word starts with a less than character, it is treated as a font header file (or
a downloaded PostScript font). There can be more than one such header for a given font.
If a word starts with a double quote, it is a special instruction for generating that font.
Otherwise it is a name. The first such name is always the name TEX uses for the font and
is also the name of the raw tfm file. If there is another name word, that name is used as
the PostScript name; if there is only one name word, it is used for both the TEX name and
the PostScript name.

DVIPS: A TEX Driver 20

Note that dvips no longer registers the full PostScript name if an alias is given, so the
single line

rptmr Times-Roman

would only allow dvips to find the rptmr font and not the Times-Roman font.

6. Font Naming Conventions

This section of the manual has been written by Karl Berry and specifies a standard for
naming fonts for TEX. This standard has been adopted in dvips, and it is recommended
that it be followed where possible.

As more typeface families become available for use with TEX, the need for a consistent,
rational naming scheme for the font filenames concomitantly grows. Some (electronic)
discussion has gone into the following proposal; I felt it was appropriate now to bring
it before a wider community. In some respects, it follows and simplifies Mittelbach and
Schöpf’s article in TUGboat, volume 11, number 2 (June 1990).

Here are some facts about fonts that went into the hopper when creating this proposal:

• TEX runs on virtually all computers, under almost as many operating systems, all
with their own idea of how files should be named. Any proposal regarding filenames,
therefore, must cater to the lowest common denominator. That seems to be eight
characters in length, not counting any extension, and with case being insignificant.
Characters other than letters and numerals are probably unusable.

• Most typefaces are offered by several vendors. The version offered by vendor A is not
compatible with that of vendor B.

• Typefaces typically come in different weights (hairline to extra heavy), different expan-
sions (ultra condensed to wide), and an open-ended range of variants (italic, sans serif,
typewriter, shadow, . . .). No accepted standards exist for any of these qualities, nor
are any standards ever likely to gain acceptance.

• The Computer Modern typeface family preserves traditional typesetting practice in at
least one important respect: different sizes of the same font are not scaled linearly.
This is in contrast to most commercial fonts available.

Here is how I propose to divide up the eight characters:

FTTWVEDD

where

DVIPS: A TEX Driver 21

• F represents the foundry that produced the font, and is omitted if there isn’t one.

• TT represents the typeface name.

• W represents the weight.

• V represents the variant, and is omitted if both it and the expansion are “normal”.

• E represents the expansion, and is omitted if it is “normal”.

• DD represents the design size, and is omitted if the font is linearly scaled from a single
tfm file.

See the section on virtual fonts (towards the end) for an exception to the above.

The weight, variant, and expansion are probably all best taken from the original source
of the typeface, instead of trying to relate them to some external standard.

Before giving the lists of abbreviations, let me point out two problems, to neither of
which I have a good solution. 1) Assuming that only the English letters are used, two
letters is enough for only 676 typeface families (even assuming we want to use all possible
combinations, which is doubtful). There are many more than 676 typeface families in the
world. 2) Fonts with design sizes over 100 pt are not common, but neither are they unheard
of.

On to the specifics of the lists. If you adopt this proposal at your own installation, and
find that you have fonts with some property I missed, please write to me (see the end of the
article for various addresses), so I can update the lists. You can get the most up-to-date
version of these lists electronically, by anonymous ftp from the host ftp.cs.umb.edu. I will
also send them to you by electronic mail, if necessary.

I give the letters in lowercase, which is preferred on systems where case is significant.
Most lists are in alphabetical order by the abbreviations.

6.1 Foundry

This is the current list of foundries.

DVIPS: A TEX Driver 22

a Autologic
b Bitstream
c Agfa-Compugraphic
g Free Software Foundation (g for GNU)
h Bigelow & Holmes (with apologies to Chuck)
i International Typeface Corporation
p Adobe (p for PostScript)
r reserved for use with virtual fonts; see below
s Sun

6.2 Typeface Families

The list of typefaces is:

ad Adobe Garamond go Goudy Oldstyle
ag Avant Garde gs Gill Sans
ao Antique Olive jo Joanna
at American Typewriter lc Lucida
bb Bembo lt Lutetia
bd Bodoni nc New Century Schoolbook
bg Benguiat op Optima
bk Bookman pl Palatino
bl Balloon pp Perpetua
bv Baskerville rw Rockwell
bw Broadway st Stone
cb Cooper Black sy Symbol
cl Cloister tm Times
cr Courier un Univers
cn Century uy University
cs Century Schoolbook zc Zapf Chancery
hv Helvetica zd Zapf Dingbats
gm Garamond

6.3 Weight

This is a list of the possible weights, roughly in order from lightest to heaviest.

a hairline d demi
t thin s semi
i extra light b bold
l light x extra bold
k book h heavy
r regular c black
m medium u ultra

DVIPS: A TEX Driver 23

6.4 Variants

The variants are:

a alternate n informal
b bright o oblique (i.e., slanted)
c small caps r normal (roman or sans)
e engraved s sans serif
g grooved (as in the IBM logo) t typewriter
h shadow u unslanted italic
i (text) italic x expert
l outline

If the variant is r, and the expansion is also normal, both the variant and the expansion
are omitted. When the normal version of the typeface is sans serif (e.g., Helvetica), r

should be used, not s. Use s only when the typeface family has both serif and sans serif
variants. The “alternate” variant (a) is used by some Adobe fonts that have spiffy swashes
and additional ligatures. The “expert” variant (x) is also used by some Adobe fonts with
oldstyle figures and small caps.

Some fonts have multiple variants; Stone Informal Italic, for example. The only rea-
sonable approach to these is to list all the letters for all the variants, choosing one to end
with that is not also an expansion letter. Of course, it is possible that the name will become
too long if you do this, but . . . well, I’m open to suggestions. It’s also possible the name
will be ambiguous, if some new letter is used for expansions in the future. You can avoid
this problem by adding the expansion r (if it doesn’t make the name too long), and never
using r for the last variant.

6.5 Expansion

This is a list of the possible expansions, in order from narrowest to widest.

o extra condensed x extended (by hand)
c condensed (by hand) e expanded (automatic)
n narrow (automatic) w wide
r regular, normal, medium (usually omitted)

Expansion of fonts is sometimes done automatically (as in PostScript scale), and some-
times done by humans. I chose ‘narrow’ and ‘expanded’ to imply the former, and ‘condensed’
and ‘extended’ to imply the latter, as I believe this reflects common usage.

DVIPS: A TEX Driver 24

6.6 Naming Virtual Fonts

In concert with releasing TEX 3.0 and METAFONT 2.0, Don Knuth wrote two new
utility programs: VFtoVP and VPtoVF, which convert to and from “virtual” fonts. Virtual
fonts provide a general interface between the writers of TEX macros and font suppliers. In
general, therefore, it is impossible to come up with a general scheme for naming virtual
fonts, since each virtual font is an individual creation, possibly bringing together many
unrelated fonts.

Nevertheless, one common case is to use virtual fonts to map TEX’s default accent and
other character code conventions onto a vendor-supplied font. For example, dvips does
this for fonts given in the PostScript “standard encoding”. In this case, each font consists
of a “virtual” tfm file, which is what TEX uses, a “raw” tfm file, which corresponds to the
actual device font, and a vf file, which describes the relationship between the two.

This adds another dimension to the space of font names, namely, “virtualness” (or
rather, “rawness”, since it is the virtual tfm files that the users want to see). But we have
already used up all eight characters in the font names.

The best solution I have been able to think of is this: prepend r to the raw tfm files; the
virtual tfm files should be named with the usual foundry prefix. For example, the virtual
Times-Roman tfm file is named ptmr, as usual; the raw Times-Roman tfm file is named
rptmr. To prevent intolerable confusion, I promise never to give a foundry the letter r.

This scheme will work only as long as the virtualized fonts do not have design sizes; if
they do, another foundry letter will have to be allocated, it seems to me.

A pox upon the houses of those who decided on fixed-length filenames!

6.7 Examples

In closing, I will give two examples. First, the fonts in the Univers typeface family
were assigned numbers by its designer, Adrien Frutiger. (You can see the scheme on, for
example, page 29 of The Art of Typo.icon.ography, by Martin Solomon.) Naturally, we
want to give them names.

unl 45 (light) unmro 59 (medium extra condensed)
unli 46 (light italic) undrx 63 (demibold extended)
unlrc 47 (light condensed) und 65 (demibold)
unlic 48 (light condensed italic) undi 66 (demibold italic)
unlro 49 (light extra condensed) undrc 67 (demibold condensed)
unmrx 53 (medium extended) undic 68 (demibold condensed italic)
unm 55 (medium) unbrx 73 (bold extended)
unmi 56 (medium italic) unb 75 (bold)
unmrc 57 (medium condensed) unbi 76 (bold italic)
unmic 58 (medium condensed italic) unxrx 83 (extra bold extended)

DVIPS: A TEX Driver 25

Second, here are names for the standard PostScript fonts and their variants: Fonts
marked by an asterisk do not require using virtual fonts; the raw fonts can be used directly
because no remapping is necessary; every character is encoded.

pagk AvantGarde-Book pncri NewCenturySchlbk-Italic
pagkc AvantGarde-Book (Small Caps) pncr NewCenturySchlbk
pagko AvantGarde-BookOblique pncrc NewCenturySchlbk (Small Caps)

pagd AvantGarde-Demi pplb Palatino-Bold
pagdo AvantGarde-DemiOblique pplbi Palatino-BoldItalic
pbkd Bookman-Demi pplbu Palatino-BoldUnslanted
pbkdi Bookman-DemiItalic pplrrn Palatino-Narrow
pbkl Bookman-Light pplrre Palatino-Expanded
pbkli Bookman-LightItalic pplri Palatino-Italic
pbklc Bookman-Light (Small Caps) pplr Palatino
pcrb Courier-Bold pplro Palatino-Oblique
pcrbo Courier-BoldOblique pplru Palatino-Unslanted
pcrro Courier-Oblique pplrc Palatino (Small Caps)

pcrr Courier psyr Symbol∗

phvb Helvetica-Bold psyro Symbol-Oblique∗

phvbo Helvetica-BoldOblique ptmb Times-Bold
phvro Helvetica-Oblique ptmbi Times-BoldItalic
phvr Helvetica ptmrrn Times-Narrow
phvrc Helvetica (Small Caps) ptmrre Times-Expanded
phvbrn Helvetica-Narrow-Bold ptmri Times-Italic
phvbon Helvetica-Narrow-BoldOblique ptmro Times-Oblique
phvron Helvetica-Narrow-Oblique ptmr Times-Roman
phvrrn Helvetica-Narrow ptmrc Times-Roman (Small Caps)

pncb NewCenturySchlbk-Bold pzcmi ZapfChancery-MediumItalic
pncbi NewCenturySchlbk-BoldItalic pzdr ZapfDingbats∗

Please contact Karl Berry if you have any comments or additions. Karl can be reached
at karl@cs.umb.edu, or at 135 Center Hill Road, Plymouth, MA 02360.

7. Command Line Options

The dvips driver has a plethora of command line options. Reading through this section
will give a good idea of the capabilities of the driver.

Many of the parameterless options listed here can be turned off by immediately suffixing
the option with a zero (0); for instance, to turn off page reversal if it is turned on by default,
use -r0. The options that can be turned off in this way are a, f, k, i, m, q, r, s, E, F, K, M,
N, U, and Z.

This is a handy summary of the options; it is printed out when you run dvips with no
arguments.

DVIPS: A TEX Driver 26

Usage: dvips [options] filename[.dvi]

a* Conserve memory, not time y # Multiply by dvi magnification

b # Page copies, for posters e.g. A Print only odd (TeX) pages

c # Uncollated copies B Print only even (TeX) pages

d # Debugging C # Collated copies

e # Maxdrift value D # Resolution

f* Run as filter E* Try to create EPSF

h f Add header file F* Send control-D at end

i* Separate file per section K* Pull comments from inclusions

k* Print crop marks M* Don’t make fonts

l # Last page N* No structured comments

m* Manual feed O c Set/change paper offset

n # Maximum number of pages P s Load config.$s

o f Output file R Run securely

p # First page S # Max section size in pages

q* Run quietly T c Specify desired page size

r* Reverse order of pages U* Disable string param trick

s* Enclose output in save/restore V* Send downloadable PS fonts as PK

t s Paper format X # Horizontal resolution

x # Override dvi magnification Y # Vertical resolution

Z* Compress bitmap fonts

= number f = file s = string * = suffix, ‘0’ to turn off

c = comma-separated dimension pair (e.g., 3.2in,-32.1cm)

-a: Conserve memory by making three passes over the dvi file instead of two and only
loading those characters actually used. Generally only useful on machines with a
very limited amount of memory, like some PCs.

-b num: Generate num copies of each page, but duplicating the page body rather than
using the #numcopies option. This can be useful in conjunction with a header file
setting \bop-hook to do color separations or other neat tricks.

-c num: Generate num copies of every page, by using PostScript’s #copies feature. Default
is 1. (For collated copies, see the -C option below.)

-d num: Set the debug flags. This is intended only for emergencies or for unusual fact-
finding expeditions; it will work only if dvips has been compiled with the DEBUG

option. The source file debug.h indicates what the values of num can be, or see
section 15 of this manual. Use a value of −1 for maximum output.

-e num: Make sure that each character is placed at most this many pixels from its ‘true’
resolution-independent position on the page. The default value of this parameter is
resolution dependent (it is the number of entries in the list [100, 200, 300, 400, 500,
600, 800, 1000, 1200, 1600, 2000, 2400, 2800, 3200, . . .] that are less than or equal to
the resolution in dots per inch). Allowing individual characters to ‘drift’ from their

DVIPS: A TEX Driver 27

correctly rounded positions by a few pixels, while regaining the true position at the
beginning of each new word, improves the spacing of letters in words.

-f: Run as a filter. Read the dvi file from standard input and write the PostScript to
standard output. The standard input must be seekable, so it cannot be a pipe. If
you must use a pipe, write a shell script that copies the pipe output to a temporary
file and then points dvips at this file. This option also disables the automatic reading
of the PRINTER environment variable, and turns off the automatic sending of control
D if it was turned on with the -F option or in the configuration file; use -F after this
option if you want both.

-h name: Prepend file name as an additional header file. (However, if the name is simply
‘-’, suppress all header files from the output.) This header file gets added to the
PostScript userdict.

-i: Make each section be a separate file. Under certain circumstances, dvips will split
the document up into ‘sections’ to be processed independently; this is most often
done for memory reasons. Using this option tells dvips to place each section into
a separate file; the new file names are created replacing the suffix of the supplied
output file name by a three-digit sequence number. This option is most often used
in conjunction with the -S option which sets the maximum section length in pages.
For instance, some phototypesetters cannot print more than ten or so consecutive
pages before running out of steam; these options can be used to automatically split
a book into ten-page sections, each to its own file.

-k: Print crop marks. This option increases the paper size (which should be specified, either
with a paper size special or with the -T option) by a half inch in each dimension. It
translates each page by a quarter inch and draws cross-style crop marks. It is mostly
useful with typesetters that can set the page size automatically.

-l num: The last page printed will be the first one numbered num. Default is the last
page in the document. If the num is prefixed by an equals sign, then it (and any
argument to the -p option) is treated as a sequence number, rather than a value to
compare with \count0 values. Thus, using -l =9 will end with the ninth page of
the document, no matter what the pages are actually numbered.

-m: Specify manual feed for printer.

-n num: At most num pages will be printed. Default is 100000.

-o name: The output will be sent to file name. If no file name is given, the default name is
file.ps where the dvi file was called file.dvi; if this option isn’t given, any default in
the configuration file is used. If the first character of the supplied output file name is
an exclamation mark, then the remainder will be used as an argument to popen; thus,
specifying !lpr as the output file will automatically queue the file for printing. This
option also disables the automatic reading of the PRINTER environment variable, and

DVIPS: A TEX Driver 28

turns off the automatic sending of control D if it was turned on with the -F option
or in the configuration file; use -F after this option if you want both.

-p num: The first page printed will be the first one numbered num. Default is the first
page in the document. If the num is prefixed by an equals sign, then it (and any
argument to the -l option) is treated as a sequence number, rather than a value to
compare with \count0 values. Thus, using -p =3 will start with the third page of
the document, no matter what the pages are actually numbered. Another form of
page selection is available by using -pp followed by a comma-separated list of pages
or page-ranges, where the page ranges are colon-separated pairs of numbers. Thus,
you can print pages 3–10, 21, and 73–92 with the option -pp 3:10,21,73:92.

-q: Run in quiet mode. Don’t chatter about pages converted, etc.; report nothing but
errors to standard error.

-r: Stack pages in reverse order. Normally, page 1 will be printed first.

-s: Causes the entire global output to be enclosed in a save/restore pair. This causes the
file to not be truly conformant, and is thus not recommended, but is useful if you
are driving the printer directly and don’t care too much about the portability of the
output.

-t papertype: This sets the paper type to papertype. The papertype should be defined in
one of the configuration files, along with the appropriate code to select it. See the
documentation for @ in the configuration file option descriptions. You can also specify
-t landscape, which rotates a document by 90 degrees. To rotate a document whose
size is not letter, you can use the -t option twice, once for the page size, and once
for landscape. The upper left corner of each page in the dvi file is placed one inch
from the left and one inch from the top. Use of this option is highly dependent on
the configuration file. Note that executing the letter or a4 or other PostScript
operators cause the document to be nonconforming and can cause it not to print on
certain printers, so the default paper size should not execute such an operator if at
all possible.

-x num: Set the magnification ratio to num/1000. Overrides the magnification specified
in the dvi file. Must be between 10 and 100000. It is recommended that you use
standard magstep values (1095, 1200, 1440, 1728, 2074, 2488, 2986, and so on) to
help reduce the total number of PK files generated.

-A: This option prints only the odd pages. This option uses the TEX page numbering rather
than the sequence page numbers.

-B: This option prints only the even pages. This option uses the TEX page numbering rather
than the sequence page numbers.

DVIPS: A TEX Driver 29

-C num: Create num copies, but collated (by replicating the data in the PostScript file).
Slower than the -c option, but easier on the hands, and faster than resubmitting the
same PostScript file multiple times.

-D num: Set the resolution in dpi (dots per inch) to num. This affects the choice of
bitmap fonts that are loaded and also the positioning of letters in resident PostScript
fonts. Must be between 10 and 10000. This affects both the horizontal and vertical
resolution. If a high resolution (something greater than 400 dpi, say) is selected, the
-Z flag should probably also be used.

-E: Makes dvips attempt to generate an EPSF file with a tight bounding box. This only
works on one-page files, and it only looks at marks made by characters and rules, not
by any included graphics. In addition, it gets the glyph metrics from the tfm file, so
characters that lie outside their enclosing tfm box may confuse it. In addition, the
bounding box might be a bit too loose if the character glyph has significant left or
right side bearings. Nonetheless, this option works well for creating small EPSF files
for equations or tables or the like. (Note, of course, that dvips output is resolution
dependent and thus does not make very good EPSF files, especially if the images are
to be scaled; use these EPSF files with a great deal of care.)

-F: Causes Control-D (ASCII code 4) to be appended as the very last character of the
PostScript file. This is useful when dvips is driving the printer directly instead of
working through a spooler, as is common on extremely small systems. Otherwise, it
is not recommended.

-K: This option causes comments in included PostScript graphics, font files, and headers to
be removed. This is sometimes necessary to get around bugs in spoolers or PostScript
post-processing programs. Specifically, the %%Page comments, when left in, often
cause difficulties. Use of this flag can cause some included graphics to fail, since the
PostScript header macros from some software packages read portions of the input
stream line by line, searching for a particular comment. This option has been turned
on by default because PostScript previewers and spoolers still have problems with
the structuring conventions.

-M: Turns off the automatic font generation facility. If any fonts are missing, commands to
generate the fonts are appended to the file missfont.log in the current directory;
this file can then be executed and deleted to create the missing fonts.

-N: Turns off structured comments; this might be necessary on some systems that try to
interpret PostScript comments in weird ways, or on some PostScript printers. Old
versions of TranScript in particular cannot handle modern Encapsulated PostScript.

-O offset: Move the origin by a certain amount. The offset is a comma-separated pair of
dimensions, such as .1in,-.3cm (in the same syntax used in the papersize special).
The origin of the page is shifted from the default position (of one inch down, one
inch to the right from the upper left corner of the paper) by this amount.

DVIPS: A TEX Driver 30

-P printername: Sets up the output for the appropriate printer. This is implemented
by reading in config.printername, which can then set the output pipe (as in,
o !lpr -Pprintername) as well as the font paths and any other defaults for that
printer only. It is recommended that all standard defaults go in the one master con-
fig.ps file and only things that vary printer to printer go in the config.printername

files. Note that config.ps is read before config.printername. In addition, an-
other file called ~/.dvipsrc is searched for immediately after config.ps; this file
is intended for user defaults. If no -P command is given, the environment variable
PRINTER is checked. If that variable exists, and a corresponding configuration file
exists, that configuration file is read in.

-S num: Set the maximum number of pages in each ‘section’. This option is most commonly
used with the -i option; see that documentation above for more information.

-T offset: Set the paper size to the given pair of dimensions. This option takes its
arguments in the same style as -O. It overrides any paper size special in the dvi file.

-U: Disable a PostScript virtual memory saving optimization that stores the character metric
information in the same string that is used to store the bitmap information. This is
only necessary when driving the Xerox 4045 PostScript interpreter. It is caused by
a bug in that interpreter that results in ‘garbage’ on the bottom of each character.
Not recommended unless you must drive this printer.

-V: Download non-resident PostScript fonts as bitmaps. This requires use of mtpk or pstopk
or some combination of the two in order to generate the required bitmap fonts; neither
of these programs are supplied with dvips.

-X num: Set the horizontal resolution in dots per inch to num.

-Y num: Set the vertical resolution in dots per inch to num.

-Z: Causes bitmapped fonts to be compressed before they are downloaded, thereby reducing
the size of the PostScript font-downloading information. Especially useful at high
resolutions or when very large fonts are used. Will slow down printing somewhat,
especially on early 68000-based PostScript printers.

8. Configuration File Searching

The dvips program has a system of loading configuration files such that certain pa-
rameters can be set globally across the system, others can be set on a per-printer basis,
and yet others can be set by the user. When dvips starts up, first the global config.ps
file is searched for and loaded. This file is looked for along the path for configuration files,
which is by default .:/usr/lib/tex/ps. After this master configuration file is loaded, a
file by the name of .dvipsrc is loaded from the current user’s home directory, if such a file

DVIPS: A TEX Driver 31

exists. This file is loaded in exactly the same way as the global configuration file, and it
can override any options set in the global file.

Then the command line is read and parsed. If the -P option is encountered, at that
point in the command line a configuration file for that printer is read in. Thus, the printer
configuration file can override anything in the global or user configuration file, and it can
also override anything seen in the command line up to the point that the -P option was
encountered.

After the command line has been completely scanned, if there was no -P option selected,
and also the -o and -f command line options were not used, a PRINTER environment variable
is searched for. If this variable exists, and a configuration file for the printer mentioned in
it exists, this configuration file is loaded last of all.

Note that because the printer-specific configuration files are read after the user’s con-
figuration file, the user’s .dvipsrc cannot override things in the printer configuration files.
On the other hand, the configuration path usually includes the current directory, and can
be set to include the user’s home directory (or any other directory of the user), so the user
can always provide personalized printer-specific configuration files that will be found before
the system global ones.

If your printer uses a different resolution than 300 dpi, make sure that you have given a
METAFONTmode as well as a resolution in the printer configuration file. Also make sure that
METAFONT knows about the mode, by entering it into your local mode def file (typically
waits.mf; amiga.mf on the Amiga, next.mf on the NeXT) and recreating the plain.base
file for METAFONT, including the mode def file. (Another good mode definition file is
modes.mf by Karl Berry, which is available from ftp.cs.umb.edu in pub/tex/modes.mf.)
The most common problem in generating fonts with METAFONT is that this file with the
mode definitions is not included when creating the plain.base file.

9. Configuration File Options

Most of the configuration file options are similar to the command line options, but
there are a few new ones.

Again, many may be turned off by suffixing the letter with a zero (0). These options
are a, f, q, r, I, K, N, U, and Z.

Within a configuration file, any empty line or line starting with a space, asterisk, equal
sign, or a pound sign is ignored.

@ name hsize vsize: This option is used to set the paper size defaults and options for the
particular printer this configuration file describes. There are three formats for this
option. If the option is specified on a line by itself, with no parameters, it instructs
dvips to discard all other paper size information (possibly from another configuration

DVIPS: A TEX Driver 32

file) and start fresh. If three parameters are given, as above, with the first parameter
being a name and the second and third being a dimension (as in 8.5in or 3.2cc, just
like in the papersize special), then the option is interpreted as starting a new paper
size description, where name is the name and hsize and vsize describe the horizontal
and vertical size of the sheet of paper, respectively. If both hsize and vsize are equal
to zero (although you must still specify units!) then any page size will match it. If the
@ character is immediately followed by a + sign, then the remainder of the line (after
skipping any leading blanks) is treated as PostScript code to send to the printer to
select that particular paper size. After all that, if the first character of the line is an
exclamation point, then the line is put in the initial comments section of the final
output file; else, it is put in the setup section of the output file. For instance, a
subset of the paper size information supplied in the default config.ps looks like

@ letterSize 8.5in 11in

@ letter 8.5in 11in

@+ %%BeginPaperSize: Letter

@+ letter

@+ %%EndPaperSize

@ legal 8.5in 14in

@+ ! %%DocumentPaperSizes: Legal

@+ %%BeginPaperSize: Legal

@+ legal

@+ %%EndPaperSize

Note that you can even include structured comments in the configuration file! When
dvips has a paper format name given on the command line, it looks for a match by
the name; when it has a papersize special, it looks for a match by dimensions. The
first match found (in the order the paper size information is found in the configuration
file) is used. If nothing matches, a warning is printed and the first paper size given
is used, so the first paper size should always be the default. The dimensions must
match within a quarter of an inch. Landscape mode for all of the paper sizes are
automatically supported. If your printer has a command to set a special paper size,
then give dimensions of 0in 0in; the PostScript code that sets the paper size can
refer to the dimensions the user requested as \hsize and \vsize; these will be macros
defined in the PostScript that return the requested size in default PostScript units.
Note that virtually all of the PostScript commands you use here are device dependent
and degrade the portability of the file; that is why the default first paper size entry
should not send any PostScript commands down (although a structured comment
or two would be okay). Also, some printers want BeginPaperSize comments and
paper size setting commands; others (such as the NeXT) want PaperSize comments
and they will handle setting the paper size. There is no solution I could find that
works for both (except maybe specifying both). See the supplied config.ps file for
a more realistic example.

a: Conserve memory by making three passes over the dvi file instead of two and only
loading those characters actually used. Generally only useful on machines with a
very limited amount of memory, like some PCs.

DVIPS: A TEX Driver 33

b num: Generate num copies of each page, but duplicating the page body rather than using
PostScript’s #copies. This can be useful in conjunction with a header file setting
\bop-hook to do color separations or other neat tricks.

e num: Set the maximum drift parameter to num dots (pixels) as explained above.

f: Run as a filter by default.

h name: Add name as a PostScript header file to be downloaded at the beginning.

i num: Make each section be a separate file, and set the maximum number of pages in a
given file to num. Under certain circumstances, dvips will split the document into
‘sections’ to be processed independently; this is most often done for memory reasons.
Using this option tells dvips to place each section into a separate file; the new file
names are created by replacing the suffix of the supplied output file name with a
three-digit sequence number. This is essentially a combination of the command line
options -i and -S; see the documentation for these options for more information.

m num: The value num is the virtual memory available for fonts and strings in the printer.
Default is 180000. This value must be accurate if memory conservation and document
splitting is to work correctly. To determine this value, send the following file to the
printer:

%! Hey, we’re PostScript

/Times-Roman findfont 30 scalefont setfont 144 432 moveto

vmstatus exch sub 40 string cvs show pop showpage

Note that the number returned by this file is the total memory free; it is often a good
idea to tell dvips that the printer has somewhat less memory. This is because many
programs download permanent macros that can reduce the memory in the printer.
In general, a memory size of about 300000 is plenty, since dvips can automatically
split a document if required. It is unfortunate that PostScript printers with much
less virtual memory still exist. Some systems or printers can dynamically increase
the memory available to a PostScript interpreter, in which case this file might return
a ridiculously low number; the NeXT computer is such a machine. For these systems,
a value of one million works well.

o name: The default output file is set to name. As above, it can be a pipe. Useful in printer-
specific configuration files to redirect the output to a particular printer queue.

p name: The file to examine for PostScript font aliases is name. It defaults to psfonts.map.
This option allows different printers to use different resident fonts. If the name starts
with a ‘+’ character, then the rest of the name (after any leading spaces) is used as
an additional map file; thus, it is possible to have local map files pointed to by local
configuration files that append to the global map file.

DVIPS: A TEX Driver 34

q: Run in quiet mode by default.

r: Reverse the order of pages by default.

s: Enclose the entire document in a global save/restore pair by default. Not recommended,
but useful in some environments; this breaks the conformance of the document to
the Adobe PostScript structuring conventions.

D num: Set the vertical and horizontal resolution to num dots per inch. Useful in printer-
specific configuration files.

E command : Execute the system command listed, for example as a UNIX shell command.
Execution takes place immediately, while the configuration file is being read. This
option can be used to insert the current date into a header file, for instance, as
explained at the end of section 13. Possibly dangerous; in many installations it may
be disabled, in which case a warning message will be printed if the option is used.

H path: The (colon-separated) path to search for PostScript header files is path.

I: Ignore the PRINTER environment variable.

K: Filter comments out of included PostScript files; see the description above for more
information.

M mode: Set mode as the METAFONT mode to be used when generating fonts. This is passed
along to MakeTeXPK and overrides mode derivation from the base resolution.

N: Disable PostScript comments by default.

O offset : Move the origin by a certain amount. The offset is a comma-separated pair
of dimensions, such as .1in,-.3cm (in the same syntax as used in the papersize

special). The origin of the page is shifted from the default position (of one inch down,
one inch to the right from the upper left corner of the paper) by this amount. This is
useful for a printer that consistently offsets output pages by a certain amount. You
can use the file testpage.tex to determine the correct value for your printer. Be
sure to do several runs with the same O value—some printers vary widely from run
to run.

P path: The (colon-separated) path to search for bitmap pk font files is path. The TEXPKS

environment variable will override this. If a % character is found in path, the following
substitutions will be made, and then a search will be made for the resulting filenames.
A %f is replaced by the font name. A %b is replaced by the output device horizontal
resolution dots per inch. A %d is replaced by the font size in dots per inch. A %p is
replaced by the font family; this is always pk. A %m is replaced by the font mode; this
is the mode given in the M option. Note that, for each path element, if it contains
a percent sign, you must give the full file name, including path, rather than just

DVIPS: A TEX Driver 35

the directory name; a path element such as /fonts/%b will try to open /fonts/300

when looking for cmr10.329pk, for instance, and this may not be what is intended;
/fonts/%b/%f.%dpk is needed. If a path element does not contain a percent sign,
there is no need to specify the entire file name (because you can’t, unless you list all
possible specific font names!).

R num num . . . : Sets up a list of default resolutions to search for pk fonts, if the requested
size is not available. The output will then scale the font found using PostScript
scaling to the requested size. Note that the resultant output will be ugly, and thus
a warning is issued. To turn this off, use a line with just the R and no numbers.

S path: The path to search for special illustrations (Encapsulated PostScript files or psfiles)
is path. The TEXINPUTS environment variable will override this.

T path: The path to search for the tfm files is path. The TEXFONTS environment variable
will override this. This path is used for resident fonts and fonts that can’t otherwise
be found. It’s usually best to make it identical to the path used by TEX.

U: Turns off a memory-saving optimization; this is necessary for the Xerox 4045 printer, but
not recommended otherwise. See the description above for more information.

V path: The path to search for virtual font vf files is path. This may be device-dependent
if you use virtual fonts to simulate actual fonts on different devices.

W string : Sends string to stderr, if a parameter is given; otherwise it cancels another previous
message. This is useful in the default configuration file if you want to require the user
to specify a printer, for instance, or if you want to notify the user that the resultant
output has special characteristics.

X num: Set the horizontal resolution to num dots per inch.

Y num: Set the vertical resolution to num dots per inch.

Z: Compress all downloaded fonts by default, as above.

DVIPS: A TEX Driver 36

10. Automatic Font Generation

One major problem with TEX and the Computer Modern fonts is the huge amount
of disk space a full set of high resolution fonts can take. The dvips program solves this
problem by creating fonts on demand, so only those fonts that are actually used are stored
on disk. At a typical site, less than one-fifth of the full set of Computer Modern fonts are
used over a long period, so this saves a great deal of disk space.

Furthermore, the addition of dynamic font generation allows fonts to be used at any
size, including typesetter resolutions and extremely huge banner sizes. Nothing special
needs to be done; the fonts will be automatically created and installed as needed.

The downside is that it does take a certain amount of time to create a new font if it
has never been used before. But once a font is created, it will exist on disk, and the next
time that document is printed it will print very quickly.

It is the MakeTeXPK shell script that is responsible for making these fonts. The
MakeTeXPK script supplied invokes METAFONT to create the font and then copies the resul-
tant pk file to a world-writable font cache area.

MakeTeXPK can be customized to do other things to get the font. For instance, if you
are installing dvips to replace (or run alongside) an existing PostScript driver, and that
driver demands gf fonts, you can easily modify MakeTeXPK to invoke gftopk to convert the
gf files to pk files for dvips. This provides the same space savings listed above.

Because dvips (and thus MakeTeXPK) is run by a wide variety of users, there must be
a system-wide place to put the cached font files. In order for everyone to be able to supply
fonts, the directory must be world writable. If your system administrator considers this a
security hole, MakeTeXPK can write to /tmp/pk or some such directory, and periodically the
cached fonts can be moved to a more general system area. Note that the cache directory
must exist on the pk file search path in order for MakeTeXPK to work.

11. Path Interpretation

The dvips program needs to read a wide variety of files from a large set of directories.
It uses a set of paths to do this. The actual paths are listed in the next section; this section
describes how the paths are interpreted.

All path variables are names of directories (path elements), separated by colons. Each
path element can be either the literal name of a directory or one of the ~ forms common
under UNIX. If a path element is a single tilde, it is replaced by the contents of the environ-
ment variable HOME, which is normally set to the user’s home directory. If the path element
is a tilde followed by anything, the part after the tilde is interpreted as a user name, and his
home directory is fetched from the system password file and used as the real path element.

DVIPS: A TEX Driver 37

Where environment variables can override paths, an additional path element form is
allowed. If a path element is the empty string, it is replaced with the system defaults.
Thus, to search the user’s home directory, followed by the system default paths, assuming
the current shell is csh, the following command would be used:

setenv TEXINPUTS ~:

This is a path of two elements. The first is the user’s home directory. The second path
element is the empty string, indicating that the system defaults should be searched.

The ‘system defaults’ as defined here means the strings set in the Makefile before
compilation, rather than any defaults set in config.ps or printer-specific configuration
files. This is to prevent path blowup, where more and more directories are added to the
path by each level of configuration file.

12. Environment Variables

The dvips program reads a certain set of environment variables to configure its op-
eration. The path variables are read after all configuration files are read, so they override
values in the configuration files. (The TEXCONFIG variable, of course, is read before the
configuration files.) The rest are read as needed.

Note that all defaults supplied here are just as supplied in the provided Makefile; they
will almost certainly have been changed during installation at your particular site.

HOME (no default) This environment variable is automatically set by the shell and is used
to replace any occurrences of ~ in a path.

MAKETEXPK (MakeTeXPK %n %d %b %m) This environment variable sets the command to
be executed to create a missing font. A %n is replaced by the base name of the font
to be created (such as cmr10); a %d is replaced by the resultant horizontal resolution
of the font; a %b is replaced by the horizontal resolution at which dvips is currently
generating output, a %o is replaced with the current METAFONT mode, if any, or
default if none is known, and any %m is replaced by a string that METAFONT can
use as the right hand side of an assignment to mag to create the desired font at the
proper resolution. If a mode for METAFONT is set in a configuration file and no %o is
specified in the command, the mode is automatically appended to the command before
execution. Note that these substitutions are different than the ones performed on PK
paths.

DVIPSHEADERS (.:/usr/lib/tex/ps) This environment variable determines where to
search for header files such as tex.pro, font files, arguments to the -h option, and such
files.

DVIPS: A TEX Driver 38

PRINTER (no default) This environment variable is read to determine which default printer
configuration file to read in. Note that it is the responsibility of the configuration file
to send output to the proper print queue, if such functionality is desired.

TEXFONTS (/LocalLibrary/Fonts/TeXFonts/tfm:/usr/lib/tex/fonts/tfm) This is
where tfm files are searched for. A tfm file only needs to be loaded if the font is a
resident (PostScript) font or if for some reason no pk file could be found.

TEXPKS (/LocalLibrary/Fonts/TeXFonts/pk:/usr/lib/tex/fonts/pk) This environ-
ment variable is a path on which to search for pk fonts. Certain substitutions are
performed if a percent sign is found anywhere in the path. See the description of the
P configuration file option for more information.

TEXINPUTS (.:..:/usr/lib/tex/inputs) This environment variable is used to find
PostScript figures when they are included.

TEXCONFIG (.:/usr/lib/tex/ps) This environment variable sets the directories to search
for configuration files, including the system-wide one. Using this single environment
variable and the appropriate configuration files, it is possible to set up the program for
any environment. (The other path environment variables can thus be redundant.)

VFFONTS (.:/usr/lib/tex/fonts/vf) This environment variable sets where dvips looks
for virtual fonts. A correct virtual font path is essential if PostScript fonts are to be
used.

13. Other Bells And Whistles

For special effects, if any of the macros bop-hook, eop-hook, start-hook, or end-hook
are defined in the PostScript userdict, they will be executed at the beginning of a page,
end of a page, start of the document, and end of a document, respectively. When these
macros are executed, the default PostScript coordinate system and origin is in effect. Such
macros can be defined in headers added by the -h option or the header= special, and might
be useful for writing, for instance, DRAFT across the entire page, or, with the aid of a
shell script, dating the document. These macros are executed outside of the save/restore
context of the individual pages, so it is possible for them to accumulate information, but
if a document must be divided into sections because of memory constraints, such added
information will be lost across section breaks.

The two arguments to bop-hook are the TEX page number and the sequence number
of the page in the file; the first page gets zero, the second one, etc. The arguments to
start-hook are hsize, vsize, mag, hdpi, vdpi, and the name of the dvi input file. The
procedures must leave these parameters on the stack. The other hooks are not (currently)
given parameters, although this may change in the future.

DVIPS: A TEX Driver 39

As an example of what can be done, the following special will write a light DRAFT
across each page in the document:

\special{!userdict begin /bop-hook{gsave 200 30 translate

65 rotate /Times-Roman findfont 216 scalefont setfont

0 0 moveto 0.7 setgray (DRAFT) show grestore}def end}

Note that using bop-hook or eop-hook in any way that preserves information across
pages will break compliance with the Adobe document structuring conventions, so if you
use any such tricks, it is recommended that you also use the -N option to turn off structured
comments.

Several of the above tricks can be used nicely together, and it is not necessary that a
‘printer configuration file’ be used only to set printer defaults. For instance, you might have
a file config.dated that contains just the two lines

E echo /bop-hook \{save /Times-Roman findfont 7 scalefont setfont \

72 756 moveto \(‘date‘\) show restore\} def >.date

h .date

(with no newline following setfont); then the command-line option -Pdated to dvips will
print current date and time on the top of each page of output. Note that multiple -P options
can be used.

14. Installation

If dvips has not already been installed on your system, the following steps are all that
are needed.

First update the Makefile—in particular, the paths. Everything concerning dvips

can be adjusted in the Makefile. Make sure you set key parameters such as the default
resolution, and make sure that the path given for packed pixel files is correct.

Next, check the file name definitions in MakeTeXPK. If you don’t have METAFONT
installed, you cannot use MakeTeXPK to automatically generate the fonts; you can, however,
modify it to generate pk fonts from gf fonts if you don’t have a full set of pk fonts but do
have a set of gf fonts. If you don’t have that, you should probably not install MakeTeXPK
at all; this will disable automatic font generation.

Now, check the configuration parameters in config.ps. You should also update the
default resolution here. This file is the system-wide configuration file that will be automat-
ically installed. If you are unsure how much memory your PostScript printer has, print the
following file:

DVIPS: A TEX Driver 40

%! Hey, we’re PostScript

/Times-Roman findfont 30 scalefont setfont 144 432 moveto

vmstatus exch sub 40 string cvs show pop showpage

Note that the number returned by this file is the total memory free; it is often a good idea
to tell dvips that the printer has somewhat less memory. This is because many programs
download permanent macros that can reduce the memory in the printer. In general, a
memory size of about 300000 is plenty, since dvips can automatically split a document if
required. It is unfortunate that PostScript printers with much less virtual memory still exist.
Some systems or printers can dynamically increase the memory available to a PostScript
interpreter; for these systems, a value of one million works well.

Next, run make. Everything should compile smoothly. You may need to adjust the
compiler options in the Makefile if something goes amiss.

Once everything is compiled, run make install. After this is done, you may want to
create a configuration file for each PostScript printer at your site.

If the font caching is considered a security hole, make the ‘cache’ directory be something
like /tmp/pks, and cron a job to move the good pk files into the real directory. Or simply
disable this feature by not installing MakeTeXPK.

Don’t forget to install the new vf files and tfm files. Note that the tfm files distributed
with earlier (pre-5.471) versions of dvips, and all versions of other PostScript drivers, are
different.

A test program called test.tex is provided, so you can easily check that the most
important parts of dvips have been installed properly.

15. Diagnosing Problems

You’ve gone through all the trouble of installing dvips, carefully read all the instruc-
tions in this manual, and still can’t get something to work. This is all too common, and
is usually caused by some broken PostScript application out there. The following sections
provide some helpful hints if you find yourself in such a situation.

In all cases, you should attempt to find the smallest file that causes the problem. This
will not only make debugging easier, it will also reduce the number of possible interactions
among different parts of the system.

DVIPS: A TEX Driver 41

15.1 Debug Options

The -d flag to dvips is very useful for helping to track down certain errors. The
parameter to this flag is an integer that tells what errors are currently being tracked. To
track a certain class of debug messages, simply provide the appropriate number given below;
if you wish to track multiple classes, sum the numbers of the classes you wish to track. The
classes are:

1 specials
2 paths
4 fonts
8 pages
16 headers
32 font compression
64 files

128 memory

15.2 No Output At All

If you are not getting any output at all, even from the simplest one-character file (for
instance, \ \bye), then something is very wrong. Practically any file sent to a PostScript
laser printer should generate some output, at the very least a page detailing what error
occurred, if any. Talk to your system administrator about downloading a PostScript error
handler. (Adobe distributes a good one called ehandler.ps.)

It is possible, especially if you are using non-Adobe PostScript, that your PostScript
interpreter is broken. Even then it should generate an error message. I’ve tried to work
around as many bugs as possible in common non-Adobe PostScript interpreters, but I’m
sure I’ve missed a few.

If dvips gives any strange error messages, or compilation on your machine generated
a lot of warnings, perhaps the dvips program itself is broken. Carefully check the types in
dvips.h and the declarations in the Makefile, and try using the debug options to determine
where the error occurred.

It is possible your spooler is broken and is misinterpreting the structured comments.
Try the -N flag to turn off structured comments and see what happens.

15.3 Output Too Small or Inverted

If some documents come out inverted or too small, your spooler is not supplying an
end of job indicator at the end of each file. (This happens a lot on small machines that
don’t have spoolers.) You can force dvips to do this with the -F flag, but note that this
generates files with a binary character (control-D) in them. You can also try using the -s

flag to enclose the entire job in a save/restore pair.

DVIPS: A TEX Driver 42

15.4 Error Messages From Printer

If your printer returns error messages, the error message gives very good information
on what might be going wrong. One of the most common error messages is bop undefined.
This is caused by old versions of Transcript and other spoolers that do not properly parse
the setup section of the PostScript. To fix this, turn off structured comments with the -N

option, but make sure you get your spooling software updated. You might also try turning
off comments on included files with the -K option; many spoolers cannot deal with nested
documents.

Another error message is VM exhausted. (Some printers indicate this error by locking
up; others quietly reset.) This is caused by telling dvips that the printer has more memory
than it actually does, and then printing a complicated document. To fix this, try lowering
the parameter to m in the configuration file; use the debug option to make sure you adjust
the correct file.

Other errors may indicate that the graphics you are trying to include don’t nest properly
in other PostScript documents, or any of a number of other possibilities. Try the output on
a QMS PS-810 or other Adobe PostScript printer; it might be a problem with the printer
itself.

15.5 400 DPI Is Used Instead Of 300 DPI

This common error is caused by not editing the config.ps file to reflect the correct
resolution for your site. You can use the debug flags (-d64) to see what files are actually
being read.

15.6 Long Documents Fail To Print

This is usually caused by incorrectly specifying the amount of memory the printer has
in config.ps; see the description above.

15.7 Including Graphics Fails

The reasons why graphics inclusions fail are too numerous to mention. The most com-
mon problem is an incorrect bounding box; read the section on bounding boxes and check
your PostScript file. Complain very loudly to whoever wrote the software that generated
the file if the bounding box is indeed incorrect.

Another possible problem is that the figure you are trying to include does not nest
properly; there are certain rules PostScript applications should follow when generating
files to be included. The dvips program includes work-arounds for such errors in Adobe
Illustrator and other programs, but there are certainly applications that haven’t been tested.

DVIPS: A TEX Driver 43

One possible thing to try is the -K flag, to strip the comments from an included figure.
This might be necessary if the PostScript spooling software does not read the structuring
comments correctly. Use of this flag will break graphics from some applications, though,
since some applications read the PostScript file from the input stream looking for a particular
comment.

Any application which generates graphics output containing raw binary (not hex) will
probably fail with dvips.

15.8 Can’t Find Font Files

If dvips complains that it cannot find certain font files, it is possible that the paths
haven’t been set up correctly for your system. Use the debug flags to determine precisely
what fonts are being looked for and make sure these match where the fonts are located on
your system.

15.9 Can’t Generate Fonts

This happens a lot if either MakeTeXPK hasn’t been properly edited and installed, or
if the local installation of METAFONT isn’t correct. If MakeTeXPK isn’t properly edited or
isn’t installed, an error such as MakeTeXPK not found will be printed on the console. The
fix is to talk to the person who installed dvips and have them fix this.

If METAFONT isn’t found when MakeTeXPK is running, make sure it is installed on your
system. The person who installed TEX should be able to install METAFONT easily.

If METAFONT runs but generates fonts that are too large (and prints out the name of
each character as well as just a character number), then your METAFONT base file proba-
bly hasn’t been made properly. To make a proper plain.base, assuming the local mode
definitions are contained in local.mf (on the NeXT, next.mf; on the Amiga, amiga.mf),
type the following command (assuming csh under UNIX):

localhost> inimf "plain; input local; dump"

Now, copy the plain.base file from the current directory to where the base files are stored
on your system.

Note that a preloaded cmbase.base should never be used when creating fonts, and a
program such as cmmf should never exist on the system. The macros defined in cmbase

will break fonts that do not use cmbase; such fonts include the LaTEX fonts. Loading the
cmbase macros when they are needed is done automatically and takes less than a second—
an insignificant fraction of the total run time of METAFONT for a font, especially when the
possibility of generating incorrect fonts is taken into account. If you create the LaTEX font
circle10, for instance, with the cmbase macros loaded, the characters will have incorrect
widths.

DVIPS: A TEX Driver 44

16. Using Color with dvips

This new feature of dvips is somewhat experimental so your experiences and comments
are welcome. Initially added by Jim Hafner, IBM Research, hafner@almaden.ibm.com, the
color support has gone through many changes by Tomas Rokicki. Besides the changes to the
source code itself, there are additional TEX macro files: colordvi.tex and blackdvi.tex.
There are also .sty versions of these files that can be used with LaTEX and other similar
macro packages. This feature adds one-pass multi-color printing of TEX documents on any
color PostScript device.

In this section we describe the use of color from the document preparer’s point of view
and then add some simple instructions on installation for the system administrator.

16.1 The Macro Files

All the color macro commands are defined in colordvi.tex (or colordvi.sty). To
access these macros simply add to the top of your TEX file the command

\input colordvi

or, if your document uses style files like LaTEX, add the colordvi style option as in

\documentstyle[12pt,colordvi]{article}

There are basically two kinds of color macros, ones for local color changes to, say, a few
words or even one symbol and one for global color changes. Note that all the color names
use a mixed case scheme. There are 68 predefined colors, with names taken primarily from
the Crayola crayon box of 64 colors, and one pair of macros for the user to set his own
color pattern. More on this extra feature later. You can browse the file colordvi.tex for
a list of the predefined colors. The comments in this file also show a rough correspondence
between the crayon names and PANTONEs.

A local color command is in the form

\ColorName{this will print in color}

Here ColorName is the name of a predefined color. As this example shows, this type of
command takes one argument which is the text that is to print in the selected color. This can
be used for nested color changes since it restores the original color state when it completes.
For example, suppose you were writing in green and want to switch temporarily to red,
then blue, back to red and restore green. Here is one way that you can do this:

This text is green but here we are \Red{switching to red,

\Blue{nesting blue}, recovering the red} and back to

original green.

DVIPS: A TEX Driver 45

In principle there is no limit to the nesting level, but it is not advisable to nest too deep
lest you lose track of the color history.

The global color command has the form

\textColorName

This macro takes no arguments and immediately changes the default color from that point
on to the specified color. This of course can be overriden globally by another such command
or locally by local color commands. For example, expanding on the example above, we might
have

\textGreen

This text is green but here we are \Red{switching to red,

\Blue{nesting blue}, recovering the red} and back to

original green.

\textCyan

The text from here on will be cyan unless

\Yellow{locally changed to yellow}. Now we are back to cyan.

The color commands will even work in math mode and across math mode boundaries.
This means that if you have a color before going into math mode, the mathematics will
be set in that color as well. More importantly however, in alignment environments like
\halign, tabular or eqnarray, local color commands cannot extend beyond the alignment
characters.

Because local color commands respect only some environment and delimiter changes
besides their own, care must be taken in setting their scope. It is best not to have then
stretch too far.

At the present time there are no macros for color environments in LaTEX which might
have a larger range. This is primarily to keep the TEX and LaTEX use compatible.

16.2 User Definable Colors

There are two ways for the user to specify colors not already defined. For local changes,
there is the command \Color which takes two arguments. The first argument is a quadruple
of numbers between zero and one and specifies the intensity of cyan, magenta, yellow and
black (CMYK) in that order. The second argument is the text that should appear in the
given color. For example, suppose you want the words “this color is pretty” to appear in
a color which is 50% cyan, 85% magenta, 40% yellow and 20% black. You would use the
command

\Color{.5 .85 .4 .2}{this color is pretty}

DVIPS: A TEX Driver 46

For global color changes, there is a command \textColor which takes one argument,
the CMYK quadruple of relative color intensities. For example, if you want the default
color to be as above, then the command

\textColor{.5 .85 .4 .2}

The text from now on will be this pretty color

will do the trick.

Making a global color change in the midst of nested local colors is highly discouraged.
Consequently, dvips will give you warning message and do its best to recover by discarding
the current color history.

16.3 Subtleties in Using Color

These color macros are defined by use of specialized \special keywords. As such, they
are put in the .dvi file only as explicit message strings to the driver. The (unpleasant)
result is that certain unprotected regions of the text can have unwanted color side effects.
For example, if a color region is split by TEX across a page boundary, then the footers of
the current page (e.g., the page number) and the headers of the next page can inherit that
color. To avoid this effect globally, users should make sure that these special regions of the
text are defined with their own local color commands. For example in TEX, to protect the
header and footer, use

\headline{\Black{My Header}}

\footline{\Black{\hss\tenrm\folio\hss}}

This warning also applies to figures and other insertions, so be careful!

Of course, in LaTEX, this is much more difficult to do because of the complexity of the
macros that control these regions. This is unfortunate, but is somehow inevitable because
TEX and LaTEX were not written with color in mind.

Even when writing your own macros, much care must be taken. The color macros that
‘colorize’ a portion of the text work by prefixing the text with a special command to turn
the color on and postfixing it with a different special command to restore the original color.
It is often useful to insure that TEX is in horizontal mode before the first special command
is issued; this can be done by prefixing the color command with \leavevmode.

DVIPS: A TEX Driver 47

16.4 Printing in Black/White, after Colorizing

If you have a TEX or LaTEX document written with color macros and you want to print
it in black and white there are two options. On all (good) PostScript devices, printing a color
file will print in corresponding grey-levels. This is useful since in this way you can get a rough
idea of where the colors are changing without using expensive color printing devices. The
second option is to replace the call to input colordvi.texwith blackdvi.tex (and similarly
for the .sty files). So in the above example, replacing the word colordvi with blackdvi

suffices. This file defines the color macros as no-ops, and so will produce normal black/white
printing. By this simple mechanism, the user can switch to all black/white printing without
having to ferret out the color commands. Also, some device drivers, particularly non-
PostScript ones like screen previewers, will simply ignore the color commands and so print
in normal black/white. Hopefully, in the future screen previewers for color displays will be
compatible with some form of color support.

16.5 Configuring dvips for Color Devices

To configure dvips for a particular color device you need to fine tune the color param-
eters to match your device’s color rendition. To do this, you will need a PANTONE chart
for your device. The header file color.lpro shows a (rough) correspondence between the
Crayola crayon names and the PANTONE numbers and also defines default CMYK values
for each of the colors. Note that these colors must be defined in CMYK terms and not
RGB as dvips outputs PostScript color commands in CMYK. This header file also defines
(if they are not known to the interpreter) the PostScript commands setcmykcolor and
currentcmykcolor in terms of a RGB equivalent so if your device only understands RGB,
there should be no problem.

The parameters set in this file were determined by comparing the PANTONE chart of a
Tektronics PHASER printer with the actual Crayola Crayons. Because these were defined
for a particular device, the actual color rendition on your device may be very different.
There are two ways to adjust this. One is to use the PANTONE chart for your device
to rewrite color.lpro prior to compilation and installation. A better alternative, which
supports multiple devices, is to add a header file option in the configuration file for each
device that defines, in userdict, the color parameters for those colors that need redefining.

For example, if you need to change the parameters defining Goldenrod (approxi-
mately PANTONE 109) for your device mycolordev, do the following. In the PANTONE
chart for your device, find the CMYK values for PANTONE 109. Let’s say they are
{ 0 0.10 0.75 0.03 }. Then create a header file named mycolordev.pro with the com-
mands

userdict begin

/Goldenrod { 0 0.10 0.75 0.03 setcmykcolor} bind def

Finally, in config.mycolordev add the line

h mycolordev.pro

DVIPS: A TEX Driver 48

This will then define Goldenrod in your device’s CMYK values in userdict which is checked
before defining it in TeXdict by color.pro.

This mechanism, together with additions to colordvi.tex and blackdvi.tex (and
the .sty files), can also be used to predefine other colors for your users.

16.6 Protecting Regions From Spurious Colors

Because color is defined via TEX’s \special command, it cannot be sensitive to the
output routine or certain regions of the page like the header and footer. Consequently,
these regions need to be protected from spurious color changes (particularly when local
colors spread across page breaks).

Users need to be aware of the possibility of certain regions getting unwanted or unpre-
dicted colors. Headers and footers are most worrisome so style designers who want to use
color should keep this in mind.

One particular region of text that gets spurious color effects is labels in list environ-
ments. For instance, because of the way list items are defined in standard LaTEX, the bullet
for items that start with a different color also gets drawn in that color.

To give the user a simple mechanism to solve this problem (and other unforeseen effects
of this type) one other special macro is automatically defined. This macro is called \glob-

alColor. It is actually a local color macro and so takes a single argument. But the color
effect it produces is always the same as that set by the last \textColor or \textColorName
command. In effect, when a \textColorName command is called, \globalColor gets a
new definition equivalent to the local \ColorName macro. For example, when the default is
black, \globalColor=\Black and when \textGreen appears, \globalColor=\Green. This
special macro can then be used to protect sensitive regions of the text.

For example, in LaTEX files, one might make sure that the header and footers have
\globalColor wrapping their contents. In this way, they will inherit the current active
root (unnested) color state.

16.7 Color Support Details

To support color, dvips recognizes a certain set of specials. These specials all start
with the keyword color or the keyword background.

We will describe background first, since it is the simplest. The background keyword
must be followed by a color specification. That color specification is used as a fill color for
the background. The last background special on a page is the one that gets issued, and it
gets issued at the very beginning of the page, before any text or specials are sent. (This
is possible because the prescan phase of dvips notices all of the color specials so that the
appropriate information can be written out during the second phase.)

DVIPS: A TEX Driver 49

Ahh, but what is a color specification? It is one of three things. First, it might be
a PostScript procedure as defined in a PostScript header file. The color.pro file defines
64 of these, including Maroon. This PostScript procedure must set the current color to be
some value; in this case, Maroon is defined as 0 0.87 0.68 0.32 setcmykcolor.

The second possibility is the name of a color model (initially, one of rgb, hsb, cmyk,
or gray) followed by the appropriate number of parameters. When dvips encounters such
a macro, it sends out the parameters first, followed by the string created by prefixing
TeXcolor to the color model. Thus, the color specification rgb 0.3 0.4 0.5 would gener-
ate the PostScript code 0.3 0.4 0.5 TeXrgbcolor. Note that the case of zero arguments
is disallowed, as that is handled by the single keyword case above (where no changes to the
name are made before it is sent to the PostScript file.)

The third and final type of color specification is a double quote followed by any sequence
of PostScript. The double quote is stripped from the output. For instance, the color specifi-
cation "AggiePattern setpattern will set the ‘color’ to the Aggie logo pattern (assuming
such exists.)

So those are the three types of color specifications. The same type of specifications
are used by both the background special and the color special. The color special itself
has three forms. The first is just color followed by a color specification. In this case,
the current global color is set to that color; the color stack must be empty when such a
command is executed.

The second form is color push followed by a color specification. This saves the current
color on the color stack and sets the color to be that given by the color specification. This
is the most common way to set a color.

The final version of the color special is just color pop, with no color specification;
this says to pop the color last pushed on the color stack from the color stack and set the
current color to be that color.

The dvips program correctly handles these color specials across pages, even when the
pages are repeated or reversed.

These color specials can be used for things such as patterns or screens as well as simple
colors. However, note that in the PostScript, only one ‘color specification’ can be active at
a time. For instance, at the beginning of a page, only the bottommost entry on the color
stack is sent; also, when a color is ‘popped’, all that is done is that the color specification
from the previous stack entry is sent. No gsave or grestore is used. This means that you
cannot easily mix usage of the color specials for screens and colors, just one or the other.
This may be addressed in the future by adding support for different ‘categories’ of color-like
state.

